7.2 Turing Machines as Language Acceptors 7.3 Turing Machines that Compute Partial Functions

Size: px
Start display at page:

Download "7.2 Turing Machines as Language Acceptors 7.3 Turing Machines that Compute Partial Functions"

Transcription

1 CSC4510/6510 AUTOMATA 7.1 A General Model of Computation 7.2 Turing Machines as Language Acceptors 7.3 Turing Machines that Compute Partial Functions A General Model of Computation Both FA and PDA are models of computation An FA cannot accept SimplePal={xcx r x {a, b}*} or L={xcx x {a,b}*} A PDA cannot accept AnBnCn={a n b n c n n 0} An FA with a queue instead of a stack can accept L A PDA-like machine with two stacks can accept AnBnCn Either one is a reasonable candidate for a model of general-purpose computation 2 1

2 A General Model of Computation (cont d.) Turing machine Not obtained by adding data structures onto an FA Predates the FA and PDA models (Alan Turing s contributions date from the 1930 s) A Turing machine is not just the next step beyond a PDA According to the Church-Turing thesis, it is a general model of computation, potentially able to execute any algorithm A General Model of Computation (cont d.) For simplicity, Turing specified a linear tape which has a left end and is potentially infinite to the right head Unbounded tape 3 4 2

3 A General Model of Computation (cont d.) A single move is determined by the current state and the current tape symbol and has three parts Changing from the current state to another state Replacing the symbol in the square by another Leaving the tape head where it is (S), moving it one square to the left (L), or moving it one square to the right (R) The input string is assumed to be on the tape initially A Turing machine has two halt states: acceptance, rejection Turing machines may never stop 5 A General Model of Computation (cont d.) FINITE STATE CONTROL q 10 A I N P U T 3

4 A General Model of Computation (cont d.) Definition 7.1: A Turing Machine (TM) is a 5-tuple T=(Q,,, q 0, ), where: Q is a finite set of states. Halt states h a and h r are not elements of Q The input alphabet and the tape alphabet are both finite sets, with. The blank symbol is not an element of. q 0, the initial state, is an element of Q The transition function is : Q ( { }) (Q {h a, h r }) ( { }) {R, L, S} A General Model of Computation (cont d.) (p, X)=(q, Y, D): when T is in state p and the symbol in the current square is X, T replaces X by Y in that square, changes to state q, and moves the tape head one square to the right, or moves one square to the left, or doesn t move If q=h a /h r, this move causes T to halt Once it halts, it cannot move L Transition diagram If the TM attempts to move the tape head to the left when it is on square 0, the TM halts in state h r, leaving the tape head in square 0 and leaving the tape unchanged X p q Y 7 8 4

5 A General Model of Computation (cont d.) 1/1,R 0/0,R; 1/1,R s 0/0,R p 0/0,R q /,R h a 1/1,R M=(Q, Σ, Γ, q 0, δ) Q = {s, p, q} Σ = {0, 1} Г = {0, 1} q 0 =s δ 0 1 s (p, 0, R) (s, 1, R) - p (q, 0, R) (s, 1, R) - q (q, 0, R) (q, 1, R) (h,, R) A General Model of Computation (cont d.) Normally a TM begins with an input string starting in square 1 and all other squares blank In any case, the set of nonblank squares on the tape must always be finite Current configuration of a TM: a single string xqy, where q is the current state, x is the string of symbols to the left of the current square, y is either null or a string starts in the current square, and everything after xy on the tape is blank xqy T zrw / xqy T *zrw: T moves from the 1 st configuration to the 2 nd in one move, or in 0 or more moves, respectively (q, a)=(r,, L): aabqa a T aarb a Initial configuration corresponding to input x: q 0 x 10 5

6 A General Model of Computation (cont d.) CONFIGURATION 11010q Turing Machines as Language Acceptors Definition 7.2: If T=(Q,,, q 0, ) is a TM and x *, x is accepted by T if q 0 x T * wh a y for some w, y ( { })* A language L * is accepted by T if L=L(T), where L(T)={x * x is accepted by T} An FA and a TM that accept the same language: q

7 Turing Machines as Language Acceptors (cont d.) If the language were not regular, the TM could not move its tape head to the right on every move. The 2 nd diagram does not show any of the moves to the reject state They all have the same form, and there is one from each of the states p, q, and s (the nonhalting states other than q 0 that correspond to nonaccepting states in the FA), as shown below A string could be accepted as soon as an occurrence of ab is found, without reading the rest of the input. Turing Machines as Language Acceptors (cont d.) TMs vs. FAs TM can both write to and read from the tape The head can move left and right The string does not have to be read entirely Accept and Reject take immediate effect

