COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015

Size: px
Start display at page:

Download "COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015"

Transcription

1 COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3,

2 The dark matter in the Universe Dark Matter is stable, non-baryonic, nonrelavistic, and interactes gravitationally We don t know what s it: mass / spin / coupling / composition Cosmology suggests to probe EW scale DM ~ <σ A v> 1 σ A = α 2 / M 2 EW 2

3 Dark Matter around the Sun in the Milky way 3

4 WIMP (Weakly interacting Massive Particles) scattering 4

5 5

6 6

7 Columnar Recombination (CR) CR increases as angle α decreases. Drift field exists ( ions and electrons pass each other) High ionization density (stronger collective charge effects) 7

8 Directional Distribution per unit target mass Radon transformation: v ME 2 min 2 8

9 Maxwellian Distribution of f(v) Define: R 2 n v / ; E 2 v / M Reaction rate if earth is static in galaxy. Maximum recoil energy for a WIMP with velocity v 0. 9

10 WIMP Flux and Recoil Direction CS 2 gas 10

11 Daily modulation of rate on fixed lab-angles Magnitude for 7 lab-fixed directions 11

12 Directional observables z So far, all study used the directional variable or (θ,φ) only, possibly integrated over a fixed range of energy. We should use both Energy and direction. Here, we measure Nuclear recoil polar angle θ L, not φ! φ θ L Nuclear recoil y x 12

13 Signal and Null hypothesis Define: x E v v Signal: Standard Isothermal halo model, x E =1. E 0 Earth s speed Spread in Maxwellian distribution z WIMP θ Background: No relative speed between earth and WIMP, x E =0. With: x v v min E E 0 0 Compact Expression: 2 d R R0 ded cos 2E 0 ( Ee ) ( x cos x) E 2 13

14 Distribution of Energy and direction WIMP z Arbitrary orientation: θ 0 θ L 2 d R R0 ded cos d 4E L L 0 ( Ee ) ( x cos cos x sin sin cos x) E 0 L E 0 L L 2 Space-fixed Detector 14

15 In polar angle detection and no sense detection case Polar angle detection: ded 2 d R 2 cos 0 L 4 R 0 E 0 ( Ee ) ( x cos cos x sin sin cos x) E 0 L E 0 L L 2 d L Axial detector (no sense detection): d R d R d R ded cos ded cos ded( cos ) L L L 15

16 Distributions of Energy and polar angle ded 2 d R cos L No Head-Tail isotropic perpendicular parallel 16

17 Space- and Earth-fixed Detectors WIMP z θ 0 θ L Space-fixed Detector Earth-fixed Detector

18 Distribution for Earth-fixed detector The angle between detector and WIIMP wind θ 0 is a function of time t in units of sidereal days: cos cos cos sin sin cos(2 ) 0 D D t Replace θ 0, then a distribution in three variables is formed: 2 2 d R d R 2 R ded dt ded E cos cos 0 L L 4 t 2 0 ( Ecos 0cos L Esin 0sin Lcos L ) () ( ) x pt Ee x x d 0 L pt ( ) 1 ( tis uniformly distributed) 18

19 Angular-only detector Suppose the energy information is not detected or recorded. d dr cos L 0 de 2 d R ded cos L R e x x 2 0 ( xe cos ) E E 2 cos erf ( cos ) 1 It can be expressed with an analytic expression! 19

20 Comparisons for Space-fixed detectors Median of q value as a function of cosθ 0. Sensitivity Plot Low sensitivity due to folding of positive and negative cosθ L values at cosθ 0 around

21 Comparisons for Earth-fixed detectors Optimal orientation at =45 degree, for Earth-fixed axial detectors. Trivial dependence on a head-tail detector but nontrivial on an axial detector. The optimal polar angle for Earth-fixed detector is 45 degree, slightly larger than the 42 degree of WIMP s angle, so that the WIMP direction leans slightly inside the cone of detector s trajectory. This can be understood as a balance between the strong advantage of being at the cone to allow parallel orientation (cosθ L =0) at the closest point the and the tendency to minimize the angle at other times of Earth s rotation. 21

22 Standard Xenon Detector With Xenon Helm form factor (E). Detector threshold 3keV. Space-fixed The number of point interactions as N pint, without threshold and form factor effect, directly relates to the detector performance. 2 d R pint ded ( E) 1 N de d R M T 2 d R obs ; det.range T obs obs / pint N M f N N ded T Earth-fixed For 200 events 22

23 Detector performance table arxiv: Required number of events for 3σ discovery: 636 kg year measurement for a cm 2 spin-independent WIMP-nucleon cross-section. 35

24 J.Billard s 1,2,3D plot J.Billard, PRD, 2015 Note special conditions: Considering Earth-fixed, Modane location only. WIMP mass is known and fixed to 50 GeV. Head-tail only. Energy threshold 5 kev. Signal purity = 0.4. Isotropic background of 10keV exponential shape. Also in the paper: A factor of 8 worse for 1D, without sense??? 1

25 Experimental study of Columnar Recombination Coincident decay of 241 Am source. 35mm diameter 23

26 Measurement of track angle relative to electric field Rise-time Taking account of electron diffusion. Validation can be done by drift velocity: Track length at 1 bar of pulse height: Pressure in bar L v 0.8 t t P 2 2 d r,max r,min 24

