Solar and atmospheric neutrinos as background for direct dark matter searches
|
|
- Ursula Hood
- 1 years ago
- Views:
Transcription
1 Solar and atmospheric neutrinos as background for direct dark matter searches Achim Gütlein TU-München Joined seminar on neutrinos and dark matter.0.0
2 utline Direct Dark Matter Search eutrinos as background for direct dark matter searches Coherent eutrino ucleus Scattering (CS) Solar neutrinos Solar neutrino count rates for different materials Atmospheric neutrinos as background source Limits for direct dark matter searches Conclusions Achim Gütlein (TU-München) eutrino background.0.0 / 0
3 Direct Dark Matter Search Hints for dark matter Dynamics in galaxies and galaxy clusters Colliding galaxy clusters WMAP data Achim Gu tlein (TU-Mu nchen) eutrino background.0.0 / 0
4 Direct Dark Matter Search Direct dark matter search Dark matter candidate: WIMP (Weakly Interacting Massive Particle) Assumption: WIMP scatters coherently off target nucleus Most direct dark matter search detectors can discriminate between electron (background) and nuclear recoils (signal) Achim Gütlein (TU-München) eutrino background.0.0 / 0
5 WIMP model Direct Dark Matter Search Spin independent interaction Elastic scattering WIMP scatters coherently off all nucleons Isothermal WIMP halo Recoil spectrum of WIMPs: dr(e rec ) de rec = c A ρ D πµ σ W (E rec ) A v 0 e cerec E 0 r E 0 c, c : constants describing the annular modulation of the WIMP flux, A : Avogadro s number, ρ D : local WIMP density, µ : reduced mass for A=, σ W : WIMP-nucleon cross section, v 0 : velocity of the earth relativ to the galaxy, A: mass number, E 0 : kinetic energy of the WIMPs, E rec : recoil energy, r = M DM T (M D +M T ) : kinematic factor, M D : WIMP mass, M T : mass of target nucleus Achim Gütlein (TU-München) eutrino background.0.0 / 0
6 WIMP recoil spectrum Direct Dark Matter Search Helm form factor: ( ) (q) j (qr) = e q s qr q: transferred momentum, j : spherical essel function, R: effectiv nuclear radius, s: nuclear skin thickness (E rec ) Argon Germanium Xenon Tungsten Iodine y ] ton count rate [kev Germanium Xenon Argon Sodium iodide Calcium tungstate Tungsten in CaW recoil energy [kev] Recoil spectra for different materials: recoil energy [kev] WIMP-nucleon cross section: cm ˆ= pb WIMP-mass: 60 GeV Achim Gütlein (TU-München) eutrino background / 0
7 eutrinos as background for direct dark matter searches Coherent eutrino ucleus Scattering (CS) CS - A neutral current process ν x A 0 Z ν x A eutral current process CS independent of ν-flavor or low transferred momenta: Z 0 wave length comparable to radius of nuclei ν scatters coherently off all nucleons Achim Gütlein (TU-München) eutrino background.0.0 / 0
8 eutrinos as background for direct dark matter searches CS - Cross Section Coherent eutrino ucleus Scattering (CS) dσ(e ν, E rec ) de rec = G π [ ( Z sin θ W ) + ] M ( E ) recm Eν σ tot = G [ ( Z sin θ W ) + ] E π ν with neutrino energy E ν, recoil energy E rec, ermi constant G, Weinberg angle θ W, mass of traget nucleus M, proton number Z and neutron number. sin θ W = 0. σ tot G π E ν ut recoil energy E rec +Z. Higher neutron number higher cross section σ tot but also lower recoil energy E rec Achim Gütlein (TU-München) eutrino background.0.0 / 0
9 ] eutrinos as background for direct dark matter searches Solar neutrinos Solar neutrinos s kev neutrino flux [cm 9 6 pp e neutrino energy [kev] eutrinos scattering coherently off a nucleus mimic a WIMP scattering event Strongest natural neutrino source: solar neutrinos Expected count rate for solar neutrinos is about per ton-year Solar neutrinos can be a background source for direct dark matter searches Achim Gütlein (TU-München) eutrino background / 0
10 eutrinos as background for direct dark matter searches Count rates for argon Solar neutrino count rates for different materials Argon year ] ton count rate [kev 6 pp e total recoil energy [kev] Argon year ] [ton count rate R th pp e total recoil energy threshold [kev] E th [kev] count rate per ton-year Achim Gütlein (TU-München) eutrino background.0.0 / 0
11 eutrinos as background for direct dark matter searches Count rates for germanium Solar neutrino count rates for different materials year ] ton count rate [kev 6 Germanium pp e total recoil energy [kev] year ] [ton count rate R th Germanium pp e total recoil energy threshold [kev] E th [kev] 0.9. count rate per ton-year Achim Gütlein (TU-München) eutrino background.0.0 / 0
