Hall Effect on Non-commutative Plane with Space-Space Non-commutativity and Momentum-Momentum Non-commutativity

Size: px
Start display at page:

Download "Hall Effect on Non-commutative Plane with Space-Space Non-commutativity and Momentum-Momentum Non-commutativity"

Transcription

1 Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 8, HIKARI Ltd, Hall Effect on Non-commutative Plane with Space-Space Non-commutativity and Momentum-Momentum Non-commutativity Won Sang Chung Department of Physics and Research Institute of Natural Science College of Natural Science, Gyeongsang National University Jinju , Korea Copyright c 2017 Won Sang Chung. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper we consider the non-commutative plane with both space-space non-commutativity and momentum-momentum non-commutativity. We study the hamiltonian for an an electron moving on the non-commutative plane in the uniform external electric field along the x-axis and the uniform external magnetic field which is perpendicular to the plane. We solve the Schrödinger equation for this hamiltonian by using the standard factorization method and compute the Hall conductivity. 1 Introduction Ideas of non-commutative geometry were first proposed by Connes [1]. The major applications have been taken into account in the quantum field theory so as to understand the way how to remove UV singularities, and to construct the proper model for the quantum gravity. In Einstein gravity, the quantum vacuum fluctuations were shown to create mini black holes in which space-time points are not localized any more. It means that the space-time coordinate operators do not commute with each other. Instead, they obey the Heisenberg- Moyal commutation relation.

2 358 Won Sang Chung Physics in noncommutative space was considered in the course of studying the low energy effective theory of D-brane with a non-zero NS-NS B field background. The effects of non-commutative space arises at the string scale. The noncommutative quantum field theories are used in order to test the space non-commutativity. The noncommutative quantum field theories is related to the quantum mechanics in non-commutative space when we consider the low energy limit. Some progress has been accomplished in this direction [2-8]. In this paper we consider the non-commutative plane with both space-space non-commutativity and momentum-momentum non-commutativity. We study the hamiltonian for an an electron moving on the non-commutative plane in the uniform external electric field along the x-axis and the uniform external magnetic field which is perpendicular to the plane. We solve the Schrödinger equation for this hamiltonian by using the standard factorization method and compute the Hall conductivity. 2 Electron moving on the non-commutative plane The non-commutative quantum mechanics (NCQM) with space-space noncommutativity and momentum-momentum non-commutativity is shown to take the following form: [ˆx i, ˆx j ] = iθɛ ij, [ˆp i, ˆp j ] = i θɛ ij, [ˆx i, ˆp j ] = i hδ ij, (i, j = 1, 2), (1) where θ, θ are the constant, frame-dependent parameters; ɛ ij is an Levi-Civita symbol. For the algebra (1), we can find the following realization ˆx i = x i 1 2 h θɛ ijp j ˆp i = p i h θɛ ij x j, (2) where [x i, p j ] = i hδ ij, [x i, x j ] = [p i, p j ] = 0. From now on we use the following notations for the commutation relation (1): [ˆx, ŷ] = iθ [ˆp x, ˆp y ] = i θ [ˆx, ˆp x ] = i h [ŷ, ˆp y ] = i h [ˆx, ˆp y ] = [ŷ, ˆp x ] = 0 (3)

3 Hall effect on non-commutative plane with Then, the eq.(2) is rewritten as ˆx = x 1 2 h θp y ŷ = y h θp x ˆp x = p x h θy ˆp y = p y 1 2 h θx (4) Now consider an electron moving on the commutative plane in the uniform external electric field E 0 along the x-axis and the uniform external magnetic field B which is perpendicular to the plane. Then, the hamiltonian reads H = 1 2µ where x, y, p x, p y are operators obeying [ ( p x + e ) 2 ( c A x + p y + e ) ] 2 c A y + ee 0 x, (5) [x, p x ] = [y, p y ] = i h, [x, p y ] = [y, p x ] = 0 (6) and A x, A y are components of the vector potential and µ, c, e denote mass, light speed and charge, respectively. The corresponding Schrödinger equation reads [ ( 1 p x + e ) 2 ( 2µ c A x + p y + e ) ] 2 c A y ψ(x, y) + ee 0 xψ(x, y) = Eψ(x, y), (7) In this case the wave function ψ(x, y) is not an operator but a function. However, in the non-commutative plane (NC plane), the situation becomes complicated because the NC wave function ψ(ˆx, ŷ) should be regarded as an operator. Thus, we should define the space on which the NC wave function acts. Let H be the Hilbert space where the Hamiltonian acts. Then, the NC wave function acts in the auxiliary Hilbert space ( F ). In the space F, the scalar product is defined using the Moyal star product as f g = f g(x, y)dxdy, (8) where the star product is defined as 0 h θ 0 i = exp 2 ( h 0 0 θ x x px y py ) px θ 0 0 h y 0 θ h 0 py (9)