27 Charge collection dependence on the angle 25

28 Current knowledge of CR (in xenon with TMA) Nuclear recoil energy deposit. High ion density negligible diffusion. TMA will speed up thermalization process. Penning transfer. The ionization potential of TMA is less than the first excitation energy of xenon (8.315 ev). Xe* + TMA Xe + TMA + + e. Charge exchange. Xenon ions will undergo charge exchange reactions with the TMA molecule, directly or through an intermediate excited state. Xe + + TMA Xe + TMA +. Recombination of ionized TMA. UV scintillation with wavelength around 300 nm will occur for recombined TMA ions with electrons. (Columnar Recombination works) 26

29 Penning efficiency of electron and gamma deposit First-order modelling arxiv: Penning Excimer formation Quenching 27

30 Experimental measurement of Penning effect Nakajima, et al, arxiv: kev gamma-ray from 241 Am source 28

31 How is Penning effect in nuclear recoil? Nakajima, et al, arxiv: Pure Xeon Most of Xe scintillaiton light seems to be absorbed by TMA at >0.1% level. So it is essential for high Penning transfer and charge exchange efficiency. We still lack the knowledge of penning effect in nuclear recoil. With TMA 29

32 Other penning efficiency study O. Sahin-JINST 5(2010)P05002 The maximum transfer rate observed in a more realistic analysis done by including a 3D field calculation exceeds by 30-50% (relative) the values. arxiv: Ar-Xe Mixture 55 Fe source 5.9 kev and 22.2 kev deposit Ar-C 2 H 2 Mixture 30

33 Other possibilities See Baracchini s talk about Negative Ion Time Expansion Chamber on Tuesday. 2

34 Columnar Recombination For 30 kev nuclear recoil in xenon Work function for scintillation and ionization for NR : W S nr =150 ev and W I nr =125 ev. Ionization Excitation Perfect columnar alignment: 80% Recombination 20% Ionization R/I = 4 Perfect columnar perpendicularity: 40% Recombination 60% Ionization R/I=0.67 R/I=0.15 for electron recoils. 31

35 Real Columnar Recombination case We observe the Recombination (C) and Ionization (I) signals. Calculation : Xenon as target Xenon Helm Form Factor. A 30 kev nuclear recoil 395 electrons Fraction go to Recombination Fraction go to Ionization sin L sin L With TMA mixture (penning transfer) Need to be justifiled Threshold: Corresponding to two scintillation photons (R) and two collected electrons. Resolution: Fano factor works because it is the Gas Xenon (Use 2D convolution). 32

36 Realistic Columnar Recombination Detector Distributions Effective working function for ionization for NR in TMA mixture-filled xenon detector is W I eff =30keV/395=75.9 ev. Efficiency for scintillation photon detection C =10%. Efficiency for ionization charge I =50%. C E I E 2 2 ( sin L) ; ( sin L) FW C / ; FW I / ; ( F 0.14) eff eff C I C I I I Correlation should be considered. d R dcdi d R ded cos 2 2 L J( E, cos ; C, I) G( C; ) G( I; ) L C I 33

37 Distributions for Ionization v.s. Recombination for real CR detector isotropic parallel perpendicular 34 The integrals (total rate) of all distributions are same.

38 Detector performance table arxiv: Required number of events for 3σ discovery: 636 kg year measurement for a cm 2 spin-independent WIMP-nucleon cross-section. 35

39 Conclusion Experimental proof for Columnar Recombination effect. Combining energy information simultaneously will reduce the statistics needed for 3.7(4.0) times for a space (Earth)-fixed axial detector. A general axial polar detector with 6.3 times the statistics has the same performance as a general full 3D tracking detector. A space-fixed detector is generally found to be 3 and 2 times more sensitive than an Earth-fixed detector. For a realistic xenon columnar recombination detector, a 636 kg year measurement can reach a 3 sigma directional signal in space-fixed case. 36

40 BACKUP 37

41 Working electrical field and Ionization density The ionization density of a 30 kev xeonon ion is about 5 times the 5.4 MeV alpha. The figure shows that the optimum working electric field does not depend on the pressure, hence, does not depend on the ionization density. Ratio of collected charge between para. and perp. 38

42 Validation plots Drift coefficient 39

43 In detector frame fixed to earth (full direction) 40

44 Plot in profile histogram for CR detector xe Parallel 1, cos 1 0 xe 0 Isotropic Error bars for 500 events of data size. 41

45 Full information 3-d detector: 3D distribution. 2 2 d R d R ded de d cos R L 2D plane detector: 2 d R ded L Polar detector: 2 d R ded cos L All distributions need numerical integration, with Jacobian terms. When resolution is included, another round of 2D integration is needed. Distributions depends on (WIMP mass, cross section, Earth speed, Earth Direction, cutoff speed, energy threshold, ). Study of the sensitivity of all parameters and their correlations are needed. 42

46 Test statistics: Likelihood ratio test statistic Likelihood of a fixed alternative hypothesis Likelihood of null hypothesis Example: Null hypothesis Alternative hypothesis 43

47 Profile Likelihood Ratio method Profile likelihood ratio: ( ) 0 L( 0, ) L( ˆ, ) Test statistic: q 2ln ( ) 0 Parameter for alternate hypothesis, floated p value: p f ( q H ) dq obs q 0 0 χ 2 distribution q asymptotically follows a χ 2 distribution from Wilk s theorem: p P( x) dx obs q The significance value Z can then be obtained from p value: Z 1 (1 p) For one parameter of interest, Z in units of σ is : Z q 44

48 Hypothesis testing Null hypothesis Rejection factor, or confidence level. 0 q obs R f ( q H ) dq 1 p 0 Acceptance factor, or probability to reject the null hypothesis at confidence level R. A When is q obs equal to the median of the distribution f(q H 1 ), A=50%. q f ( q H ) dq obs 1 Alternative hypothesis Procedure: We generate 1000 samples of dataset under alternate hypothesis (signal, x E =1), obtain the median of q as q med. 45

