Elementary Landscape Decomposition of the Test Suite Minimization Problem

Size: px
Start display at page:

Download "Elementary Landscape Decomposition of the Test Suite Minimization Problem"

Transcription

1 Elementary Decomposition of the Test Suite Minimization Problem Francisco Chicano, Javier Ferrer and Enrique Alba SSBSE 2, Szeged, Hungary, September -2 / 26

2 Problem Formalization Test Suite Minimization Given: Ø A set of test cases T = {t, t 2,..., t n } Ø A set of program elements to be covered (e.g., branches) M= {m, m 2,..., m k } Ø A coverage matrix T= Find a subset of tests X T Binary representation: t t 2 t 3... t n m m 2 m k maximizing coverage and minimizing the testing cost SSBSE 2, Szeged, Hungary, September -2 2 / 26

3 Definition Elementary s decomposition Binary Space Definition A landscape is a triple (X,N, f) where Ø X is the solution space Ø N is the neighbourhood operator Ø f is the objective function The pair (X,N) is called configuration space The neighbourhood operator is a function N: X P(X) Solution y is neighbour of x if y N(x) Regular and symmetric neighbourhoods d= N(x) x X y N(x) x N(y) 2 s s7 s2 s 3 4 s6 5 s3 2 s4 s5 Objective function f: X R (or N, Z, Q) 6 s8 s9 7 SSBSE 2, Szeged, Hungary, September -2 3 / 26

4 Definition Elementary s decomposition Binary Space Elementary s: Formal Definition An elementary function is an eigenvector of the graph Laplacian (plus constant) Adjacency matrix Degree matrix Graph Laplacian: s Depends on the configuration space s s7 s2 s3 s5 Elementary function: eigenvector of Δ (plus constant) s6 s4 s8 s9 Eigenvalue SSBSE 2, Szeged, Hungary, September -2 4 / 26

5 Definition Elementary s decomposition Binary Space Elementary s: Characterizations An elementary landscape is a landscape for which Depend on the problem/instance where def Linear relationship Grover s wave equation Eigenvalue SSBSE 2, Szeged, Hungary, September -2 5 / 26

6 Definition Elementary s decomposition Binary Space Decomposition What if the landscape is not elementary? Any landscape can be written as the sum of elementary landscapes f < e,f > < e 2,f > X X X There exists a set of eigenfunctions of Δ that form a basis of the function space (Fourier basis) e 2 Non-elementary function Elementary functions (from the Fourier basis) < e 2,f > f Elementary components of f < e,f > e SSBSE 2, Szeged, Hungary, September -2 6 / 26

7 Definition Elementary s decomposition Binary Space Examples Elementary s Problem Neighbourhood d k Symmetric TSP 2-opt n(n-3)/2 n- swap two cities n(n-)/2 2(n-) Graph α-coloring recolor vertex (α-)n 2α Max Cut one-change n 4 Weight Partition one-change n 4 Sum of elementary s Problem Neighbourhood d Components General TSP inversions n(n-)/2 2 swap two cities n(n-)/2 2 Subset Sum Problem one-change n 2 MAX k-sat one-change n k QAP swap two elements n(n-)/2 3 Test suite minimization one-change n max v i SSBSE 2, Szeged, Hungary, September -2 7 / 26

8 8 / 26 SSBSE 2, Szeged, Hungary, September -2 Regression The set of solutions X is the set of binary strings with length n Neighborhood used in the proof of our main result: one-change neighborhood Ø Two solutions x and y are neighbors iff Hamming(x,y)= Binary Search Space Definition Elementary s decomposition Binary Space

9 Definition Elementary s decomposition Binary Space Spheres around a Solution If f is elementary, the average of f in any sphere and ball of any size around x is a linear expression of f(x)!!! Σ f(y ) = λ 2 f(x) n non-null possible values Sutton H=2 H= Σ f(y ) = λ f(x) Whitley Langdon H=3 Σ f(y ) = λ 3 f(x) SSBSE 2, Szeged, Hungary, September -2 9 / 26

10 Definition Elementary s decomposition Binary Space Bit-flip Mutation: Elementary s Analysis of the expected fitness p= fitness does not change When f(x) > p= the same fitness j Sutton Whitley When f(x) < j Howe Chicano Alba j j p=/2 start from scratch p= flip around SSBSE 2, Szeged, Hungary, September -2 / 26

11 Definition Elementary s decomposition Binary Space Bit-flip Mutation: General Case Analysis of the expected fitness Example (j=,2,3): p.23 maximum expectation p=/2 start from scratch The traditinal p=/n could be around here SSBSE 2, Szeged, Hungary, September -2 / 26

12 ELD of f ELD of f 2 Elementary Decomposition of f The elementary landscape decomposition of Computable in O(nk) is Tests that cover m i constant expression Krawtchouk matrix Tests in the solution that cover m i SSBSE 2, Szeged, Hungary, September -2 2 / 26