12 eutrinos as background for direct dark matter searches Count rates for xenon Solar neutrino count rates for different materials Xenon year ] ton count rate [kev 6 pp e total recoil energy [kev] year ] [ton count rate R th Xenon pp e total recoil energy threshold [kev] E th [kev] 0.9. count rate per ton-year Achim Gütlein (TU-München) eutrino background.0.0 / 0
13 eutrinos as background for direct dark matter searches Count rates for sodium iodide Solar neutrino count rates for different materials year ] ton count rate [kev 6 Sodium iodide pp e total recoil energy [kev] year ] [ton count rate R th Sodium iodide pp e total recoil energy threshold [kev] E th [kev] 0..6 count rate per ton-year Achim Gütlein (TU-München) eutrino background.0.0 / 0
14 eutrinos as background for direct dark matter searches Count rates for calcium tungstate Solar neutrino count rates for different materials year ] ton count rate [kev 6 Calcium tungstate pp e total recoil energy [kev] year ] [ton count rate R th Calcium tungstate pp e total recoil energy threshold [kev] E th [kev] count rate per ton-year Achim Gütlein (TU-München) eutrino background.0.0 / 0
15 eutrinos as background for direct dark matter searches Tungsten in calcium tungstate Solar neutrino count rates for different materials year ] ton count rate [kev 6 Calcium tungstate Calcium Tungsten xygen recoil energy [kev] Counts for larger recoil energies (> kev) mainly due to scatterings off oxygen It is possible to discriminate between W recoils and Ca or recoils Solar neutrino events with recoil energies > kev can be rejected Count rates for W in CaW E th [kev] 0.0. count rate per ton-year Achim Gütlein (TU-München) eutrino background.0.0 / 0
16 eutrinos as background for direct dark matter searches Solar neutrino count rates for different materials Energy thresholds for different target materials Material 0. counts 0 counts Ar.66 kev. kev Ge.9 kev. kev Xe.9 kev. kev aj. kev.6 kev CaW 6.9 kev. kev W in CaW.0 kev. kev Energy threshold for CaW is given without discrimination between W, Ca and recoils Energy threshold for W in CaW is given with discrimination between W, Ca and recoils applied Achim Gütlein (TU-München) eutrino background / 0
17 eutrinos as background for direct dark matter searches Recoil spectra of atmospheric neutrinos Atmospheric neutrinos as background source Count rates for solar neutrino thresholds are per ton-year. Atmospheric neutrinos limit the achievable sensitivity to cm. Achim Gütlein (TU-München) eutrino background.0.0 / 0
18 Limits for direct dark matter searches WIMP recoil spectrum y ] ton count rate [kev Germanium Xenon Argon Sodium iodide Calcium tungstate Tungsten in CaW recoil energy [kev] Recoil spectra for different materials: WIMP-nucleon cross section: cm ˆ= pb WIMP-mass: 60 GeV Achim Gütlein (TU-München) eutrino background.0.0 / 0
19 Limits for direct dark matter searches Exclusion plots for optimal WIMP search regions ] wimp nucleon cross section [cm Germanium 6 Xenon Argon Sodium iodide Calcium tungstate Tungsten in CaW wimp mass [GeV] Exposure ton-year Achim Gütlein (TU-München) eutrino background / 0
20 Conclusions Conclusions Solar neutrinos can be a background source for sensitivities below 6 cm ˆ= pb for the WIMP-nucleon cross section However, solar neutrino background can be rejected by a proper choice of the WIMP search region W and Xe are the best target materials for the direct dark matter search, if WIMP masses are GeV The discrimination between W, Ca and recoils is very important for the use of CaW as target material Atmospheric neutrinos become a background source for the direct dark matter search for sensitivities below cm ˆ= pb Achim Gütlein (TU-München) eutrino background / 0
Dark Matter Searches. Marijke Haffke University of Zürich
University of Zürich Structure Ι. Introduction - Dark Matter - WIMPs Ι Ι. ΙΙΙ. ΙV. V. Detection - Philosophy & Methods - Direct Detection Detectors - Scintillators - Bolometer - Liquid Noble Gas Detectors
Development of a New Paradigm
P599 Seminar, April 9, 2014 Development of a New Paradigm for Direct Dark Matter Detection Jason Rose / UTK (working with Dr. Kamyshkov) Dark Matter Recap Evidence: Galactic Rotation Curves Gravitational
Can the DAMA annual modulation be explained by Dark Matter?