49 Existing experiments Large Mass Difficult! 46

50 Sensitivity from directional observables No forward-backward 3-d detector; Standard Halo Model; CS 2 target; Helm form factor; m χ = 100 GeV; 20 kev threshold; experimental angular resolution; Statistical test method No energy threshold Perfect resolution PHYSICAL REVIEW D 71, (2005) 47

51 Sensitivity from directional observables (2D detector) Model A: standard B: triaxial C: standard plus stream 2D detector in a plane; CS 2 target; 20 kev threshold; Perfect resolution; Statistical test method With sense NO sense 48 PHYSICAL REVIEW D 72, (2005)

52 Sensitivity from directional observables (comparison) Xenon target; Helm form factor; m χ = 100 GeV; 10 kev threshold; Perfect resolution; Likelihood Method Another independent calculation Number of events required: Rotate the detector, so the earth s moving direction always lies in the 2D detection plane. PHYSICAL REVIEW D 75, (2007) 49

53 Challenges in analysis 3D case with Resolution effect: Does not depend on φ depend on φ 2D plane detector: Polar detector (new): dr dcos 2 d R d dr dcos L d dr cos L Transform to detector frame, then project in to plane with direction in φ L, integration in θ L needed. Detector polar angle θ L in detector frame, integration in φ L needed. 50

54 Test statistics Coordinate system dependent: W is large for large anisotropy; W~χ 32 for isotropy. 51

55 Test statistics for 2D plane Rayleigh 52

56 Recombination proof in Xenon gas Volume (geminate) Recombination at low(high) electric field. Bolotnikov & Ramsey NIM A 428 (1999)

57 54

58 Scintillation in Crystal can depend on angle Stilbene crystal scintillator 55

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

DarkSide new results and prospects

DarkSide new results and prospects DarkSide new results and prospects Stefano Davini - INFN Genova on behalf of the DarkSide collaboration La Thuile, March 20, 2018 The DarkSide WIMP-argon program at LNGS 2011 2012 2013 2014 2015 2016 2017

More information

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

Technical Specifications and Requirements on Direct detection for Dark Matter Searches Technical Specifications and Requirements on Direct detection for Dark Matter Searches Jin Li THU/IHEP Symposium of the Sino-German GDT Cooperation 04/08/2013 Tübingen Outline Introduction Direct detection

More information

Solar and atmospheric neutrinos as background for direct dark matter searches

Solar and atmospheric neutrinos as background for direct dark matter searches Solar and atmospheric neutrinos as background for direct dark matter searches Achim Gütlein TU-München Joined seminar on neutrinos and dark matter.0.0 utline Direct Dark Matter Search eutrinos as background

More information

Background and sensitivity predictions for XENON1T

Background and sensitivity predictions for XENON1T Background and sensitivity predictions for XENON1T Marco Selvi INFN - Sezione di Bologna (on behalf of the XENON collaboration) Feb 19 th 016, UCLA Dark Matter 016 1 Outline Description of the detector;

More information

arxiv: v1 [physics.ins-det] 4 Nov 2017

arxiv: v1 [physics.ins-det] 4 Nov 2017 arxiv:1711.01488v1 [physics.ins-det] 4 Nov 017 Current status and projected sensitivity of COSINE-0 WG Thompson, on behalf of the COSINE-0 Collaboration Department of Physics, Yale University, New Haven,

More information

No combined analysis of all experiments available

No combined analysis of all experiments available Compatibility between DAMA-CDMS CDMS-Edelweiss-Xenon10 - KIMS? No combined analysis of all experiments available However, some trivial considerations: * for m χ 25 GeV capture on DAMA is dominated by the

More information

Down-to-earth searches for cosmological dark matter

Down-to-earth searches for cosmological dark matter Down-to-earth searches for cosmological dark matter Carter Hall, University of Maryland October 19, 2016 Astrophysical evidence for dark matter Galaxy cluster collisions Rotation curves Ω 380,000 years

More information

Vincenzo Caracciolo for the ADAMO collaboration National Laboratory of Gran Sasso - INFN.

Vincenzo Caracciolo for the ADAMO collaboration National Laboratory of Gran Sasso - INFN. Vincenzo Caracciolo for the ADAMO collaboration National Laboratory of Gran Sasso - INFN. Signatures for direct detection experiments In direct detection experiments to provide a Dark Matter signal identification

More information

Enectalí Figueroa-Feliciano

Enectalí Figueroa-Feliciano School and Workshop on Dark Matter and Neutrino Detection Dark Matter Direct Detection Lecture 3 Enectalí Figueroa-Feliciano!113 Outline Lecture 1: The dark matter problem WIMP and WIMP-like DM detection

More information

Ionization Detectors. Mostly Gaseous Detectors

Ionization Detectors. Mostly Gaseous Detectors Ionization Detectors Mostly Gaseous Detectors Introduction Ionization detectors were the first electrical devices developed for radiation detection During the first half of the century: 3 basic types of

More information

The Neutron/WIMP Acceptance In XENON100

The Neutron/WIMP Acceptance In XENON100 The Neutron/WIMP Acceptance In XENON100 Symmetries and Fundamental Interactions 01 05 September 2014 Chiemsee Fraueninsel Boris Bauermeister on behalf of the XENON collaboration Boris.Bauermeister@uni-mainz.de

More information

Collaborazione DAMA & INR-Kiev. XCVIII Congresso SIF Napoli, 18 Settembre F. Cappella