13 ELD of f ELD of f 2 Elementary Decomposition of f 2 The elementary landscape decomposition of f 2 is SSBSE 2, Szeged, Hungary, September -2 3 / 26

14 ELD of f ELD of f 2 Elementary Decomposition of f 2 The elementary landscape decomposition of f 2 is SSBSE 2, Szeged, Hungary, September -2 4 / 26

15 ELD of f ELD of f 2 Elementary Decomposition of f 2 The elementary landscape decomposition of f 2 is Computable in O(nk 2 ) Number of tests that cover m i or m i Number of tests in the solution that cover m i or m i SSBSE 2, Szeged, Hungary, September -2 5 / 26

16 Selection Mutation GLS Selection Operator Selection operator Mutation Expectation Expectation Minimizing Mutation X We can design a selection operator selecting the individuals according to the expected fitness value after the mutation SSBSE 2, Szeged, Hungary, September -2 6 / 26

17 Selection Mutation GLS Mutation Operator Mutation operator Given one individual x, we can compute the expectation against p. Take the probability p for which the expectation is maximum 2. Use this probability to mutate the individual If this operator is used the expected improvement is maximum in one step (Sutton, Whitley and Howe in GECCO 2) SSBSE 2, Szeged, Hungary, September -2 7 / 26

18 Selection Mutation GLS Guarded Local Search With the Elementary Decomposition (ELD) we can compute: With the ELD of f and f 2 we can compute for any sphere and ball around a solution: : the average : the standard deviation Distribution of values around the average Chebyshev inequality Best At least 75% of the samples are in the interval Apply local search f SSBSE 2, Szeged, Hungary, September -2 8 / 26

19 Selection Mutation GLS Guarded Local Search With the Elementary Decomposition (ELD) we can compute: With the ELD of f and f 2 we can compute for any sphere and ball around a solution: : the average : the standard deviation Distribution of values around the average Chebyshev inequality Best f Don t apply local search At least 75% of the samples are in the interval SSBSE 2, Szeged, Hungary, September -2 9 / 26

20 Selection Mutation GLS Guarded Local Search: Experimental Setting Steady state genetic algorithm: bit-flip (p=.), one-point crossover, elitist replacement GA (no local search) GLSr (guarded local search up to radius r) LSr (always local search in a ball of radius r) Instances from the Software-artifact Infrastructure Repository (SIR) printtokens printtokens2 schedule schedule2 totinfo replace Oracle cost c=..5 n= test cases k=-2 items to cover independent runs SSBSE 2, Szeged, Hungary, September -2 2 / 26

21 Selection Mutation GLS Guarded Local Search: s c= c=3 c=5 printtokens schedule SSBSE 2, Szeged, Hungary, September -2 2 / 26

22 Selection Mutation GLS Guarded Local Search: s c= c=3 c=5 SSBSE 2, Szeged, Hungary, September / 26

23 Selection Mutation GLS Guarded Local Search: s c= c=3 c=5 SSBSE 2, Szeged, Hungary, September / 26

24 Selection Mutation GLS Guarded Local Search: s Time (secs.) SSBSE 2, Szeged, Hungary, September / 26

25 theory provides a promising technique to analyze SBSE problems We give the elementary landscape decomposition of the test suite minimization problem Using the ELD we can efficiently compute statistics in the neighbourhood of a solution We provide a proof-of-concept by proposing a Guarded Local Search operator using the information gained with the ELD Future Work The main drawback of the GLD is runtime: parallelize computation with GPUs Expressions for higher order moments (ELD of f c ) Remove the current constraint on the oracle cost Connection with moments of MAX-SAT SSBSE 2, Szeged, Hungary, September / 26

26 Elementary Decomposition of the Test Suite Minimization Problem Thanks for your attention!!! SSBSE 2, Szeged, Hungary, September / 26

Landscapes and Other Art Forms.

Landscapes and Other Art Forms. Landscapes and Other Art Forms. Darrell Whitley Computer Science, Colorado State University Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted

More information

Adele Howe L. Darrell Whitley Computer Science Department Colorado State University Fort Collins, CO

Adele Howe L. Darrell Whitley Computer Science Department Colorado State University Fort Collins, CO Final Report for AFOSR #FA9550-08-1-0422 Landscape Analysis and Algorithm Development for Plateau Plagued Search Spaces August 1, 2008 to November 30, 2010 Adele Howe L. Darrell Whitley Computer Science

More information

Next Generation Genetic Algorithms. Next Generation Genetic Algorithms. What if you could... Know your Landscape! And Go Downhill!