8 Turing Machines as Language Acceptors (cont d.) A TM accepting XX={xx x {a, b}*} Input: aba Turing Machines as Language Acceptors (cont d.) A TM accepting XX={xx x {a, b}*} Input: aba q 1 q 2 q 2 q 4 q 3 q 2 A a b a A a b A a

9 Turing Machines as Language Acceptors (cont d.) A TM accepting XX={xx x {a, b}*} Input: aba Turing Machines as Language Acceptors (cont d.) A TM accepting XX={xx x {a, b}*} Input: aba q 4 q 1 q 2 h q r : 3 Reject q 2 A a B b A a A a B b A a

10 Turing Machines as Language Acceptors (cont d.) q 0 ab q 1 ab Aq 2 b Abq 2 Aq 3 b q 4 AB Aq 1 B q 5 AB q 5 ab q 6 ab Aq 8 B Ah r B Reject Turing Machines that Compute Partial Functions A TM that produces an output string for every legal input string is said to compute a partial function on * We ll also consider TMs that compute partial functions on ( *) k, i.e., functions of k variables q 0 aa q 1 aa Aq 2 a Aaq 2 Aq 3 a q 4 AA Aq 1 A q 5 AA q 5 aa q 6 aa Aq 8 A q 9 A Aq 6 Ah a Accept The most important issue is what output strings are produced for input strings in the domain of f

11 Turing Machines that Compute Partial Functions (cont d.) Definition 7.9: Let T=(Q,,, q 0, ) be a TM, k a natural number, and f a partial function from ( *) k to *. We say that T computes f if for every (x 1, x 2,, x k ) in the domain of f, q 0 x 1 x 2 x k T * h a f(x 1, x 2,, x k ) and no other input that is a k-tuple of strings is accepted by T. A partial function f is Turing-computable if there is a TM that computes f Turing Machines that Compute Partial Functions (cont d.) A TM may compute a partial function whose domain and codomain are sets of numbers Consider partial functions on N k with values in N Use unary notation for numbers The official definition is similar to Definition 7.9, except that the input alphabet is {1}, the initial configuration looks like q 0 1 n 1 1 n 2 1 n k and the final configuration is h a 1 f(n 1, n 2,, n k )

12 Turing Machines that Compute Partial Functions (cont d.) n mod 2 Turing Machines that Compute Partial Functions (cont d.) Reversing a string q * h a 1 q * h a 23 q 0 abb * h a bba q 0 baba * h a abab 24 12

Chapter 7 Turing Machines

Chapter 7 Turing Machines Chapter 7 Turing Machines Copyright 2011 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 A General Model of Computation Both finite automata and pushdown automata are

More information

CSE 460: Computabilty and Formal Languages Turing Machine (TM) S. Pramanik

CSE 460: Computabilty and Formal Languages Turing Machine (TM) S. Pramanik CSE 460: Computabilty and Formal Languages Turing Machine (TM) S. Pramanik 1 Definition of Turing Machine A 5-tuple: T = (Q, Σ, Γ, q 0, δ), where Q: a finite set of states h: the halt state, not included

More information

1 Unrestricted Computation

1 Unrestricted Computation 1 Unrestricted Computation General Computing Machines Machines so far: DFAs, NFAs, PDAs Limitations on how much memory they can use: fixed amount of memory plus (for PDAs) a stack Limitations on what they

More information

Part I: Definitions and Properties

Part I: Definitions and Properties Turing Machines Part I: Definitions and Properties Finite State Automata Deterministic Automata (DFSA) M = {Q, Σ, δ, q 0, F} -- Σ = Symbols -- Q = States -- q 0 = Initial State -- F = Accepting States

More information

Chapter 3: The Church-Turing Thesis

Chapter 3: The Church-Turing Thesis Chapter 3: The Church-Turing Thesis 1 Turing Machine (TM) Control... Bi-direction Read/Write Turing machine is a much more powerful model, proposed by Alan Turing in 1936. 2 Church/Turing Thesis Anything

More information

Griffith University 3130CIT Theory of Computation (Based on slides by Harald Søndergaard of The University of Melbourne) Turing Machines 9-0

Griffith University 3130CIT Theory of Computation (Based on slides by Harald Søndergaard of The University of Melbourne) Turing Machines 9-0 Griffith University 3130CIT Theory of Computation (Based on slides by Harald Søndergaard of The University of Melbourne) Turing Machines 9-0 Turing Machines Now for a machine model of much greater power.