Can the DAMA annual modulation be explained by Dark Matter? Thomas Schwetz-Mangold MPIK, Heidelberg based on M. Fairbairn and T. Schwetz, arxiv:0808.0704 T. Schwetz, MPIK, 24 Nov 2008 p. 1 Outline Introduction
Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich,
Search for Inelastic Dark Matter with the CDMS experiment Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich, 30.08.2010 The CDMS experiment - 19 Ge and 11 Si semiconductor detectors
Chapter 12. Dark Matter
Karl-Heinz Kampert Univ. Wuppertal 128 Chapter 12 Dark Matter Karl-Heinz Kampert Univ. Wuppertal Baryonic Dark Matter Brightness & Rotation Curve of NGC3198 Brightness Rotation Curve measured expected
No combined analysis of all experiments available
Compatibility between DAMA-CDMS CDMS-Edelweiss-Xenon10 - KIMS? No combined analysis of all experiments available However, some trivial considerations: * for m χ 25 GeV capture on DAMA is dominated by the
Radio-chemical method
Neutrino Detectors Radio-chemical method Neutrino reactions: n+ν e => p+e - p+ν e => n+e + Radio chemical reaction in nuclei: A N Z+ν e => A-1 N(Z+1)+e - (Electron anti-neutrino, right) (Z+1) will be extracted,
DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,
DARWIN Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017
Neutrino bounds on dark matter. Alejandro Ibarra Technische Universität München
Neutrino bounds on dark matter Alejandro Ibarra Technische Universität München NOW 2012 10 September 2012 Introduction Many pieces of evidence for particle dark matter. However, very little is known about
Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)
Dark Matter Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) 1 Dark Matter 1933 r. - Fritz Zwicky, COMA cluster. Rotation
Germanium-phobic exothermic Dark Matter and the CDMS-II Silicon excess
Germanium-phobic exothermic Dark Matter and the CDMS-II Silicon excess Stefano Scopel Based on work done in collaboration with K. Yoon (JCAP 1408, 060 (2014)) and J.H. Yoon (arxiv:1411.3683, accepted on
New directions in direct dark matter searches
New directions in direct dark matter searches Tongyan Lin UC Berkeley & LBNL April 4, 2017 DM@LHC 2017, UC Irvine Direct detection of WIMPs target nuclei E recoil Heat, ionization, charge from recoiling
Detectors for astroparticle physics
Detectors for astroparticle physics Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Universität Zürich Kern und Teilchenphysik II, Zürich 07.05.2010 Teresa Marrodán Undagoitia (UZH) Detectors for astroparticle
Collaborazione DAMA & INR-Kiev. XCVIII Congresso SIF Napoli, 18 Settembre F. Cappella
Collaborazione DAMA & INR-Kiev http://people.roma2.infn.it/dama XCVIII Congresso SIF Napoli, 18 Settembre 2012 F. Cappella Based on the study of the correlation between the Earth motion in the galactic
Background optimization for a new spherical gas detector for very light WIMP detection
Background optimization for a new spherical gas detector for very light WIMP detection a, I. Giomataris b, G. Gerbier b, J. Derré b, M. Gros b, P. Magnier b, D. Jourde b, E.Bougamont b, X-F. Navick b,
light dm in the light of cresst-ii
light dm in the light of cresst-ii Jure Zupan U. of Cincinnati based on T. Schwetz, JZ 1106.6241; J. Kopp, T. Schwetz, JZ 1110.2721 1 the question CoGeNT, DAMA, CRESST claim signals Is it (can it be) dark
CHAPTER 7 TEST REVIEW
IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.