Next Generation Genetic Algorithms. Next Generation Genetic Algorithms. What if you could... Know your Landscape! And Go Downhill! Next Generation Genetic Algorithms Next Generation Genetic Algorithms With Thanks to: Darrell Whitley Computer Science, Colorado State University Francisco Chicano, Gabriela Ochoa, Andrew Sutton and Renato

More information

1. Computação Evolutiva

1. Computação Evolutiva 1. Computação Evolutiva Renato Tinós Departamento de Computação e Matemática Fac. de Filosofia, Ciência e Letras de Ribeirão Preto Programa de Pós-Graduação Em Computação Aplicada 1.6. Aspectos Teóricos*

More information

Computing the moments of k-bounded pseudo-boolean functions over Hamming spheres of arbitrary radius in polynomial time

Computing the moments of k-bounded pseudo-boolean functions over Hamming spheres of arbitrary radius in polynomial time Computer Science Technical Report Computing the moments of k-bounded pseudo-boolean functions over Hamming spheres of arbitrary radius in polynomial time Andrew M. Sutton, L. Darrell Whitley, Adele E.

More information

2 2 + x =

2 2 + x = Lecture 30: Power series A Power Series is a series of the form c n = c 0 + c 1 x + c x + c 3 x 3 +... where x is a variable, the c n s are constants called the coefficients of the series. n = 1 + x +

More information

A Comparison of GAs Penalizing Infeasible Solutions and Repairing Infeasible Solutions on the 0-1 Knapsack Problem

A Comparison of GAs Penalizing Infeasible Solutions and Repairing Infeasible Solutions on the 0-1 Knapsack Problem A Comparison of GAs Penalizing Infeasible Solutions and Repairing Infeasible Solutions on the 0-1 Knapsack Problem Jun He 1, Yuren Zhou 2, and Xin Yao 3 1 J. He is with the Department of Computer Science,

More information

2-bit Flip Mutation Elementary Fitness Landscapes

2-bit Flip Mutation Elementary Fitness Landscapes RN/10/04 Research 15 September 2010 Note 2-bit Flip Mutation Elementary Fitness Landscapes Presented at Dagstuhl Seminar 10361, Theory of Evolutionary Algorithms, 8 September 2010 Fax: +44 (0)171 387 1397

More information

THESIS A STEP TOWARD CONSTANT TIME LOCAL SEARCH FOR OPTIMIZING PSEUDO BOOLEAN FUNCTIONS. Submitted by Wenxiang Chen Department of Computer Science

THESIS A STEP TOWARD CONSTANT TIME LOCAL SEARCH FOR OPTIMIZING PSEUDO BOOLEAN FUNCTIONS. Submitted by Wenxiang Chen Department of Computer Science THESIS A STEP TOWARD CONSTANT TIME LOCAL SEARCH FOR OPTIMIZING PSEUDO BOOLEAN FUNCTIONS Submitted by Wenxiang Chen Department of Computer Science In partial fulfillment of the requirements For the Degree

More information

Permutation-based Optimization Problems and Estimation of Distribution Algorithms

Permutation-based Optimization Problems and Estimation of Distribution Algorithms Permutation-based Optimization Problems and Estimation of Distribution Algorithms Josu Ceberio Supervisors: Jose A. Lozano, Alexander Mendiburu 1 Estimation of Distribution Algorithms Estimation of Distribution

More information

8.5 Sequencing Problems

8.5 Sequencing Problems 8.5 Sequencing Problems Basic genres. Packing problems: SET-PACKING, INDEPENDENT SET. Covering problems: SET-COVER, VERTEX-COVER. Constraint satisfaction problems: SAT, 3-SAT. Sequencing problems: HAMILTONIAN-CYCLE,

More information

NP-Completeness. ch34 Hewett. Problem. Tractable Intractable Non-computable computationally infeasible super poly-time alg. sol. E.g.

NP-Completeness. ch34 Hewett. Problem. Tractable Intractable Non-computable computationally infeasible super poly-time alg. sol. E.g. NP-Completeness ch34 Hewett Problem Tractable Intractable Non-computable computationally infeasible super poly-time alg. sol. E.g., O(2 n ) computationally feasible poly-time alg. sol. E.g., O(n k ) No

More information

Introduction. Genetic Algorithm Theory. Overview of tutorial. The Simple Genetic Algorithm. Jonathan E. Rowe

Introduction. Genetic Algorithm Theory. Overview of tutorial. The Simple Genetic Algorithm. Jonathan E. Rowe Introduction Genetic Algorithm Theory Jonathan E. Rowe University of Birmingham, UK GECCO 2012 The theory of genetic algorithms is beginning to come together into a coherent framework. However, there are

More information

Approximating MAX-E3LIN is NP-Hard

Approximating MAX-E3LIN is NP-Hard Approximating MAX-E3LIN is NP-Hard Evan Chen May 4, 2016 This lecture focuses on the MAX-E3LIN problem. We prove that approximating it is NP-hard by a reduction from LABEL-COVER. 1 Introducing MAX-E3LIN