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 8 January 24, 2018 Outline Turing Machines and variants multitape TMs nondeterministic TMs Church-Turing Thesis So far several models of computation finite automata

More information

Turing Machines (TM) Deterministic Turing Machine (DTM) Nondeterministic Turing Machine (NDTM)

Turing Machines (TM) Deterministic Turing Machine (DTM) Nondeterministic Turing Machine (NDTM) Turing Machines (TM) Deterministic Turing Machine (DTM) Nondeterministic Turing Machine (NDTM) 1 Deterministic Turing Machine (DTM).. B B 0 1 1 0 0 B B.. Finite Control Two-way, infinite tape, broken into

More information

Turing machines Finite automaton no storage Pushdown automaton storage is a stack What if we give the automaton a more flexible storage?

Turing machines Finite automaton no storage Pushdown automaton storage is a stack What if we give the automaton a more flexible storage? Turing machines Finite automaton no storage Pushdown automaton storage is a stack What if we give the automaton a more flexible storage? What is the most powerful of automata? In this lecture we will introduce

More information

TURING MAHINES

TURING MAHINES 15-453 TURING MAHINES TURING MACHINE FINITE STATE q 10 CONTROL AI N P U T INFINITE TAPE read write move 0 0, R, R q accept, R q reject 0 0, R 0 0, R, L read write move 0 0, R, R q accept, R 0 0, R 0 0,

More information

Introduction to Turing Machines

Introduction to Turing Machines Introduction to Turing Machines Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. 12 November 2015 Outline 1 Turing Machines 2 Formal definitions 3 Computability

More information

Turing Machines. Wen-Guey Tzeng Computer Science Department National Chiao Tung University

Turing Machines. Wen-Guey Tzeng Computer Science Department National Chiao Tung University Turing Machines Wen-Guey Tzeng Computer Science Department National Chiao Tung University Alan Turing One of the first to conceive a machine that can run computation mechanically without human intervention.

More information

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine)

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine) CS537 Theory of Computation Lecture : Computability Theory I (Turing Machine) Objectives Introduce the Turing Machine (TM) Proposed by Alan Turing in 936 finite-state control + infinitely long tape A stronger

More information

Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q0, qaccept, qreject), where Q, Σ, Γ are all finite

Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q0, qaccept, qreject), where Q, Σ, Γ are all finite The Church-Turing Thesis CS60001: Foundations of Computing Science Professor, Dept. of Computer Sc. & Engg., Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q 0, q accept, q reject ), where

More information

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine)

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine) CS537 Theory of Computation Lecture : Computability Theory I (Turing Machine) Objectives Introduce the Turing Machine (TM)? Proposed by Alan Turing in 936 finite-state control + infinitely long tape A

More information

Most General computer?

Most General computer? Turing Machines Most General computer? DFAs are simple model of computation. Accept only the regular languages. Is there a kind of computer that can accept any language, or compute any function? Recall

More information

Chapter 8. Turing Machine (TMs)

Chapter 8. Turing Machine (TMs) Chapter 8 Turing Machine (TMs) Turing Machines (TMs) Accepts the languages that can be generated by unrestricted (phrase-structured) grammars No computational machine (i.e., computational language recognition

More information

Turing Machines. The Language Hierarchy. Context-Free Languages. Regular Languages. Courtesy Costas Busch - RPI 1

Turing Machines. The Language Hierarchy. Context-Free Languages. Regular Languages. Courtesy Costas Busch - RPI 1 Turing Machines a n b n c The anguage Hierarchy n? ww? Context-Free anguages a n b n egular anguages a * a *b* ww Courtesy Costas Busch - PI a n b n c n Turing Machines anguages accepted by Turing Machines

More information

CSci 311, Models of Computation Chapter 9 Turing Machines

CSci 311, Models of Computation Chapter 9 Turing Machines CSci 311, Models of Computation Chapter 9 Turing Machines H. Conrad Cunningham 29 December 2015 Contents Introduction................................. 1 9.1 The Standard Turing Machine...................

More information

Equivalence of TMs and Multitape TMs. Theorem 3.13 and Corollary 3.15 By: Joseph Lauman

Equivalence of TMs and Multitape TMs. Theorem 3.13 and Corollary 3.15 By: Joseph Lauman Equivalence of TMs and Multitape TMs Theorem 3.13 and Corollary 3.15 By: Joseph Lauman Turing Machines First proposed by Alan Turing in 1936 Similar to finite automaton, but with an unlimited and unrestricted

More information

Before We Start. Turing Machines. Languages. Now our picture looks like. Theory Hall of Fame. The Turing Machine. Any questions? The $64,000 Question

Before We Start. Turing Machines. Languages. Now our picture looks like. Theory Hall of Fame. The Turing Machine. Any questions? The $64,000 Question Before We Start s Any questions? Languages The $64,000 Question What is a language? What is a class of languages? Now our picture looks like Context Free Languages Deterministic Context Free Languages

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A context-free grammar is in Chomsky normal form if every rule is of the form:

More information

Lecture 12: Mapping Reductions

Lecture 12: Mapping Reductions Lecture 12: Mapping Reductions October 18, 2016 CS 1010 Theory of Computation Topics Covered 1. The Language EQ T M 2. Mapping Reducibility 3. The Post Correspondence Problem 1 The Language EQ T M The

More information

CS 21 Decidability and Tractability Winter Solution Set 3

CS 21 Decidability and Tractability Winter Solution Set 3 CS 21 Decidability and Tractability Winter 2018 Posted: January 31 Solution Set 3 If you have not yet turned in the Problem Set, you should not consult these solutions. 1. (a) A 2-NPDA is a 7-tuple (Q,,

More information

Turing machines COMS Ashley Montanaro 21 March Department of Computer Science, University of Bristol Bristol, UK

Turing machines COMS Ashley Montanaro 21 March Department of Computer Science, University of Bristol Bristol, UK COMS11700 Turing machines Department of Computer Science, University of Bristol Bristol, UK 21 March 2014 COMS11700: Turing machines Slide 1/15 Introduction We have seen two models of computation: finite

More information

Turing Machines. Fall The Chinese University of Hong Kong. CSCI 3130: Formal languages and automata theory

Turing Machines. Fall The Chinese University of Hong Kong. CSCI 3130: Formal languages and automata theory The Chinese University of Hong Kong Fall 2011 CSCI 3130: Formal languages and automata theory Turing Machines Andrej Bogdanov http://www.cse.cuhk.edu.hk/~andrejb/csc3130 Turing Machines control head a

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY REVIEW for MIDTERM 1 THURSDAY Feb 6 Midterm 1 will cover everything we have seen so far The PROBLEMS will be from Sipser, Chapters 1, 2, 3 It will be

More information

CSCE 551: Chin-Tser Huang. University of South Carolina

CSCE 551: Chin-Tser Huang. University of South Carolina CSCE 551: Theory of Computation Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Computation History A computation history of a TM M is a sequence of its configurations C 1, C 2,, C l such

More information

Turing Machines (TM) The Turing machine is the ultimate model of computation.

Turing Machines (TM) The Turing machine is the ultimate model of computation. TURING MACHINES Turing Machines (TM) The Turing machine is the ultimate model of computation. Alan Turing (92 954), British mathematician/engineer and one of the most influential scientists of the last

More information

Fundamentals of Computer Science

Fundamentals of Computer Science Fundamentals of Computer Science Chapter 8: Turing machines Henrik Björklund Umeå University February 17, 2014 The power of automata Finite automata have only finite memory. They recognize the regular

More information

Chomsky Normal Form and TURING MACHINES. TUESDAY Feb 4

Chomsky Normal Form and TURING MACHINES. TUESDAY Feb 4 Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A context-free grammar is in Chomsky normal form if every rule is of the form: A BC A a S ε B and C aren t start variables a is

More information

CSE 105 Theory of Computation

CSE 105 Theory of Computation CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Today s Agenda Quick Review of CFG s and PDA s Introduction to Turing Machines and their Languages Reminders and

More information

Lecture 13: Turing Machine

Lecture 13: Turing Machine Lecture 13: Turing Machine Instructor: Ketan Mulmuley Scriber: Yuan Li February 19, 2015 Turing machine is an abstract machine which in principle can simulate any computation in nature. Church-Turing Thesis:

More information

More Turing Machines. CS154 Chris Pollett Mar 15, 2006.

More Turing Machines. CS154 Chris Pollett Mar 15, 2006. More Turing Machines CS154 Chris Pollett Mar 15, 2006. Outline Multitape Turing Machines Nondeterministic Turing Machines Enumerators Introduction There have been many different proposals for what it means

More information

Computation Histories

Computation Histories 208 Computation Histories The computation history for a Turing machine on an input is simply the sequence of configurations that the machine goes through as it processes the input. An accepting computation

More information

SE 3310b Theoretical Foundations of Software Engineering. Turing Machines. Aleksander Essex

SE 3310b Theoretical Foundations of Software Engineering. Turing Machines. Aleksander Essex SE 3310b Theoretical Foundations of Software Engineering Turing Machines Aleksander Essex 1 / 1 Turing Machines 2 / 1 Introduction We ve finally arrived at a complete model of computation: Turing machines.

More information

CS20a: Turing Machines (Oct 29, 2002)

CS20a: Turing Machines (Oct 29, 2002) CS20a: Turing Machines (Oct 29, 2002) So far: DFA = regular languages PDA = context-free languages Today: Computability 1 Church s thesis The computable functions are the same as the partial recursive

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) October,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.   ETH Zürich (D-ITET) October, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) October, 19 2017 Part 5 out of 5 Last week was all about Context-Free Languages Context-Free

More information

Theory of Computation

Theory of Computation Theory of Computation Lecture #2 Sarmad Abbasi Virtual University Sarmad Abbasi (Virtual University) Theory of Computation 1 / 1 Lecture 2: Overview Recall some basic definitions from Automata Theory.