Cryogenic Detectors Direct Dark Matter Search. Dark Matter
Cryogenic Detectors Direct Search Matter in the Universe - Composition ν too light => most of the is cold Ωmat = 0.27 0.04 u d of so far unknown weakly interacting, massive particles WIMPs normal baryonic
XENON100. Marc Schumann. Physik Institut, Universität Zürich. IDM 2010, Montpellier, July 26 th,
XENON100 Marc Schumann Physik Institut, Universität Zürich IDM 2010, Montpellier, July 26 th, 2010 www.physik.uzh.ch/groups/groupbaudis/xenon/ Why WIMP search with Xenon? efficient, fast scintillator (178nm)
Search for Low Energy Events with CUORE-0 and CUORE
Search for Low Energy Events with CUORE-0 and CUORE Kyungeun E. Lim (on behalf of the CUORE collaboration) Oct. 30. 015, APS Division of Nuclear Physics meeting, Santa Fe, NM The CUORE Experiment CUORE
The COHERENT Experiment: Overview and Update of Results
The COHERENT Experiment: Overview and Update of Results for the COHERENT Collaboration 2016 Fall Meeting of the APS Division of Nuclear Physics, Vancouver, B.C. ORNL is managed by UT-Battelle for the US
Inelastic Dark Matter and DAMA
Inelastic Dark Matter and DAMA Spencer Chang (UC Davis) work in collaboration with hep-ph:0807.2250 G. Kribs, D. Tucker-Smith, N. Weiner Also see David Morrissey's talk Dark Matter Mystery Dark matter
The Search for Dark Matter. Jim Musser
The Search for Dark Matter Jim Musser Composition of the Universe Dark Matter There is an emerging consensus that the Universe is made of of roughly 70% Dark Energy, (see Stu s talk), 25% Dark Matter,
Indirect Dark Matter Detection
Indirect Dark Matter Detection Martin Stüer 11.06.2010 Contents 1. Theoretical Considerations 2. PAMELA 3. Fermi Large Area Telescope 4. IceCube 5. Summary Indirect Dark Matter Detection 1 1. Theoretical
Proton decay and neutrino astrophysics with the future LENA detector
Proton decay and neutrino astrophysics with the future LENA detector Teresa Marrodán Undagoitia tmarroda@ph.tum.de Institut E15 Physik-Department Technische Universität München Paris, 11.09.08 Outline
Electron-positron production in kinematic conditions of PrimEx
Electron-positron production in kinematic conditions of PrimEx Alexandr Korchin Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine 1 We consider photoproduction of e + e pairs on a nucleus
The Mystery of Dark Matter
The Mystery of Dark Matter Maxim Perelstein, LEPP/Cornell U. CIPT Fall Workshop, Ithaca NY, September 28 2013 Introduction Last Fall workshop focused on physics of the very small - elementary particles
Determining WIMP Properties with the AMIDAS Package
Determining WIMP Properties with the AMIDAS Package Chung-Lin Shan Xinjiang Astronomical Observatory Chinese Academy of Sciences Center for Future High Energy Physics, Chinese Academy of Sciences August
Halo-independent analysis of direct detection data for light WIMPs
Prepared for submission to JCAP arxiv:1304.6183v3 [hep-ph] 26 Sep 2013 Halo-independent analysis of direct detection data for light WIMPs Eugenio Del Nobile, a Graciela B. Geli, a Paolo Gondolo, b and
DAMA/LIBRA: risultati, upgrading e prospettive. R. Cerulli INFN-LNGS
DAMA/LIBRA: risultati, upgrading e prospettive R. Cerulli INFN-LNGS XCVIII Congresso Nazionale SIF Napoli 17-21 Settembre 2012 also other ideas Some direct detection processes: Scatterings on nuclei detection
- The CONUS Experiment - COherent elastic NeUtrino nucleus Scattering
- The CONUS Experiment - COherent elastic NeUtrino nucleus Scattering C. Buck, J. Hakenmüller, G. Heusser, M. Lindner, W. Maneschg, T. Rink, H. Strecker, T. Schierhuber and V. Wagner Max-Planck-Institut
D. Medvedev GEMMA and vgen Nalchik, June 6, Investigation of neutrino properties with Ge detectors on KNPP