More information

Quantum walk algorithms

Quantum walk algorithms Quantum walk algorithms Andrew Childs Institute for Quantum Computing University of Waterloo 28 September 2011 Randomized algorithms Randomness is an important tool in computer science Black-box problems

More information

Generalization of Dominance Relation-Based Replacement Rules for Memetic EMO Algorithms

Generalization of Dominance Relation-Based Replacement Rules for Memetic EMO Algorithms Generalization of Dominance Relation-Based Replacement Rules for Memetic EMO Algorithms Tadahiko Murata 1, Shiori Kaige 2, and Hisao Ishibuchi 2 1 Department of Informatics, Kansai University 2-1-1 Ryozenji-cho,

More information

ACO Comprehensive Exam March 20 and 21, Computability, Complexity and Algorithms

ACO Comprehensive Exam March 20 and 21, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms Part a: You are given a graph G = (V,E) with edge weights w(e) > 0 for e E. You are also given a minimum cost spanning tree (MST) T. For one particular edge

More information

Unit 1A: Computational Complexity

Unit 1A: Computational Complexity Unit 1A: Computational Complexity Course contents: Computational complexity NP-completeness Algorithmic Paradigms Readings Chapters 3, 4, and 5 Unit 1A 1 O: Upper Bounding Function Def: f(n)= O(g(n)) if

More information

Computational Intractability 2010/4/15. Lecture 2

Computational Intractability 2010/4/15. Lecture 2 Computational Intractability 2010/4/15 Professor: David Avis Lecture 2 Scribe:Naoki Hatta 1 P and NP 1.1 Definition of P and NP Decision problem it requires yes/no answer. Example: X is a set of strings.

More information

Exponential algorithmic speedup by quantum walk

Exponential algorithmic speedup by quantum walk Exponential algorithmic speedup by quantum walk Andrew Childs MIT Center for Theoretical Physics joint work with Richard Cleve Enrico Deotto Eddie Farhi Sam Gutmann Dan Spielman quant-ph/0209131 Motivation

More information

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle 8.5 Sequencing Problems Basic genres. Packing problems: SET-PACKING, INDEPENDENT SET. Covering problems: SET-COVER, VERTEX-COVER. Constraint satisfaction problems: SAT, 3-SAT. Sequencing problems: HAMILTONIAN-CYCLE,

More information

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2)

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2) Algorithms and Theory of Computation Lecture 22: NP-Completeness (2) Xiaohui Bei MAS 714 November 8, 2018 Nanyang Technological University MAS 714 November 8, 2018 1 / 20 Set Cover Set Cover Input: a set

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms What do you do when a problem is NP-complete? or, when the polynomial time solution is impractically slow? assume input is random, do expected performance. Eg, Hamiltonian path

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 0, Winter 08 Design and Analysis of Algorithms Lecture 8: Consolidation # (DP, Greed, NP-C, Flow) Class URL: http://vlsicad.ucsd.edu/courses/cse0-w8/ Followup on IGO, Annealing Iterative Global Optimization

More information

A Faber-Krahn type inequality for regular trees

A Faber-Krahn type inequality for regular trees A Faber-Krahn type inequality for regular trees Josef Leydold leydold@statistikwu-wienacat Institut für Statistik, WU Wien Leydold 2003/02/13 A Faber-Krahn type inequality for regular trees p0/36 The Faber-Krahn

More information

SAT, Coloring, Hamiltonian Cycle, TSP

SAT, Coloring, Hamiltonian Cycle, TSP 1 SAT, Coloring, Hamiltonian Cycle, TSP Slides by Carl Kingsford Apr. 28, 2014 Sects. 8.2, 8.7, 8.5 2 Boolean Formulas Boolean Formulas: Variables: x 1, x 2, x 3 (can be either true or false) Terms: t

More information

8. INTRACTABILITY I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 2/6/18 2:16 AM

8. INTRACTABILITY I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 2/6/18 2:16 AM 8. INTRACTABILITY I poly-time reductions packing and covering problems constraint satisfaction problems sequencing problems partitioning problems graph coloring numerical problems Lecture slides by Kevin

More information

Spectra of adjacency matrices of random geometric graphs

Spectra of adjacency matrices of random geometric graphs Spectra of adjacency matrices of random geometric graphs Paul Blackwell, Mark Edmondson-Jones and Jonathan Jordan University of Sheffield 22nd December 2006 Abstract We investigate the spectral properties

More information

GPGPU Test Suite Minimisation: Search Based Software Engineering Performance Improvement Using Graphics Cards

GPGPU Test Suite Minimisation: Search Based Software Engineering Performance Improvement Using Graphics Cards Noname manuscript No. (will be inserted by the editor) GPGPU Test Suite Minimisation: Search Based Software Engineering Performance Improvement Using Graphics Cards Shin Yoo Mark Harman Shmuel Ur the date