Collaborazione DAMA & INR-Kiev.  XCVIII Congresso SIF Napoli, 18 Settembre F. Cappella Collaborazione DAMA & INR-Kiev http://people.roma2.infn.it/dama XCVIII Congresso SIF Napoli, 18 Settembre 2012 F. Cappella Based on the study of the correlation between the Earth motion in the galactic

More information

Cryodetectors, CRESST and Background

Cryodetectors, CRESST and Background Cryodetectors, CRESST and Background A cryogenic detector for Dark Matter with heat (phonon) readout and light (scintillation) readout MPI, TUM, Oxford, Tübingen, LNGS What we re looking for: M W imp =

More information

University of Ioannina, Ioannina, Greece. AUTh, Thessaloniki, Greece

University of Ioannina, Ioannina, Greece. AUTh, Thessaloniki, Greece Signatures in Directional Dark Matter Searches Asymmetries and the Diurnal Variation J.D. Vergados + and Ch. C. Moustakides ++ + University of Ioannina, Ioannina, Greece. ++ AUTh, Thessaloniki, Greece

More information

Direct Detection of! sub-gev Dark Matter

Direct Detection of! sub-gev Dark Matter Direct Detection of! sub-gev Dark Matter Rouven Essig C.N. Yang Institute for Theoretical Physics, Stony Brook Sackler Conference, Harvard, May 18, 2014 An ongoing program Direct Detection of sub-gev Dark

More information

Direction-Sensitive Dark Matter Search --NEWAGE--

Direction-Sensitive Dark Matter Search --NEWAGE-- Direction-Sensitive Dark Matter Search --NEWAGE-- (New generation WIMP search with an advanced gaseous tracker experiment) Kentaro Miuchi (Kobe University) with K. Nakamura, A. Takada, T. Tanimori, H.

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

XMASS: a large single-phase liquid-xenon detector

XMASS: a large single-phase liquid-xenon detector XMASS: a large single-phase liquid-xenon detector Katsuki Hiraide, the university of Tokyo for the XMASS Collaboration October 3 rd, 2016 IPRD16@Siena, Italy 1 XMASS project XMASS: a multi purpose experiment

More information

Search for low-mass WIMPs with Spherical Detectors : NEWS-LSM and NEWS-SNO

Search for low-mass WIMPs with Spherical Detectors : NEWS-LSM and NEWS-SNO Search for low-mass WIMPs with Spherical Detectors : NEWS-LSM and NEWS-SNO G. Gerbier 1 for the NEWS collaboration 2, 1 Queen s University, Physics Department, Kingston, Canada 2 New Experiments With Spheres

More information

Search for Low Energy Events with CUORE-0 and CUORE

Search for Low Energy Events with CUORE-0 and CUORE Search for Low Energy Events with CUORE-0 and CUORE Kyungeun E. Lim (on behalf of the CUORE collaboration) Oct. 30. 015, APS Division of Nuclear Physics meeting, Santa Fe, NM The CUORE Experiment CUORE

More information

What is the probability that direct detection experiments have observed Dark Matter?

What is the probability that direct detection experiments have observed Dark Matter? Prepared for submission to JCAP arxiv:1410.6160v2 [astro-ph.co] 17 Nov 2014 What is the probability that direct detection experiments have observed Dark Matter? Nassim Bozorgnia a,b and Thomas Schwetz

More information

WIMP Velocity Distribution and Mass from Direct Detection Experiments

WIMP Velocity Distribution and Mass from Direct Detection Experiments WIMP Velocity Distribution and Mass from Direct Detection Experiments Manuel Drees Bonn University WIMP Distribution and Mass p. 1/33 Contents 1 Introduction WIMP Distribution and Mass p. 2/33 Contents

More information

Hands on DarkSide-50: Low Energy Calibration

Hands on DarkSide-50: Low Energy Calibration Hands on DarkSide-50: Low Energy Calibration Kyungwon Kim Seoul National University IBS Center for Underground Physics E-mail: kwkim@hep1.snu.ac.kr University of North Carolina Chapel Hill Triangle Universities

More information

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration Direct dark matter search with XMASS K. Abe for the XMASS collaboration Outline XMASS experiment. Single phase liquid xenon detector Many targets were searched with XMASS. WIMP search fiducialized volume.

More information

Direction-Sensitive Dark Matter Search --NEWAGE--

Direction-Sensitive Dark Matter Search --NEWAGE-- Direction-Sensitive Dark Matter Search --NEWAGE-- (New generation WIMP search with an advanced gaseous tracker experiment) Kentaro Miuchi (Kobe University) with K. Nakamura, A. Takada T. Tanimori, H. Kubo,

More information

Nuclear Recoil Scintillation and Ionization Yields in Liquid Xenon

Nuclear Recoil Scintillation and Ionization Yields in Liquid Xenon Nuclear Recoil Scintillation and Ionization Yields in Liquid Xenon Dan McKinsey Yale University Physics Department February, 011 Indirect and Direct Detection of Dark Matter Aspen Center of Physics Energy

More information

CMB constraints on dark matter annihilation

CMB constraints on dark matter annihilation CMB constraints on dark matter annihilation Tracy Slatyer, Harvard University NEPPSR 12 August 2009 arxiv:0906.1197 with Nikhil Padmanabhan & Douglas Finkbeiner Dark matter!standard cosmological model:

More information

Detectors for astroparticle physics

Detectors for astroparticle physics Detectors for astroparticle physics Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Universität Zürich Kern und Teilchenphysik II, Zürich 07.05.2010 Teresa Marrodán Undagoitia (UZH) Detectors for astroparticle