D. Medvedev GEMMA and vgen Nalchik, June 6, 2017 ν Investigation of neutrino properties with Ge detectors on KNPP Kalininskaya Nuclear Power Plant (KNPP) GEMMA vgen DANSS Udomlya, ~ 280 km to the North
Nuclear Physics 2. D. atomic energy levels. (1) D. scattered back along the original direction. (1)
Name: Date: Nuclear Physics 2. Which of the following gives the correct number of protons and number of neutrons in the nucleus of B? 5 Number of protons Number of neutrons A. 5 6 B. 5 C. 6 5 D. 5 2. The
Light dark matter search with a spherical proportional counter
Light dark matter search with a spherical proportional counter I. Giomataris, CEA-Irfu-France NEWS (New Experiment for Wimps with Sphere) Main goal: search for ultra-light WIMP 100 MeV 10 GeV Using the
Neutrino Oscillations
Neutrino Oscillations Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen) Suggested reading: C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press
University of Ioannina, Ioannina, Greece. AUTh, Thessaloniki, Greece
Signatures in Directional Dark Matter Searches Asymmetries and the Diurnal Variation J.D. Vergados + and Ch. C. Moustakides ++ + University of Ioannina, Ioannina, Greece. ++ AUTh, Thessaloniki, Greece
Binding Energy and Mass defect
Binding Energy and Mass defect Particle Relative Electric Charge Relative Mass Mass (kg) Charge (C) (u) Electron -1-1.60 x 10-19 5.485779 x 10-4 9.109390 x 10-31 Proton +1 +1.60 x 10-19 1.007276 1.672623
1. Neutrino Oscillations
Neutrino oscillations and masses 1. Neutrino oscillations 2. Atmospheric neutrinos 3. Solar neutrinos, MSW effect 4. Reactor neutrinos 5. Accelerator neutrinos 6. Neutrino masses, double beta decay 1.
Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search
Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search Hanwool Joo on behalf of the KIMS-NaI collaboration Department of Physics and Astronomy, 1 Gwanak-ro, Gwanak-gu, Seoul
Dark matter search by exclusive studies of X-rays following WIMPs nuclear interactions
arxiv:hep-ph/0510042v1 4 Oct 2005 Dark matter search by exclusive studies of X-rays following WIMPs nuclear interactions H. Ejiri 1, Ch. C. Moustakidis 2, and J. D. Vergados 3 1 NS, International Christian
arxiv: v2 [physics.ins-det] 28 Jul 2010
Pulse-Shape Discrimination of CaF 2 (Eu) S. Oguri a,1, Y. Inoue b, M. Minowa a arxiv:1007.4750v2 [physics.ins-det] 28 Jul 2010 a Department of Physics, School of Science, University of Tokyo, 7-3-1, Hongo,
LUX-ZEPLIN (LZ) Status. Attila Dobi Lawrence Berkeley National Laboratory June 10, 2015 WIN Heidelberg
LUX-ZEPLIN (LZ) Status Attila Dobi Lawrence Berkeley National Laboratory June 10, 2015 WIN-2015. Heidelberg 1 LZ = LUX + ZEPLIN 29 institutions currently About 160 people Continuing to expand internationally
IB Test. Astrophysics HL. Name_solution / a) Describe what is meant by a nebula [1]
IB Test Astrophysics HL Name_solution / 47 1. a) Describe what is meant by a nebula [1] an intergalactic cloud of gas and dust where all stars begin to form b) Explain how the Jeans criterion applies to
Directional Dark Matter Search with the Fine Grained Nuclear Emulsion
Directional Dark Matter Search with the Fine Grained Nuclear Emulsion, T. Katsuragawa, M. Yoshimoto, K. Hakamata, M. Ishikawa, A. Umemoto, S. Furuya, S. Machii, K. Kuwabara, T. Nakano Graduated School
Quark Nugget Dark Matter. Kyle Lawson May 15, 2017
Quark Nugget Dark Matter Kyle Lawson May 15, 2017 Outline High density QCD and quark matter Compact composite dark matter Baryogenesis as separation of charges Observational constraints High density QCD
from Dark Matter Annihilation in the Sun
in the Sun Holger Motz Physikalisches Institut, Universität Erlangen Nürnberg Erwin Rommel Straße 1, 91058 Erlangen KM3NeT collaboration meeting Pylos, April 16 th Page 1 Indirect Search for Dark Matter
Charged current single pion to quasi-elastic cross section ratio in MiniBooNE. Steven Linden PAVI09 25 June 2009