More information

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce

More information

Intractable Problems Part Two

Intractable Problems Part Two Intractable Problems Part Two Announcements Problem Set Five graded; will be returned at the end of lecture. Extra office hours today after lecture from 4PM 6PM in Clark S250. Reminder: Final project goes

More information

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming: models and applications; complexity Ann-Brith Strömberg 2011 04 01 Modelling with integer variables (Ch. 13.1) Variables Linear programming (LP) uses continuous

More information

Non-Approximability Results (2 nd part) 1/19

Non-Approximability Results (2 nd part) 1/19 Non-Approximability Results (2 nd part) 1/19 Summary - The PCP theorem - Application: Non-approximability of MAXIMUM 3-SAT 2/19 Non deterministic TM - A TM where it is possible to associate more than one

More information

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P Easy Problems vs. Hard Problems CSE 421 Introduction to Algorithms Winter 2000 NP-Completeness (Chapter 11) Easy - problems whose worst case running time is bounded by some polynomial in the size of the

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example Partition of Integers into Even Summands We ask for the number of partitions of m Z + into positive even integers The desired number is the coefficient of x m in + x + x 4 + ) + x 4 + x 8 + ) + x 6 + x

More information

Limitations of Algorithm Power

Limitations of Algorithm Power Limitations of Algorithm Power Objectives We now move into the third and final major theme for this course. 1. Tools for analyzing algorithms. 2. Design strategies for designing algorithms. 3. Identifying

More information

Feasibility-Preserving Crossover for Maximum k-coverage Problem

Feasibility-Preserving Crossover for Maximum k-coverage Problem Feasibility-Preserving Crossover for Maximum -Coverage Problem Yourim Yoon School of Computer Science & Engineering Seoul National University Sillim-dong, Gwana-gu Seoul, 151-744, Korea yryoon@soar.snu.ac.r

More information

Continuous Time Quantum Walk on finite dimensions. Shanshan Li Joint work with Stefan Boettcher Emory University QMath13, 10/11/2016

Continuous Time Quantum Walk on finite dimensions. Shanshan Li Joint work with Stefan Boettcher Emory University QMath13, 10/11/2016 Continuous Time Quantum Walk on finite dimensions Shanshan Li Joint work with Stefan Boettcher Emory University QMath3, 0//206 Grover Algorithm: Unstructured Search! #$%&' Oracle $()*%$ f(x) f (x) = (

More information

Spectral Graph Theory Lecture 3. Fundamental Graphs. Daniel A. Spielman September 5, 2018

Spectral Graph Theory Lecture 3. Fundamental Graphs. Daniel A. Spielman September 5, 2018 Spectral Graph Theory Lecture 3 Fundamental Graphs Daniel A. Spielman September 5, 2018 3.1 Overview We will bound and derive the eigenvalues of the Laplacian matrices of some fundamental graphs, including

More information

Introduction to Complexity Theory

Introduction to Complexity Theory Introduction to Complexity Theory Read K & S Chapter 6. Most computational problems you will face your life are solvable (decidable). We have yet to address whether a problem is easy or hard. Complexity

More information

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle Directed Hamiltonian Cycle Chapter 8 NP and Computational Intractability Claim. G has a Hamiltonian cycle iff G' does. Pf. Suppose G has a directed Hamiltonian cycle Γ. Then G' has an undirected Hamiltonian

More information

1 Computational Problems

1 Computational Problems Stanford University CS254: Computational Complexity Handout 2 Luca Trevisan March 31, 2010 Last revised 4/29/2010 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Spectra of Adjacency and Laplacian Matrices

Spectra of Adjacency and Laplacian Matrices Spectra of Adjacency and Laplacian Matrices Definition: University of Alicante (Spain) Matrix Computing (subject 3168 Degree in Maths) 30 hours (theory)) + 15 hours (practical assignment) Contents 1. Spectra

More information

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC Clustering. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 - Clustering Lorenzo Rosasco UNIGE-MIT-IIT About this class We will consider an unsupervised setting, and in particular the problem of clustering unlabeled data into coherent groups. MLCC 2018

More information

Algorithms and Complexity Theory. Chapter 8: Introduction to Complexity. Computer Science - Durban - September 2005

Algorithms and Complexity Theory. Chapter 8: Introduction to Complexity. Computer Science - Durban - September 2005 Algorithms and Complexity Theory Chapter 8: Introduction to Complexity Jules-R Tapamo Computer Science - Durban - September 2005 Contents 1 Introduction 2 1.1 Dynamic programming...................................