More information

Lecture 12. Dark Matter. Part II What it could be and what it could do

Lecture 12. Dark Matter. Part II What it could be and what it could do Dark Matter Part II What it could be and what it could do Theories of Dark Matter What makes a good dark matter candidate? Charge/color neutral (doesn't have to be though) Heavy We know KE ~ kev CDM ~

More information

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata Whither WIMP Dark Matter Search? AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata 1/51 2/51 Planck 2015 Parameters of the Universe 3/51 Discovery of Dark Matter Fritz

More information

arxiv: v1 [astro-ph.im] 6 Dec 2010

arxiv: v1 [astro-ph.im] 6 Dec 2010 arxiv:12.1166v1 [astro-ph.im] 6 Dec 20 MIMAC: A micro-tpc matrix for directional detection of dark matter, J. Billard, G. Bosson, O. Bourrion, C. Grignon, O. Guillaudin, F. Mayet, J.P. Richer LPSC, Universite

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Marco Vignati 24 Ottobre 2011 0νDBD in Theory Nuclear process: (A,Z) (A,Z+2) + 2 e - Can only happen if lepton number is not conserved. The decay probability

More information

Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich,

Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich, Search for Inelastic Dark Matter with the CDMS experiment Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich, 30.08.2010 The CDMS experiment - 19 Ge and 11 Si semiconductor detectors

More information

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Jingke Xu Princeton University June 7 th, 2013 1 Evidences for Dark Matter Rotation Curve Gravitational Lensing CMB Power Spectrum

More information

SIGN: A Pressurized Noble Gas Approach to WIMP Detection

SIGN: A Pressurized Noble Gas Approach to WIMP Detection SIGN: A Pressurized Noble Gas Approach to WIMP Detection J.T. White Texas A&M University Dark Side of the Universe U. Minnesota, 6/7/2007 Why Gaseous Nobles? Original Motivation: Neon Electron mobility

More information

Signatures in Directional Dark Matter Searches Asymmetries and the Diurnal Variation. J.D. Vergados University of Ioannina, Ioannina, Greece.

Signatures in Directional Dark Matter Searches Asymmetries and the Diurnal Variation. J.D. Vergados University of Ioannina, Ioannina, Greece. Signatures in Directional Dark Matter Searches Asymmetries and the Diurnal Variation J.D. Vergados University of Ioannina, Ioannina, Greece. The Direct Detection of Dark Matter Is crucial to both particle

More information

Kiseki Nakamura (Kyoto university)

Kiseki Nakamura (Kyoto university) CYGNUS2013@Toyama 2013/06/10 Kiseki Nakamura (Kyoto university) T.Tanimori (1), K.Miuchi (2), K.Kubo (1), T.Mizumoto (1), J.Parker (1), A.Takada (3), H.Nishimura (1), T.Sawano (1), Y.Matsuoka (1), S.Komura

More information

Axion and axion-like particle searches in LUX and LZ. Maria Francesca Marzioni

Axion and axion-like particle searches in LUX and LZ. Maria Francesca Marzioni Axion and axion-like particle searches in LUX and LZ Maria Francesca Marzioni PPE All Group meeting 06/06/2016 Outline Why are we interested in axions How can we detect axions with a xenon TPC Axion signal

More information

DM direct detection predictions from hydrodynamic simulations

DM direct detection predictions from hydrodynamic simulations DM direct detection predictions from hydrodynamic simulations Nassim Bozorgnia GRAPPA Institute University of Amsterdam Based on work done with F. Calore, M. Lovell, G. Bertone, and the EAGLE team arxiv:

More information

TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON. Henrique Araújo Imperial College London

TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON. Henrique Araújo Imperial College London TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON Henrique Araújo Imperial College London Oxford University 18 th October 2016 OUTLINE Two-phase xenon for (dark) radiation detection Instrumenting a liquid

More information

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012 Background Characterization and Rejection in the LZ Detector David Malling Brown University IDM 2012 July 25, 2012 LZ Construction 2 Background Sources Ti cryostats 1500 kg

More information

Recent Results from the PandaX Experiment

Recent Results from the PandaX Experiment Recent Results from the PandaX Experiment Changbo Fu Shanghai Jiao Tong University On Behalf of Collaboration 25May2017 1 Outline 1. Introduciton Dark Matter: WIMPs, Axion, PandaX at China Jinping Underground

More information

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) Dark Matter Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) 1 Dark Matter 1933 r. - Fritz Zwicky, COMA cluster. Rotation

More information

XENON Dark Matter Search. Juliette Alimena Columbia University REU August 2 nd 2007

XENON Dark Matter Search. Juliette Alimena Columbia University REU August 2 nd 2007 XENON Dark Matter Search Juliette Alimena Columbia University REU August 2 nd 2007 Evidence of Dark Matter Missing mass in Coma galaxy cluster (Fritz Zwicky) Flat rotation curves of spiral galaxies (Vera

More information

Luca Grandi.