More information

Computability Theory. CS215, Lecture 6,

Computability Theory. CS215, Lecture 6, Computability Theory CS215, Lecture 6, 2000 1 The Birth of Turing Machines At the end of the 19th century, Gottlob Frege conjectured that mathematics could be built from fundamental logic In 1900 David

More information

Turing Machines. Chapter 17

Turing Machines. Chapter 17 Turing Machines Chapter 17 Languages and Machines SD D Context-Free Languages Regular Languages reg exps FSMs cfgs PDAs unrestricted grammars Turing Machines Grammars, SD Languages, and Turing Machines

More information

Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine

Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine There is no known model of computation more powerful than Turing Machines Definition of Algorithm:

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Lecture 5 Reductions Undecidable problems from language theory Linear bounded automata given by Jiri Srba Lecture 5 Computability and Complexity 1/14 Reduction Informal Definition

More information

Theory of Computation Turing Machine and Pushdown Automata

Theory of Computation Turing Machine and Pushdown Automata Theory of Computation Turing Machine and Pushdown Automata 1. What is a Turing Machine? A Turing Machine is an accepting device which accepts the languages (recursively enumerable set) generated by type

More information

The Church-Turing Thesis

The Church-Turing Thesis The Church-Turing Thesis Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/

More information

CSCI3390-Assignment 2 Solutions

CSCI3390-Assignment 2 Solutions CSCI3390-Assignment 2 Solutions due February 3, 2016 1 TMs for Deciding Languages Write the specification of a Turing machine recognizing one of the following three languages. Do one of these problems.

More information

ECS 120 Lesson 15 Turing Machines, Pt. 1

ECS 120 Lesson 15 Turing Machines, Pt. 1 ECS 120 Lesson 15 Turing Machines, Pt. 1 Oliver Kreylos Wednesday, May 2nd, 2001 Before we can start investigating the really interesting problems in theoretical computer science, we have to introduce

More information

Turing Machines Part II

Turing Machines Part II Turing Machines Part II COMP2600 Formal Methods for Software Engineering Katya Lebedeva Australian National University Semester 2, 2016 Slides created by Katya Lebedeva COMP 2600 Turing Machines 1 Why

More information

Harvard CS 121 and CSCI E-121 Lecture 14: Turing Machines and the Church Turing Thesis

Harvard CS 121 and CSCI E-121 Lecture 14: Turing Machines and the Church Turing Thesis Harvard CS 121 and CSCI E-121 Lecture 14: Turing Machines and the Church Turing Thesis Harry Lewis October 22, 2013 Reading: Sipser, 3.2, 3.3. The Basic Turing Machine The Basic Turing Machine a a b a

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 14 SMALL REVIEW FOR FINAL SOME Y/N QUESTIONS Q1 Given Σ =, there is L over Σ Yes: = {e} and L = {e} Σ Q2 There are uncountably

More information

CSCC63 Worksheet Turing Machines

CSCC63 Worksheet Turing Machines 1 An Example CSCC63 Worksheet Turing Machines Goal. Design a turing machine, M that accepts only strings of the form {w#w w {0, 1} }. Idea. Describe in words how the machine would work. Read first symbol

More information

Section 14.1 Computability then else

Section 14.1 Computability then else Section 14.1 Computability Some problems cannot be solved by any machine/algorithm. To prove such statements we need to effectively describe all possible algorithms. Example (Turing machines). Associate

More information

What languages are Turing-decidable? What languages are not Turing-decidable? Is there a language that isn t even Turingrecognizable?

What languages are Turing-decidable? What languages are not Turing-decidable? Is there a language that isn t even Turingrecognizable? } We ll now take a look at Turing Machines at a high level and consider what types of problems can be solved algorithmically and what types can t: What languages are Turing-decidable? What languages are

More information

CSCE 551: Chin-Tser Huang. University of South Carolina

CSCE 551: Chin-Tser Huang. University of South Carolina CSCE 551: Theory of Computation Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Church-Turing Thesis The definition of the algorithm came in the 1936 papers of Alonzo Church h and Alan

More information

COMPARATIVE ANALYSIS ON TURING MACHINE AND QUANTUM TURING MACHINE

COMPARATIVE ANALYSIS ON TURING MACHINE AND QUANTUM TURING MACHINE Volume 3, No. 5, May 2012 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info COMPARATIVE ANALYSIS ON TURING MACHINE AND QUANTUM TURING MACHINE Tirtharaj Dash