More information

CS/COE

CS/COE CS/COE 1501 www.cs.pitt.edu/~nlf4/cs1501/ P vs NP But first, something completely different... Some computational problems are unsolvable No algorithm can be written that will always produce the correct

More information

On Dominator Colorings in Graphs

On Dominator Colorings in Graphs On Dominator Colorings in Graphs Ralucca Michelle Gera Department of Applied Mathematics Naval Postgraduate School Monterey, CA 994, USA ABSTRACT Given a graph G, the dominator coloring problem seeks a

More information

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University Learning from Sensor Data: Set II Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University 1 6. Data Representation The approach for learning from data Probabilistic

More information

CIS (More Propositional Calculus - 6 points)

CIS (More Propositional Calculus - 6 points) 1 CIS6333 Homework 1 (due Friday, February 1) 1. (Propositional Calculus - 10 points) --------------------------------------- Let P, Q, R range over state predicates of some program. Prove or disprove

More information

NP-problems continued

NP-problems continued NP-problems continued Page 1 Since SAT and INDEPENDENT SET can be reduced to each other we might think that there would be some similarities between the two problems. In fact, there is one such similarity.

More information

Week 4: Calculus and Optimization (Jehle and Reny, Chapter A2)

Week 4: Calculus and Optimization (Jehle and Reny, Chapter A2) Week 4: Calculus and Optimization (Jehle and Reny, Chapter A2) Tsun-Feng Chiang *School of Economics, Henan University, Kaifeng, China September 27, 2015 Microeconomic Theory Week 4: Calculus and Optimization

More information

Undecidable Problems. Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, / 65

Undecidable Problems. Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, / 65 Undecidable Problems Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, 2018 1/ 65 Algorithmically Solvable Problems Let us assume we have a problem P. If there is an algorithm solving

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

An Algorithmist s Toolkit September 15, Lecture 2

An Algorithmist s Toolkit September 15, Lecture 2 18.409 An Algorithmist s Toolkit September 15, 007 Lecture Lecturer: Jonathan Kelner Scribe: Mergen Nachin 009 1 Administrative Details Signup online for scribing. Review of Lecture 1 All of the following

More information

Computational complexity theory

Computational complexity theory Computational complexity theory Introduction to computational complexity theory Complexity (computability) theory deals with two aspects: Algorithm s complexity. Problem s complexity. References S. Cook,

More information

Real Analysis. Joe Patten August 12, 2018

Real Analysis. Joe Patten August 12, 2018 Real Analysis Joe Patten August 12, 2018 1 Relations and Functions 1.1 Relations A (binary) relation, R, from set A to set B is a subset of A B. Since R is a subset of A B, it is a set of ordered pairs.

More information

Linear vector spaces and subspaces.

Linear vector spaces and subspaces. Math 2051 W2008 Margo Kondratieva Week 1 Linear vector spaces and subspaces. Section 1.1 The notion of a linear vector space. For the purpose of these notes we regard (m 1)-matrices as m-dimensional vectors,

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Mathematical Background Mathematical Background Sets Relations Functions Graphs Proof techniques Sets

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms : Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA 2 Department of Computer

More information

Introduction to integer programming III:

Introduction to integer programming III: Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability

More information

Efficient Approximation for Restricted Biclique Cover Problems

Efficient Approximation for Restricted Biclique Cover Problems algorithms Article Efficient Approximation for Restricted Biclique Cover Problems Alessandro Epasto 1, *, and Eli Upfal 2 ID 1 Google Research, New York, NY 10011, USA 2 Department of Computer Science,

More information

Parallel Genetic Algorithms

Parallel Genetic Algorithms Parallel Genetic Algorithms for the Calibration of Financial Models Riccardo Gismondi June 13, 2008 High Performance Computing in Finance and Insurance Research Institute for Computational Methods Vienna

More information

Evolutionary Computation Theory. Jun He School of Computer Science University of Birmingham Web: jxh

Evolutionary Computation Theory. Jun He School of Computer Science University of Birmingham Web:   jxh Evolutionary Computation Theory Jun He School of Computer Science University of Birmingham Web: www.cs.bham.ac.uk/ jxh Outline Motivation History Schema Theorem Convergence and Convergence Rate Computational

More information

CSE 421 Greedy Algorithms / Interval Scheduling

CSE 421 Greedy Algorithms / Interval Scheduling CSE 421 Greedy Algorithms / Interval Scheduling Yin Tat Lee 1 Interval Scheduling Job j starts at s(j) and finishes at f(j). Two jobs compatible if they don t overlap. Goal: find maximum subset of mutually

More information

Lecture 3: Semidefinite Programming

Lecture 3: Semidefinite Programming Lecture 3: Semidefinite Programming Lecture Outline Part I: Semidefinite programming, examples, canonical form, and duality Part II: Strong Duality Failure Examples Part III: Conditions for strong duality

More information

RON AHARONI, NOGA ALON, AND ELI BERGER

RON AHARONI, NOGA ALON, AND ELI BERGER EIGENVALUES OF K 1,k -FREE GRAPHS AND THE CONNECTIVITY OF THEIR INDEPENDENCE COMPLEXES RON AHARONI, NOGA ALON, AND ELI BERGER Abstract. Let G be a graph on n vertices, with maximal degree d, and not containing