Luca Grandi. Luca Grandi http://warp.pv.infn.it idm2004 - September 2004 Wimp Argon Programme Collaboration R. Brunetti, E. Calligarich, M. Cambiaghi, C. De Vecchi, R. Dolfini, L. Grandi, A. Menegolli, C. Montanari,

More information

arxiv: v1 [physics.ins-det] 14 May 2015

arxiv: v1 [physics.ins-det] 14 May 2015 arxiv:1505.03585v1 [physics.ins-det] 14 May 2015 Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark

More information

The relevance of XENON10 constraints in this low-mass region has been questioned [15] C.E. Aalseth et al. arxiv: v1

The relevance of XENON10 constraints in this low-mass region has been questioned [15] C.E. Aalseth et al. arxiv: v1 The relevance of XENON10 constraints in this low-mass region has been questioned [15] C.E. Aalseth et al. arxiv:1001.2834v1 Peter Sorensen LLNL on behalf of the XENON10 Collaboration at UC Davis HEFTI

More information

Measurement of the transverse diffusion coefficient of charge in liquid xenon

Measurement of the transverse diffusion coefficient of charge in liquid xenon Measurement of the transverse diffusion coefficient of charge in liquid xenon W.-T. Chen a, H. Carduner b, J.-P. Cussonneau c, J. Donnard d, S. Duval e, A.-F. Mohamad-Hadi f, J. Lamblin g, O. Lemaire h,

More information

Improving Scintillation Response in Xenon and Implementation in GEANT4

Improving Scintillation Response in Xenon and Implementation in GEANT4 Improving Scintillation Response in Xenon and Implementation in GEANT4 UC Davis and LLNL Faculty Mani Tripathi Bob Svoboda Postdocs and Research Scientists Matthew Szydagis Kareem Kazkaz Undergraduates

More information

Background optimization for a new spherical gas detector for very light WIMP detection

Background optimization for a new spherical gas detector for very light WIMP detection Background optimization for a new spherical gas detector for very light WIMP detection a, I. Giomataris b, G. Gerbier b, J. Derré b, M. Gros b, P. Magnier b, D. Jourde b, E.Bougamont b, X-F. Navick b,

More information

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min S. Fiorucci Brown University UCLA Dark Matter 2014 Symposium Origins and Distributions of the Backgrounds 15 min What is a signal for LUX? Nuclear recoil Single scatter Signal Low energy, typically < 25

More information

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1 DarkSide Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1 DARKSIDE MAIN FEATURES Dark Matter direct detection WIMP induced nuclear recoils Double

More information

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007 LUX: A Large Underground Xenon detector WIMP Search Mani Tripathi INPAC Meeting Berkeley, New Collaboration Groups formerly in XENON10: Case Western, Brown, Livermore Natl. Lab (major fraction of the US

More information

Publications of Francesco Arneodo: journal articles

Publications of Francesco Arneodo: journal articles Publications of Francesco Arneodo: journal articles Figure 1: Citation report from ISI Web of Science (IF=31.0) [1] E. Aprile et al., First Axion Results from the XENON100 Experiment, arxiv.org (submitted

More information

Electromagnetic and hadronic showers development. G. Gaudio, M. Livan The Art of Calorimetry Lecture II

Electromagnetic and hadronic showers development. G. Gaudio, M. Livan The Art of Calorimetry Lecture II Electromagnetic and hadronic showers development 1 G. Gaudio, M. Livan The Art of Calorimetry Lecture II Summary (Z dependence) Z Z 4 5 Z(Z + 1) Z Z(Z + 1) 2 A simple shower 3 Electromagnetic Showers Differences

More information

A survey of recent dark matter direct detection results

A survey of recent dark matter direct detection results A survey of recent dark matter direct detection results I where we stand II recent results (CDMS, XENON10, etc) III DAMA results IV a bit about modulation V issues with DAMA results VI what to look for

More information

BubXe: a liquid xenon bubble chamber for Dark Matter detection!

BubXe: a liquid xenon bubble chamber for Dark Matter detection! BubXe: a liquid xenon bubble chamber for Dark Matter detection Jeremy Mock, on behalf of Cecilia Levy and Matthew Szydagis SUNY Albany Direct DM Search Today 3 detection channels (light, charge, heat):

More information

Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration. Dark Matter 2016 UCLA 17th - 19th February 2016

Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration. Dark Matter 2016 UCLA 17th - 19th February 2016 Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration Dark Matter 2016 UCLA 17th - 19th February 2016 The DarkSide program 2 Double Phase Liquid Argon TPC, a staged approach:

More information

Can the DAMA annual modulation be explained by Dark Matter?

Can the DAMA annual modulation be explained by Dark Matter? Can the DAMA annual modulation be explained by Dark Matter? Thomas Schwetz-Mangold MPIK, Heidelberg based on M. Fairbairn and T. Schwetz, arxiv:0808.0704 T. Schwetz, MPIK, 24 Nov 2008 p. 1 Outline Introduction

More information

CHANNELING IN DIRECT DARK MATTER DETECTION

CHANNELING IN DIRECT DARK MATTER DETECTION CHANNELING IN DIRECT DARK MATTER DETECTION Nassim Bozorgnia UCLA Based on work in progress with G. Gelmini and P. Gondolo SNOWPAC 2010 Outline Channeling and blocking in crystals Channeling effect in direct

More information

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV Mount Rainier by Will Christiansen Silvia Vernetto & Paolo Lipari 35th ICRC 12-20 July 2017 - Busan - South Korea Gamma ray astronomy

More information

arxiv:astro-ph/ v1 15 Feb 2005

arxiv:astro-ph/ v1 15 Feb 2005 The XENON Dark Matter Experiment Elena Aprile (on behalf of the XENON collaboration) Physics Department and Columbia Astrophysics Laboratory, Columbia University, New York, New York 10027 age@astro.columbia.edu

More information

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection R. Kreuger, C. W. E. van Eijk, Member, IEEE, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, Member, IEEE, L. M.