More information

Turing Machines. 22c:135 Theory of Computation. Tape of a Turing Machine (TM) TM versus FA, PDA

Turing Machines. 22c:135 Theory of Computation. Tape of a Turing Machine (TM) TM versus FA, PDA Turing Machines A Turing machine is similar to a finite automaton with supply of unlimited memory. A Turing machine can do everything that any computing device can do. There exist problems that even a

More information

ACS2: Decidability Decidability

ACS2: Decidability Decidability Decidability Bernhard Nebel and Christian Becker-Asano 1 Overview An investigation into the solvable/decidable Decidable languages The halting problem (undecidable) 2 Decidable problems? Acceptance problem

More information

HIS LEGACY. 100 Years Turing celebration. Gordana Dodig Crnkovic, IDT Open Seminar. Computer Science and Network Department Mälardalen University

HIS LEGACY. 100 Years Turing celebration. Gordana Dodig Crnkovic, IDT Open Seminar. Computer Science and Network Department Mälardalen University IDT Open Seminar AAN TUING AND HIS EGACY 00 Years Turing celebration http://www.mrtc.mdh.se/~gdc/work/turingcentenary.pdf http://www.mrtc.mdh.se/ mdh se/~gdc/work/turingmachine.pdf Gordana Dodig Crnkovic,

More information

CS4026 Formal Models of Computation

CS4026 Formal Models of Computation CS4026 Formal Models of Computation Turing Machines Turing Machines Abstract but accurate model of computers Proposed by Alan Turing in 1936 There weren t computers back then! Turing s motivation: find

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Fall 2016 http://cseweb.ucsd.edu/classes/fa16/cse105-abc/ Today's learning goals Sipser Ch 3 Trace the computation of a Turing machine using its transition function and configurations.

More information

Decidability: Church-Turing Thesis

Decidability: Church-Turing Thesis Decidability: Church-Turing Thesis While there are a countably infinite number of languages that are described by TMs over some alphabet Σ, there are an uncountably infinite number that are not Are there

More information

Turing Machine properties. Turing Machines. Alternate TM definitions. Alternate TM definitions. Alternate TM definitions. Alternate TM definitions

Turing Machine properties. Turing Machines. Alternate TM definitions. Alternate TM definitions. Alternate TM definitions. Alternate TM definitions Turing Machine properties Turing Machines TM Variants and the Universal TM There are many ways to skin a cat And many ways to define a TM The book s Standard Turing Machines Tape unbounded on both sides

More information

IV. Turing Machine. Yuxi Fu. BASICS, Shanghai Jiao Tong University

IV. Turing Machine. Yuxi Fu. BASICS, Shanghai Jiao Tong University IV. Turing Machine Yuxi Fu BASICS, Shanghai Jiao Tong University Alan Turing Alan Turing (23Jun.1912-7Jun.1954), an English student of Church, introduced a machine model for effective calculation in On

More information

A Note on Turing Machine Design

A Note on Turing Machine Design CS103 Handout 17 Fall 2013 November 11, 2013 Problem Set 7 This problem explores Turing machines, nondeterministic computation, properties of the RE and R languages, and the limits of RE and R languages.

More information

Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. The stack

Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. The stack A pushdown automata (PDA) is essentially: An NFA with a stack A move of a PDA will depend upon Current state of the machine Current symbol being read in Current symbol popped off the top of the stack With

More information

Undecidable Problems and Reducibility

Undecidable Problems and Reducibility University of Georgia Fall 2014 Reducibility We show a problem decidable/undecidable by reducing it to another problem. One type of reduction: mapping reduction. Definition Let A, B be languages over Σ.

More information

Variants of Turing Machine (intro)

Variants of Turing Machine (intro) CHAPTER 3 The Church-Turing Thesis Contents Turing Machines definitions, examples, Turing-recognizable and Turing-decidable languages Variants of Turing Machine Multi-tape Turing machines, non-deterministic

More information

UNIT 1 TURING MACHINE

UNIT 1 TURING MACHINE UNIT 1 TURING MACHINE Structure Page Nos. 1.0 Introduction 5 1.1 Objectives 7 1.2 Prelude to Formal Definition 7 1.3 : Formal Definition and Examples 9 1.4 Instantaneous Description and Transition Diagram

More information

Busch Complexity Lectures: Turing s Thesis. Costas Busch - LSU 1

Busch Complexity Lectures: Turing s Thesis. Costas Busch - LSU 1 Busch Complexity Lectures: Turing s Thesis Costas Busch - LSU 1 Turing s thesis (1930): Any computation carried out by mechanical means can be performed by a Turing Machine Costas Busch - LSU 2 Algorithm:

More information

Reducability. Sipser, pages

Reducability. Sipser, pages Reducability Sipser, pages 187-214 Reduction Reduction encodes (transforms) one problem as a second problem. A solution to the second, can be transformed into a solution to the first. We expect both transformations

More information

jflap demo Regular expressions Pumping lemma Turing Machines Sections 12.4 and 12.5 in the text

jflap demo Regular expressions Pumping lemma Turing Machines Sections 12.4 and 12.5 in the text On the menu today jflap demo Regular expressions Pumping lemma Turing Machines Sections 12.4 and 12.5 in the text 1 jflap Demo jflap: Useful tool for creating and testing abstract machines Finite automata,

More information

Homework. Turing Machines. Announcements. Plan for today. Now our picture looks like. Languages

Homework. Turing Machines. Announcements. Plan for today. Now our picture looks like. Languages Homework s TM Variants and the Universal TM Homework #6 returned Homework #7 due today Homework #8 (the LAST homework!) Page 262 -- Exercise 10 (build with JFLAP) Page 270 -- Exercise 2 Page 282 -- Exercise

More information

Undecibability. Hilbert's 10th Problem: Give an algorithm that given a polynomial decides if the polynomial has integer roots or not.

Undecibability. Hilbert's 10th Problem: Give an algorithm that given a polynomial decides if the polynomial has integer roots or not. Undecibability Hilbert's 10th Problem: Give an algorithm that given a polynomial decides if the polynomial has integer roots or not. The problem was posed in 1900. In 1970 it was proved that there can

More information

CS151 Complexity Theory. Lecture 1 April 3, 2017

CS151 Complexity Theory. Lecture 1 April 3, 2017 CS151 Complexity Theory Lecture 1 April 3, 2017 Complexity Theory Classify problems according to the computational resources required running time storage space parallelism randomness rounds of interaction,

More information

CISC4090: Theory of Computation

CISC4090: Theory of Computation CISC4090: Theory of Computation Chapter 2 Context-Free Languages Courtesy of Prof. Arthur G. Werschulz Fordham University Department of Computer and Information Sciences Spring, 2014 Overview In Chapter

More information

Equivalent Variations of Turing Machines

Equivalent Variations of Turing Machines Equivalent Variations of Turing Machines Nondeterministic TM = deterministic TM npda = pushdown automata with n stacks 2PDA = npda = TM for all n 2 Turing machines with n tapes (n 2) and n tape heads has

More information

Turing Machines Part One

Turing Machines Part One Turing Machines Part One What problems can we solve with a computer? Regular Languages CFLs Languages recognizable by any feasible computing machine All Languages That same drawing, to scale. All Languages

More information

Non-emptiness Testing for TMs

Non-emptiness Testing for TMs 180 5. Reducibility The proof of unsolvability of the halting problem is an example of a reduction: a way of converting problem A to problem B in such a way that a solution to problem B can be used to

More information

Automata Theory (2A) Young Won Lim 5/31/18

Automata Theory (2A) Young Won Lim 5/31/18 Automata Theory (2A) Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

1 Showing Recognizability

1 Showing Recognizability CSCC63 Worksheet Recognizability and Decidability 1 1 Showing Recognizability 1.1 An Example - take 1 Let Σ be an alphabet. L = { M M is a T M and L(M) }, i.e., that M accepts some string from Σ. Prove

More information

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY RYAN DOUGHERTY If we want to talk about a program running on a real computer, consider the following: when a program reads an instruction,

More information

The Power of One-State Turing Machines

The Power of One-State Turing Machines The Power of One-State Turing Machines Marzio De Biasi Jan 15, 2018 Abstract At first glance, one state Turing machines are very weak: the Halting problem for them is decidable, and, without memory, they

More information

SCHEME FOR INTERNAL ASSESSMENT TEST 3

SCHEME FOR INTERNAL ASSESSMENT TEST 3 SCHEME FOR INTERNAL ASSESSMENT TEST 3 Max Marks: 40 Subject& Code: Automata Theory & Computability (15CS54) Sem: V ISE (A & B) Note: Answer any FIVE full questions, choosing one full question from each

More information

CSE 2001: Introduction to Theory of Computation Fall Suprakash Datta

CSE 2001: Introduction to Theory of Computation Fall Suprakash Datta CSE 2001: Introduction to Theory of Computation Fall 2013 Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/2001 11/7/2013 CSE

More information

UNRESTRICTED GRAMMARS

UNRESTRICTED GRAMMARS 136 UNRESTRICTED GRAMMARS Context-free grammar allows to substitute only variables with strings In an unrestricted grammar (or a rewriting system) one may substitute any non-empty string (containing variables