4 360 Won Sang Chung The commutation relations are then expressed in terms of the Moyal star product as follows: [x, y] = iθ, [x, p x ] = i h, [y, p y ] = i h [x, p y ] = 0, [y, p x ] = 0, [p x, p y ] = i θ (10) where [A, B] = A B B A. The Schrödinger equation is then given by where the hamiltonian is given by H ψ = Eψ (11) H = 1 [( p x + e ) ( 2µ c A x p x + e ) ( c A x + p y + e ) ( c A y p y + e )] c A y + ee 0 x (12) and the corresponding Schrödinger equation reads 1 [( p x + e ) ( 2µ c A x p x + e ) ( c A x + p y + e ) ( c A y p y + e ) ] c A y ψ(x, y) + ee 0 x ψ(x, y) (13) = Eψ(x, y) The eq.(13) is not gauge invariant in an ordinary ( commutative ) sense. But, if we redefine the gauge transformation via the star product as δψ = ie Λ(x, y) ψ(x, y) hc δa x = i[λ, A x ] i[x, Λ] δa y = i[λ, A y ] i[y, Λ], (14) we find that the eq.(13) is NC gauge invariant, which indeed holds because D i = p i + e c A i, (i = x, y) is NC gauge covariant, so D i D i is NC gauge invariant. If we adopt the symmetric gauge and use the realization (4), we can rewrite the Schrödinger equation as Hψ = Eψ (15) where hamiltonian H is given by H = [ ( 1 (1 κ)p x e ( 2 ( y) + (1 κ)p y + e ( ) 2 ( x ]+ee 0 x θ ) 2µ 2 h p y (16)

5 Hall effect on non-commutative plane with and p x = h i x, p y = h i y and κ = eθb. The solutions of the above equation 4c h can be obtained through the standard factorization method. Let us introduce two sets of step operators as follows: b = i(1 κ)p z + e ( z + λ b = i(1 κ)p z + e ( z + λ d = i(1 κ)p z + e ( z d = i(1 κ)p z + e ( z, (17) where z = x + iy, p z = p x ip y. They satisfy two independent boson algebras: where [b, b ] = 2µ hw, [d, d] = 2µ hw, [b, d] = [b, d ] = 0 (18) w = e µc Then, the hamiltonian becomes where ( 1 eθb 4c h ) ( H = 1 4µ (b b + bb ) λ + 2µ (d + d) λ2 2µ, (19) λ + = µee 0 2 λ = µee 0 2 2c e ( ) + B c θ 2c e ( ) B c θ θ 2 h(1 κ) θ 2 h(1 κ) The wave function and the energy eigenvalue are then given by ψ = n, α = 1 (2µ hw) n n! ei(αy+νxy) (b ) n 0 (20) and E n,α = hw 2 (2n + 1) + h(1 κ)λ + α λ2 µ 2µ where α R and n = 0, 1, 2, and ν = e ( ) B c θ 2c h(1 κ) (21)