Charged current single pion to quasi-elastic cross section ratio in MiniBooNE Steven Linden PAVI09 25 June 2009 Motivation Oscillation searches needed for leptonic CP violation. One approach: search for
Publications of Francesco Arneodo: journal articles
Publications of Francesco Arneodo: journal articles Figure 1: Citation report from ISI Web of Science (IF=31.0) [1] E. Aprile et al., First Axion Results from the XENON100 Experiment, arxiv.org (submitted
arxiv:astro-ph/ v1 24 Jun 2004
LATEST RESULTS OF THE EDELWEISS EXPERIMENT arxiv:astro-ph/46537v 24 Jun 24 V. SANGLARD for the Edelweiss collaboration Institut de Physique Nucléaire de Lyon, 4 rue Enrico Fermi, 69622 Villeurbanne, France
Revisiting the escape speed impact on dark matter direct detection
Revisiting the escape speed impact on dark matter direct detection Laboratoir Univers et Particules de Montpellier, UMR-5299, Montpellier, France E-mail: stefano.magni@univ-montp2.fr Julien Lavalle Laboratoir
Dark matter in split extended supersymmetry
Dark matter in split extended supersymmetry Vienna 2 nd December 2006 Alessio Provenza (SISSA/ISAS) based on AP, M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) hep ph/0609059 Dark matter: experimental clues
Neutrino Oscillations and the Matter Effect
Master of Science Examination Neutrino Oscillations and the Matter Effect RAJARSHI DAS Committee Walter Toki, Robert Wilson, Carmen Menoni Overview Introduction to Neutrinos Two Generation Mixing and Oscillation
Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso
Neutrino nucleus scattering Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso Institut für Theoretische Physik Universität Gießen, Germany XL. Arbeitstreffen Kernphysik, Schleching 26. Februar
Recent Results from the PandaX Experiment
Recent Results from the PandaX Experiment Changbo Fu Shanghai Jiao Tong University On Behalf of Collaboration 25May2017 1 Outline 1. Introduciton Dark Matter: WIMPs, Axion, PandaX at China Jinping Underground
QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter
QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter 1. An atomic nucleus contains 39 protons and 50 neutrons. Its mass number (A) is a)
Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17
Neutrino Energy Reconstruction Methods Using Electron Scattering Data Afroditi Papadopoulou Pre-conference, EINN 2017 10/29/17 Outline Nuclear Physics and Neutrino Oscillations. Outstanding Challenges
32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES
32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32.1 Biological Effects of Ionizing Radiation γ-rays (high-energy photons) can penetrate almost anything, but do comparatively little damage.
Searches for Low-Mass WIMPs with CDMS II and SuperCDMS
Searches for Low-Mass WIMPs with CDMS II and SuperCDMS SuperCDMS Science Coordinator Syracuse University arxiv: 1304.4279 1304.3706 1203.1309 A New Order 0.01% Visible H, He 0.5% ENERGY Metals Dark Matter
The COSINUS project. development of new NaI- based detectors for dark ma6er search. STATUS report Karoline Schäffner
The COSINUS project development of new NaI- based detectors for dark ma6er search STATUS report 2016 Karoline Schäffner SCATTERING SCENARIO Dark matter particles scatter off nuclei elastically coherently:
DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1
DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark
T7-1 [255 marks] The graph shows the relationship between binding energy per nucleon and nucleon number. In which region are nuclei most stable?
T7-1 [255 marks] 1. In the Geiger Marsden experiment alpha particles were directed at a thin gold foil. Which of the following shows how the majority of the alpha particles behaved after reaching the foil?
Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction
Dark Matter Detection and the XENON Experiment Elena Aprile Physics Department and Columbia Astrophysics Laboratory Columbia University New York, New York 10027 1 Abstract Observations on all fronts strongly
PMT Signal Attenuation and Baryon Number Violation Background Studies. By: Nadine Ayoub Nevis Laboratories, Columbia University August 5, 2011
PMT Signal Attenuation and Baryon Number Violation Background Studies By: Nadine Ayoub Nevis Laboratories, Columbia University August 5, 2011 1 The Standard Model The Standard Model is comprised of Fermions
The Configuration of the Atom: Rutherford s Model
CHAPTR 2 The Configuration of the Atom: Rutherford s Model Problem 2.2. (a) When α particles with kinetic energy of 5.00 MeV are scattered at 90 by gold nuclei, what is the impact parameter? (b) If the
Analysis of γ spectrum
IFM The Department of Physics, Chemistry and Biology LAB 26 Analysis of γ spectrum NAME PERSONAL NUMBER DATE APPROVED I. OBJECTIVES - To understand features of gamma spectrum and recall basic knowledge
Stellar Structure. Observationally, we can determine: Can we explain all these observations?
Stellar Structure Observationally, we can determine: Flux Mass Distance Luminosity Temperature Radius Spectral Type Composition Can we explain all these observations? Stellar Structure Plan: Use our general
November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model
Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one
More Energetics of Alpha Decay The energy released in decay, Q, is determined by the difference in mass of the parent nucleus and the decay products, which include the daughter nucleus and the particle.
Lecture 14. Dark Matter. Part IV Indirect Detection Methods
Dark Matter Part IV Indirect Detection Methods WIMP Miracle Again Weak scale cross section Produces the correct relic abundance Three interactions possible with DM and normal matter DM Production DM Annihilation
General Physics (PHY 2140)
General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear
Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic
Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2
Detecting low energy recoils with Micromegas
Detecting low energy recoils with Micromegas Giomataris Ioannis, DAPNIA-Saclay Principle, performance Low threshold results Axion-WIMP search, polarimetry Large gaseous TPC Conclusions 1 40 kv/cm 1 kv/cm
2. The evolution and structure of the universe is governed by General Relativity (GR).
7/11 Chapter 12 Cosmology Cosmology is the study of the origin, evolution, and structure of the universe. We start with two assumptions: 1. Cosmological Principle: On a large enough scale (large compared
Neutrinos and DM (Galactic)
Neutrinos and DM (Galactic) ArXiv:0905.4764 ArXiv:0907.238 ArXiv: 0911.5188 ArXiv:0912.0512 Matt Buckley, Katherine Freese, Dan Hooper, Sourav K. Mandal, Hitoshi Murayama, and Pearl Sandick Basic Result
Progress of the AMIDAS Package for Reconstructing WIMP Properties
Progress of the AMIDAS Package for Reconstructing WIMP Properties Chung-Lin Shan Xinjiang Astronomical Observatory Chinese Academy of Sciences 4th International Workshop on Dark Matter, Dark Energy, and
Unit 2: Atomic Structure Additional Practice
Name: Unit 2: Atomic Structure Additional Practice Period: 1. Which particles have approximately the same mass? an electron and an alpha particle an electron and a proton a neutron and an alpha particle
Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011
Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011 First Discovery of Dark Matter As you get farther away from the main central mass of a galaxy, the acceleration from
The Gamma Factory proposal for CERN
The Gamma Factory proposal for CERN Photon-2017 Conference, May 2017 Mieczyslaw Witold Krasny LPNHE, CNRS and University Paris Sorbonne 1 The Gamma Factory in a nutshell Accelerate and store high energy
Closing the window on GeV Dark Matter with moderate ( µb) interaction with nucleons
Prepared for submission to JCAP arxiv:1709.00430v2 [hep-ph] 14 Nov 2017 Closing the window on GeV Dark Matter with moderate ( µb) interaction with nucleons M. Shafi Mahdawi and Glennys R. Farrar Center
It is possible for a couple of elliptical galaxies to collide and become a spiral and for two spiral galaxies to collide and form an elliptical.