More information

Direct dark matter search using liquid noble gases

Direct dark matter search using liquid noble gases Direct dark matter search using liquid noble gases Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Physik Institut Universität Zürich Texas Symposium 2010, Heidelberg, 09.11.2010 Teresa Marrodán Undagoitia

More information

June 10 morning session 9:00-

June 10 morning session 9:00- ABSTRACT BOOK June 10 morning session 9:00-10A1 Title: Welcome / CYGNUS: where we are Author: Kentaro Miuchi Abstract: Welcome to CYGNUS 2013! The status and aim of the CYGNUS workshop will be discussed

More information

Low Energy Particles in Noble Liquids

Low Energy Particles in Noble Liquids Low Energy Particles in Noble Liquids Antonio J. Melgarejo Fernandez Columbia University Invisibles School, July 14th 2013, Durham Explaining the title I Noble gases are a group of elements found at the

More information

The Search for Dark Matter with the XENON Experiment

The Search for Dark Matter with the XENON Experiment The Search for Dark Matter with the XENON Experiment Elena Aprile Columbia University Paris TPC Workshop December 19, 2008 World Wide Dark Matter Searches Yangyang KIMS Homestake LUX SNOLAB DEAP/CLEAN

More information

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29 Learning from WIMPs Manuel Drees Bonn University Learning from WIMPs p. 1/29 Contents 1 Introduction Learning from WIMPs p. 2/29 Contents 1 Introduction 2 Learning about the early Universe Learning from

More information

Recent results from PandaX- II and status of PandaX-4T

Recent results from PandaX- II and status of PandaX-4T Recent results from PandaX- II and status of PandaX-4T Jingkai Xia (Shanghai Jiao Tong University) On behalf of PandaX Collaboration August 2-5, Mini-Workshop@SJTU 2018/8/4 1 Outline Dark Matter direct

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Tim Linden UC - Santa Cruz Representing the Fermi-LAT Collaboration with acknowledgements to: Brandon Anderson, Elliott

More information

Search for double electron capture on 124 Xe with the XMASS-I detector

Search for double electron capture on 124 Xe with the XMASS-I detector Search for double electron capture on 124 Xe with the XMASS-I detector KATSUKI HIRAIDE (ICRR, THE UNIVERSITY OF TOKYO) SEPTEMBER 7 TH, 2015 TAUP2015 1 124 Xe 2n double electron capture Natural xenon contains

More information

Dark Matter Searches. Marijke Haffke University of Zürich

Dark Matter Searches. Marijke Haffke University of Zürich University of Zürich Structure Ι. Introduction - Dark Matter - WIMPs Ι Ι. ΙΙΙ. ΙV. V. Detection - Philosophy & Methods - Direct Detection Detectors - Scintillators - Bolometer - Liquid Noble Gas Detectors

More information

arxiv: v3 [hep-ph] 6 Oct 2010

arxiv: v3 [hep-ph] 6 Oct 2010 Exothermic Dark Matter FERMILAB-PUB-10-062-T MIT-CTP 4140 Peter W. Graham, 1 Roni Harnik, 2 Surjeet Rajendran, 3 and Prashant Saraswat 1 1 Department of Physics, Stanford University, Stanford, California

More information

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Jingke Xu, Princeton (now @LLNL) Sept 24, 2015 2015 LowECal Workshop, Chicago, IL Outline 1. Overview

More information

Signatures of clumpy dark matter in the global 21 cm background signal D.T. Cumberland, M. Lattanzi, and J.Silk arxiv:

Signatures of clumpy dark matter in the global 21 cm background signal D.T. Cumberland, M. Lattanzi, and J.Silk arxiv: Signatures of clumpy dark matter in the global 2 cm background signal D.T. Cumberland, M. Lattanzi, and J.Silk arxiv:0808.088 Daniel Grin Ay. Journal Club /23/2009 /8 Signatures of clumpy dark matter in

More information

Testing the Purity Monitor for the XENON Dark Matter Search

Testing the Purity Monitor for the XENON Dark Matter Search Testing the Purity Monitor for the XENON Dark Matter Search Alison Andrews Laboratori Nazionali del Gran Sasso Columbia University REU August 4, 2006 1 Introduction Evidence for dark matter is found in

More information

Direct Search for Dark Matter

Direct Search for Dark Matter Direct Search for Dark Matter Direct Dark Matter Search Dark Matter in the Universe Ω = 0.23 non-baryonic not neutrinos physics beyond the standard model thermal relics from Big Bang weakly interacting

More information

DARK MATTER SEARCH AT BOULBY MINE

DARK MATTER SEARCH AT BOULBY MINE DARK MATTER SEARCH AT BOULBY MINE R. LUSCHER on behalf of the Boulby Dark Matter Collaboration (RAL, Imperial College, Sheffield, UCLA, Texas A&M, Pisa, ITEP, Coimbra, Temple and Occidental) Rutherford

More information

Measurements of anisotropic scintillation efficiency for carbon recoils in a stilbene crystal for dark matter detection

Measurements of anisotropic scintillation efficiency for carbon recoils in a stilbene crystal for dark matter detection Physics Letters B 571 (2003) 132 138 www.elsevier.com/locate/npe Measurements of anisotropic scintillation efficiency for carbon recoils in a stilbene crystal for dark matter detection Hiroyuki Sekiya

More information

The XENON1T experiment

The XENON1T experiment The XENON1T experiment Ranny Budnik Weizmann Institute of Science For the XENON collaboration 1 The XENON1T experiment Direct detection with xenon The XENON project XENON1T/nT 2 Quick introduction and

More information

Chapter 12. Dark Matter

Chapter 12. Dark Matter Karl-Heinz Kampert Univ. Wuppertal 128 Chapter 12 Dark Matter Karl-Heinz Kampert Univ. Wuppertal Baryonic Dark Matter Brightness & Rotation Curve of NGC3198 Brightness Rotation Curve measured expected

More information

DARK MATTER INTERACTIONS

DARK MATTER INTERACTIONS DARK MATTER INTERACTIONS Jonathan H. Davis Institut d Astrophysique de Paris jonathan.h.m.davis@gmail.com LDMA 2015 Based on J.H.Davis & J.Silk, Phys. Rev. Lett. 114, 051303 and J.H.Davis, JCAP 03(2015)012

More information

Propagation in the Galaxy 2: electrons, positrons, antiprotons

Propagation in the Galaxy 2: electrons, positrons, antiprotons Propagation in the Galaxy 2: electrons, positrons, antiprotons As we mentioned in the previous lecture the results of the propagation in the Galaxy depend on the particle interaction cross section. If

More information

Recent results from the UK Dark Matter Search at Boulby Mine.