More information

Decidability. Human-aware Robotics. 2017/10/31 Chapter 4.1 in Sipser Ø Announcement:

Decidability. Human-aware Robotics. 2017/10/31 Chapter 4.1 in Sipser Ø Announcement: Decidability 2017/10/31 Chapter 4.1 in Sipser Ø Announcement: q q q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/decidability.pdf Happy Hollaween! Delayed

More information

Introduction to computability Tutorial 7

Introduction to computability Tutorial 7 Introduction to computability Tutorial 7 Context free languages and Turing machines November 6 th 2014 Context-free languages 1. Show that the following languages are not context-free: a) L ta i b j a

More information

CAPES MI. Turing Machines and decidable problems. Laure Gonnord

CAPES MI. Turing Machines and decidable problems. Laure Gonnord CAPES MI Turing Machines and decidable problems Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@univ-lyon1.fr Université Claude Bernard Lyon1 2017 Motivation 1 Motivation 2 Turing Machines

More information

Busch Complexity Lectures: Turing Machines. Prof. Busch - LSU 1

Busch Complexity Lectures: Turing Machines. Prof. Busch - LSU 1 Busch Complexity ectures: Turing Machines Prof. Busch - SU 1 The anguage Hierarchy a n b n c n? ww? Context-Free anguages n b n a ww egular anguages a* a *b* Prof. Busch - SU 2 a n b anguages accepted

More information

The Turing Machine. CSE 211 (Theory of Computation) The Turing Machine continued. Turing Machines

The Turing Machine. CSE 211 (Theory of Computation) The Turing Machine continued. Turing Machines The Turing Machine Turing Machines Professor Department of Computer Science and Engineering Bangladesh University of Engineering and Technology Dhaka-1000, Bangladesh The Turing machine is essentially

More information

Embedded systems specification and design

Embedded systems specification and design Embedded systems specification and design David Kendall David Kendall Embedded systems specification and design 1 / 21 Introduction Finite state machines (FSM) FSMs and Labelled Transition Systems FSMs

More information

Theory of Computation (Classroom Practice Booklet Solutions)

Theory of Computation (Classroom Practice Booklet Solutions) Theory of Computation (Classroom Practice Booklet Solutions) 1. Finite Automata & Regular Sets 01. Ans: (a) & (c) Sol: (a) The reversal of a regular set is regular as the reversal of a regular expression

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 13 CHAPTER 4 TURING MACHINES 1. The definition of Turing machine 2. Computing with Turing machines 3. Extensions of Turing

More information

CS20a: Turing Machines (Oct 29, 2002)

CS20a: Turing Machines (Oct 29, 2002) CS20a: Turing Machines (Oct 29, 2002) So far: DFA = regular languages PDA = context-free languages Today: Computability 1 Handicapped machines DFA limitations Tape head moves only one direction 2-way DFA

More information

Turing Machine Variants

Turing Machine Variants CS311 Computational Structures Turing Machine Variants Lecture 12 Andrew Black Andrew Tolmach 1 The Church-Turing Thesis The problems that can be decided by an algorithm are exactly those that can be decided

More information

Automata Theory CS S-12 Turing Machine Modifications

Automata Theory CS S-12 Turing Machine Modifications Automata Theory CS411-2015S-12 Turing Machine Modifications David Galles Department of Computer Science University of San Francisco 12-0: Extending Turing Machines When we added a stack to NFA to get a

More information

Automata Theory CS F-13 Unrestricted Grammars

Automata Theory CS F-13 Unrestricted Grammars Automata Theory CS411-2015F-13 Unrestricted Grammars David Galles Department of Computer Science University of San Francisco 13-0: Language Hierarchy Regular Languaes Regular Expressions Finite Automata

More information

More About Turing Machines. Programming Tricks Restrictions Extensions Closure Properties

More About Turing Machines. Programming Tricks Restrictions Extensions Closure Properties More About Turing Machines Programming Tricks Restrictions Extensions Closure Properties 1 Overview At first, the TM doesn t look very powerful. Can it really do anything a computer can? We ll discuss

More information

Chapter 6: Turing Machines

Chapter 6: Turing Machines Chapter 6: Turing Machines 6.1 The Turing Machine Definition A deterministic Turing machine (DTM) M is specified by a sextuple (Q, Σ, Γ, δ, s, f), where Q is a finite set of states; Σ is an alphabet of

More information

Introduction to Turing Machines. Reading: Chapters 8 & 9

Introduction to Turing Machines. Reading: Chapters 8 & 9 Introduction to Turing Machines Reading: Chapters 8 & 9 1 Turing Machines (TM) Generalize the class of CFLs: Recursively Enumerable Languages Recursive Languages Context-Free Languages Regular Languages

More information