7/16 Ellipticals: 1. Very little gas and dust an no star formation. 2. Composed of old stars. 3. Masses range from hundreds of thousands to 10's of trillions of solar masses. 4. Sizes range from 3000 ly
Astronomy 182: Origin and Evolution of the Universe
Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 12 Nov. 18, 2015 Today Big Bang Nucleosynthesis and Neutrinos Particle Physics & the Early Universe Standard Model of Particle
EEE4101F / EEE4103F Radiation Interactions & Detection
EEE4101F / EEE4103F Radiation Interactions & Detection 1. Interaction of Radiation with Matter Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za March
Deep Underground Labs and the Search for Dark Matter
Deep Underground Labs and the Search for Dark Matter Sujeewa Kumaratunga Feb 16th, 2013 Sujeewa Kumaratunga, TRIUMF Saturday Morning Lectures 1 /38 Outline Dark Matter, a brief history Underground Labs,
Astroparticle physics
Timo Enqvist University of Oulu Oulu Southern institute lecture cource on Astroparticle physics 15.09.2009 15.12.2009 Supernovae and supernova neutrinos 4.1 4 Supernovae and supernova neutrinos 4.1 Supernova
INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM
INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM Please take a few minutes to read through all problems before starting the exam. Ask the proctor if you are uncertain about the meaning of any
Earth WIMP search with IceCube. Jan Kunnen for the IceCube Collaboration
Earth WIMP search with IceCube Jan Kunnen for the IceCube Collaboration 1 Outline 1. Indirect Earth WIMP detection with neutrinos I. how, II. status, III. theoretical predictions 2. The IceCube Neutrino
Evidence for the Strong Interaction
Evidence for the Strong Interaction Scott Wilbur Scott Wilbur Evidence for the Strong Interaction 1 Overview Continuing search inside fundamental particles Scott Wilbur Evidence for the Strong Interaction
Atomic Structure and the Composition of Matter
Atomic Structure and the Composition of Matter The atom is a basic building block of minerals. Matter is a special form of energy; it has mass and occupies space. Neither matter nor energy may be created
CHAPTER 12 TEST REVIEW
IB PHYSICS Name: Period: Date: # Marks: 76 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 12 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.
FXA Candidates should be able to :
1 Candidates should be able to : INTRODUCTION Describe qualitatively the alpha-particle scattering experiment and the evidence this provides for the existence, charge and small size of the nucleus. Describe
State the main interaction when an alpha particle is scattered by a gold nucleus
Q1.(a) Scattering experiments are used to investigate the nuclei of gold atoms. In one experiment, alpha particles, all of the same energy (monoenergetic), are incident on a foil made from a single isotope
(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly.
Sample questions for Quiz 3, 22.101 (Fall 2006) Following questions were taken from quizzes given in previous years by S. Yip. They are meant to give you an idea of the kind of questions (what was expected
Search for Dark Matter with LHC proton Beam Dump
Search for Dark Matter with LHC proton Beam Dump Ashok Kumar a, Archana Sharma b* a Delhi University, Delhi, India b CERN, Geneva, Switzerland Abstract Dark Matter (DM) comprising particles in the mass
Background rejection techniques in Germanium 0νββ-decay experiments. ν=v
Background rejection techniques in Germanium 0νββ-decay experiments n p ν=v n eep II. Physikalisches Institut Universität Göttingen Institutsseminar des Inst. für Kern- und Teilchenphysik, Outline Neutrinos
arxiv:hep-ph/ v2 17 Jun 2002
DFTT 06/2002 ROM2F/2002/02 Effect of the galactic halo modeling on the DAMA/NaI annual modulation result: an extended analysis of the data for WIMPs with a purely spin-independent coupling arxiv:hep-ph/0203242v2
MEASURING THE LIFETIME OF THE MUON
B6-1 MEASURING THE LIFETIME OF THE MUON Last Revised September 19, 2006 QUESTION TO BE INVESTIGATED What is the lifetime τ of a muon? INTRODUCTION AND THEORY Muons are a member of a group of particles
Solar Neutrinos. Learning about the core of the Sun. Guest lecture: Dr. Jeffrey Morgenthaler Jan 26, 2006
Solar Neutrinos Learning about the core of the Sun Guest lecture: Dr. Jeffrey Morgenthaler Jan 26, 2006 Review Conventional solar telescopes Observe optical properties of the Sun to test standard model
INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017
INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017 This is a closed book examination. Adequate information is provided you to solve all problems. Be sure to show all work, as partial credit
arxiv: v1 [astro-ph.co] 7 Nov 2012
arxiv:1211.15v1 [astro-ph.co] 7 Nov 212 Mirror dark matter explanation of the DAMA, CoGeNT and CRESST-II data ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University
Analyzing direct dark matter detection data with unrejected background events by the AMIDAS website
Journal of Physics: Conference Series Analyzing direct dark matter detection data with unrejected background events by the AMIDAS website To cite this article: Chung-Lin Shan 2012 J. Phys.: Conf. Ser.