Recent results from the UK Dark Matter Search at Boulby Mine. Recent results from the UK Dark Matter Search at Boulby Mine. Nigel Smith Rutherford Appleton Laboratory on behalf of the UK Dark Matter Collaboration (Imperial College, Sheffield, RAL) NaI scintillation

More information

Dark anti-atoms. Quentin Wallemacq IFPA, AGO Dept., University of Liège. CosPa Meeting 19 th of November 2014

Dark anti-atoms. Quentin Wallemacq IFPA, AGO Dept., University of Liège. CosPa Meeting 19 th of November 2014 Dark anti-atoms Quentin Wallemacq IFPA, AGO Dept., University of Liège CosPa Meeting 19 th of November 2014 Q. Wallemacq, J.R. Cudell, arxiv:1411.3178 Introduction The status of direct-search experiments

More information

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19,

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19, DARWIN Marc Schumann U Freiburg PATRAS 2017 Thessaloniki, May 19, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Dark Matter Searches: Status spin-independent WIMP-nucleon interactions

More information

The XMASS experiment. Y. Kishimoto for the XMASS collaboration March 24 th, 2014 Recontres de Moriond, Cosmology

The XMASS experiment. Y. Kishimoto for the XMASS collaboration March 24 th, 2014 Recontres de Moriond, Cosmology The XMASS experiment Y. Kishimoto for the XMASS collaboration March 24 th, 2014 Recontres de Moriond, Cosmology Contents Introduction to the XMASS Results from XMASS commissioning run Light mass WIMPs

More information

arxiv: v1 [astro-ph.im] 28 Sep 2010

arxiv: v1 [astro-ph.im] 28 Sep 2010 arxiv:9.5568v1 [astro-ph.im] 28 Sep 2 Identification of Dark Matter with directional detection, F. Mayet, D. Santos Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble

More information

The LZ Experiment Tom Shutt SLAC. SURF South Dakota

The LZ Experiment Tom Shutt SLAC. SURF South Dakota The LZ Experiment Tom Shutt SLAC SURF South Dakota 1 LUX - ZEPLIN 31 Institutions, ~200 people 7 ton LXe TPC ( tons LXe total) University of Alabama University at Albany SUNY Berkeley Lab (LBNL), UC Berkeley

More information

Physics 663. Particle Physics Phenomenology. April 23, Physics 663, lecture 4 1

Physics 663. Particle Physics Phenomenology. April 23, Physics 663, lecture 4 1 Physics 663 Particle Physics Phenomenology April 23, 2002 Physics 663, lecture 4 1 Detectors Interaction of Charged Particles and Radiation with Matter Ionization loss of charged particles Coulomb scattering

More information

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples) Detecting high energy photons Interactions of photons with matter Properties of detectors (with examples) Interactions of high energy photons with matter Cross section/attenution length/optical depth Photoelectric

More information

Scintillation Efficiency of Nuclear Recoils in Liquid Xenon. T. Wongjirad, L. Kastens, A. Manzur, K. Ni, and D.N. McKinsey Yale University

Scintillation Efficiency of Nuclear Recoils in Liquid Xenon. T. Wongjirad, L. Kastens, A. Manzur, K. Ni, and D.N. McKinsey Yale University Scintillation Efficiency of Nuclear Recoils in Liquid Xenon T. Wongjirad, L. Kastens, A. Manzur, K. Ni, and D.N. McKinsey Yale University Scintillation Efficiency! By Definition: Ratio of light produced

More information

The Search for Dark Matter. Jim Musser

The Search for Dark Matter. Jim Musser The Search for Dark Matter Jim Musser Composition of the Universe Dark Matter There is an emerging consensus that the Universe is made of of roughly 70% Dark Energy, (see Stu s talk), 25% Dark Matter,

More information

Light dark matter search with a spherical proportional counter

Light dark matter search with a spherical proportional counter Light dark matter search with a spherical proportional counter I. Giomataris, CEA-Irfu-France NEWS (New Experiment for Wimps with Sphere) Main goal: search for ultra-light WIMP 100 MeV 10 GeV Using the

More information

Current status of LUX Dark Matter Experiment

Current status of LUX Dark Matter Experiment Current status of LUX Dark Matter Experiment by A. Lyashenko Yale University On behalf of LUX collaboration LUX Large Underground Xenon experiment LUX Collaboration: Yale, CWRU, UC Santa Barbara, Brown,

More information

The interaction of radiation with matter

The interaction of radiation with matter Basic Detection Techniques 2009-2010 http://www.astro.rug.nl/~peletier/detectiontechniques.html Detection of energetic particles and gamma rays The interaction of radiation with matter Peter Dendooven

More information

PHY326/426:Lecture 11

PHY326/426:Lecture 11 PHY326/426:Lecture 11 Towards WIMP direct detection WIMP Cross Sections and Recoil Rates (1) Introduction to SUSY dark matter WIMP-nucleon collision kinematics Recoil energy in the CM frame Probability

More information