More information

Rings, Paths, and Cayley Graphs

Rings, Paths, and Cayley Graphs Spectral Graph Theory Lecture 5 Rings, Paths, and Cayley Graphs Daniel A. Spielman September 16, 2014 Disclaimer These notes are not necessarily an accurate representation of what happened in class. The

More information

Totally unimodular matrices. Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems

Totally unimodular matrices. Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Totally unimodular matrices Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Martin Branda Charles University in Prague Faculty of Mathematics and

More information

High dimensional ising model selection using l 1 -regularized logistic regression

High dimensional ising model selection using l 1 -regularized logistic regression High dimensional ising model selection using l 1 -regularized logistic regression 1 Department of Statistics Pennsylvania State University 597 Presentation 2016 1/29 Outline Introduction 1 Introduction

More information

Lecture 13, Fall 04/05

Lecture 13, Fall 04/05 Lecture 13, Fall 04/05 Short review of last class NP hardness conp and conp completeness Additional reductions and NP complete problems Decision, search, and optimization problems Coping with NP completeness

More information

Polynomial-time Reductions

Polynomial-time Reductions Polynomial-time Reductions Disclaimer: Many denitions in these slides should be taken as the intuitive meaning, as the precise meaning of some of the terms are hard to pin down without introducing the

More information

: Error Correcting Codes. December 2017 Lecture 10

: Error Correcting Codes. December 2017 Lecture 10 0368307: Error Correcting Codes. December 017 Lecture 10 The Linear-Programming Bound Amnon Ta-Shma and Dean Doron 1 The LP-bound We will prove the Linear-Programming bound due to [, 1], which gives an

More information

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Nathan Brunelle Department of Computer Science University of Virginia www.cs.virginia.edu/~njb2b/theory

More information

< k 2n. 2 1 (n 2). + (1 p) s) N (n < 1

< k 2n. 2 1 (n 2). + (1 p) s) N (n < 1 List of Problems jacques@ucsd.edu Those question with a star next to them are considered slightly more challenging. Problems 9, 11, and 19 from the book The probabilistic method, by Alon and Spencer. Question

More information

10.4 The Kruskal Katona theorem

10.4 The Kruskal Katona theorem 104 The Krusal Katona theorem 141 Example 1013 (Maximum weight traveling salesman problem We are given a complete directed graph with non-negative weights on edges, and we must find a maximum weight Hamiltonian

More information

Runtime Analyses for Using Fairness in Evolutionary Multi-Objective Optimization

Runtime Analyses for Using Fairness in Evolutionary Multi-Objective Optimization Runtime Analyses for Using Fairness in Evolutionary Multi-Objective Optimization Tobias Friedrich 1, Christian Horoba 2, and Frank Neumann 1 1 Max-Planck-Institut für Informatik, Saarbrücken, Germany 2

More information

On Ramsey s Theorem for Pairs

On Ramsey s Theorem for Pairs On Ramsey s Theorem for Pairs Peter A. Cholak, Carl G. Jockusch Jr., and Theodore A. Slaman On the strength of Ramsey s theorem for pairs. J. Symbolic Logic, 66(1):1-55, 2001. www.nd.edu/~cholak Ramsey

More information

Polynomial-Time Reductions

Polynomial-Time Reductions Reductions 1 Polynomial-Time Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. [von Neumann 1953, Godel

More information

Σ w j. Σ v i KNAPSACK. for i = 1, 2,..., n. and an positive integers K and W. Does there exist a subset S of {1, 2,..., n} such that: and w i

Σ w j. Σ v i KNAPSACK. for i = 1, 2,..., n. and an positive integers K and W. Does there exist a subset S of {1, 2,..., n} such that: and w i KNAPSACK Given positive integers v i and w i for i = 1, 2,..., n. and an positive integers K and W. Does there exist a subset S of {1, 2,..., n} such that: Σ w j W i S and Σ v i K i S A special case: SUBSET

More information

4/30/14. Chapter Sequencing Problems. NP and Computational Intractability. Hamiltonian Cycle

4/30/14. Chapter Sequencing Problems. NP and Computational Intractability. Hamiltonian Cycle Chapter 8 NP and Computational Intractability Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 2 Hamiltonian Cycle 8.5 Sequencing Problems HAM-CYCLE: given an undirected

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 P and NP P: The family of problems that can be solved quickly in polynomial time.

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

Evolutionary Algorithms How to Cope With Plateaus of Constant Fitness and When to Reject Strings of The Same Fitness

Evolutionary Algorithms How to Cope With Plateaus of Constant Fitness and When to Reject Strings of The Same Fitness Evolutionary Algorithms How to Cope With Plateaus of Constant Fitness and When to Reject Strings of The Same Fitness Thomas Jansen and Ingo Wegener FB Informatik, LS 2, Univ. Dortmund, 44221 Dortmund,

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

NP-completeness. Chapter 34. Sergey Bereg

NP-completeness. Chapter 34. Sergey Bereg NP-completeness Chapter 34 Sergey Bereg Oct 2017 Examples Some problems admit polynomial time algorithms, i.e. O(n k ) running time where n is the input size. We will study a class of NP-complete problems

More information

NP-Complete Problems

NP-Complete Problems NP-Complete Problems Max Bisection Is NP-Complete max cut becomes max bisection if we require that S = V S. We shall reduce the more general max cut to max bisection. Add V isolated nodes to G to yield

More information

Algorithms for Picture Analysis. Lecture 07: Metrics. Axioms of a Metric

Algorithms for Picture Analysis. Lecture 07: Metrics. Axioms of a Metric Axioms of a Metric Picture analysis always assumes that pictures are defined in coordinates, and we apply the Euclidean metric as the golden standard for distance (or derived, such as area) measurements.

More information

Computational complexity theory

Computational complexity theory Computational complexity theory Introduction to computational complexity theory Complexity (computability) theory deals with two aspects: Algorithm s complexity. Problem s complexity. References S. Cook,

More information

Invariants Risi Kondor

Invariants Risi Kondor Risi Kondor Let g R, and f : R C The real numbers, as a group acts on the space of functions on R by translation: g : f f where f (x) = f(x g) Question: How do we construct functionals Υ[f] that are invariant

More information

NP and conp. Theorem. Skoulakis Stratis NP,coNP and Funtion Problems EuroCG 14, Ein-Gedi, Israel 1 / 18

NP and conp. Theorem. Skoulakis Stratis NP,coNP and Funtion Problems EuroCG 14, Ein-Gedi, Israel 1 / 18 NP and conp Theorem Let L NP then there exists a polynomial decidable and balanced relation R L such that for all string x L: there exists a string y such that R L (x, y) if and only if x L. Skoulakis

More information

A Glimpse of Quantum Computation

A Glimpse of Quantum Computation A Glimpse of Quantum Computation Zhengfeng Ji (UTS:QSI) QCSS 2018, UTS 1. 1 Introduction What is quantum computation? Where does the power come from? Superposition Incompatible states can coexist Transformation

More information

Topics in Algorithms. 1 Generation of Basic Combinatorial Objects. Exercises. 1.1 Generation of Subsets. 1. Consider the sum:

Topics in Algorithms. 1 Generation of Basic Combinatorial Objects. Exercises. 1.1 Generation of Subsets. 1. Consider the sum: Topics in Algorithms Exercises 1 Generation of Basic Combinatorial Objects 1.1 Generation of Subsets 1. Consider the sum: (ε 1,...,ε n) {0,1} n f(ε 1,..., ε n ) (a) Show that it may be calculated in O(n)

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Part II Emma Strubell http://cs.umaine.edu/~ema/quantum_tutorial.pdf April 13, 2011 Overview Outline Grover s Algorithm Quantum search A worked example Simon s algorithm

More information

Geometric Semantic Genetic Programming (GSGP): theory-laden design of semantic mutation operators

Geometric Semantic Genetic Programming (GSGP): theory-laden design of semantic mutation operators Geometric Semantic Genetic Programming (GSGP): theory-laden design of semantic mutation operators Andrea Mambrini 1 University of Birmingham, Birmingham UK 6th June 2013 1 / 33 Andrea Mambrini GSGP: theory-laden

More information

NP-Completeness. Andreas Klappenecker. [based on slides by Prof. Welch]

NP-Completeness. Andreas Klappenecker. [based on slides by Prof. Welch] NP-Completeness Andreas Klappenecker [based on slides by Prof. Welch] 1 Prelude: Informal Discussion (Incidentally, we will never get very formal in this course) 2 Polynomial Time Algorithms Most of the

More information

Math 301 Test III. Dr. Holmes. November 4, 2004

Math 301 Test III. Dr. Holmes. November 4, 2004 Math 30 Test III Dr. Holmes November 4, 2004 This exam lasts from 9:40 until 0:35. You may drop one problem, other than problem 7. If you do all problems, your best work will count. Books, notes, and your

More information

Ma/CS 6b Class 25: Error Correcting Codes 2

Ma/CS 6b Class 25: Error Correcting Codes 2 Ma/CS 6b Class 25: Error Correcting Codes 2 By Adam Sheffer Recall: Codes V n the set of binary sequences of length n. For example, V 3 = 000,001,010,011,100,101,110,111. Codes of length n are subsets

More information

Chapter 34: NP-Completeness

Chapter 34: NP-Completeness Graph Algorithms - Spring 2011 Set 17. Lecturer: Huilan Chang Reference: Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms, 2nd Edition, The MIT Press. Chapter 34: NP-Completeness 2. Polynomial-time

More information

Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA.

Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA. Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA NP Completeness Susmita Sur-Kolay Advanced Computing and Microelectronics Unit

More information