6 362 Won Sang Chung Now we can explicitly obtain the coordinate representation of the ground wave function. To do so we set xy n, α = ψ n,α (x, y), (22) where ψ n,α (x, y) = N n (2µ hw) n n! ei(αy+νxy) ψ n (x, y) (23) From the relation bψ 0 = 0, we have ( ( e ψ 0 = N 0 exp z z λ ) 2(1 κ)c h(1 κ) z, (24) where N 0 = e ( ) B c θ 2πc(1 κ) exp λ 2 c 2 h 2 e(1 κ) ( ) (25) B c θ 3 Hall Conductivity on Noncommutative Plane Now let us find the Hall conductivity for the hamiltonian (19). The components of the current operator ĵ are defined as ĵ x = ieρ [H, ˆx], h ĵ y = ieρ [H, ŷ], (26) h where ρ denotes electron density. Using the commutation relation (3), we can rewrite the eq.(26) as ĵ x = eρ [ 1 ebθ ] (ˆp x + e µ 2c h câx) ĵ y = eρ [ 1 ebθ ] (ˆp y + e e2 E 0 ρθ (27) µ 2c h cây) h Using the eq. (4), we have ĵ x = eρ [ 1 ebθ ] [( 1 ebθ ) p x + µ 2c h 4c h ĵ x = eρ [ 1 ebθ ] [( 1 ebθ ) p y µ 2c h 4c h ( θ 2 h eb 2c ) ( θ 2 h eb ) ] x e2 E 0 ρθ 2c h y ] (28) Now, the expectation value of two components of the current operator can be calculated with respect to the eigenstates n, α leading to ĵ x = 0, ĵ y = e2 E 0 ρθ h (29)

7 Hall effect on non-commutative plane with Therefore, the Hall conductivity on non-commutative plane is given by σ NC H = e2 ρθ h (30) Comparing σh NC with the Hall conductivity σh C = ec ρ in the commutative B quantum mechanics, we know that when θ = hc eb. σ NC H = σ C H, (31) 4 Conclusion In this paper we considered the non-commutative plane with both space-space non-commutativity and momentum-momentum non-commutativity. We studied the hamiltonian for an an electron moving on the non-commutative plane in the uniform external electric field along the x-axis and the uniform external magnetic field which is perpendicular to the plane. We solved the Schrödinger equation for this hamiltonian by using the standard factorization method and computed the Hall conductivity. Finally we would like to mention the special case of θ = B. In this case, c the commutation relation (3) reduces to and the hamiltonian (16) becomes [ˆx, ŷ] = iθ [ˆp x, ˆp y ] = i c B [ˆx, ˆp x ] = i h [ŷ, ˆp y ] = i h [ˆx, ˆp y ] = [ŷ, ˆp x ] = 0 (32) H = 1 2µ (1 κ)2 (p 2 x + p 2 y) + ee(x θ 2 h p y) (33) Thus, in this special choice of θ, the hamiltonian of the form (16) in the non-commutative plane is equivalent to the one without magnetic field in the commutative plane. Acknowledgements. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF- 2015R1D1A1A ) and by the Gyeongsang National University Fund for Professors on Sabbatical Leave, 2016.

8 364 Won Sang Chung References [1] A. Connes, Non-commutative differential geometry, Publ. Mathematiques de IHES, 62 (1985), [2] N. Seiberg and E. Witten, String theory and noncommutative geometry, Journal of High Energy Physics, 1999 (1999), [3] M. Chaichian, M. M. Sheikh-Jabbari and A. Tureanu, Hydrogen Atom Spectrum and the Lamb Shift in Noncommutative QED, Phys. Rev. Lett., 86 (2001), [4] J. Gamboa, M. Loewe and J. C. Rojas, Noncommutative quantum mechanics, Phys. Rev. D, 64 (2001), [5] V. P. Nair and A. P. Polychronakos, Quantum mechanics on the noncommutative plane and sphere, Phys. Lett. B, 505 (2001), [6] B. Morariu and A. P. Polychronakos, Quantum mechanics on the noncommutative torus, Nucl. Phys. B, 610 (2001), [7] A. Hatzinikitas and I. Smyrnakis, The noncommutative harmonic oscillator in more than one dimension, J. Math. Phys., 43 (2002), [8] J. Gamboa, M. Loewe, F. Mendez and J. C. Rojas, Noncommutative quantum mechanics: The two-dimensional cental field, Int. J. Mod. Phys. A, 17 (1999), Received: February 4, 2016; Published: June 16, 2017

Berry s phase in noncommutative spaces. S. A. Alavi

Berry s phase in noncommutative spaces. S. A. Alavi Berry s phase in noncommutative spaces S. A. Alavi High Energy Physics Division, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014 Helsinki, Finland. On leave of

More information

On the Deformed Theory of Special Relativity

On the Deformed Theory of Special Relativity Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 6, 275-282 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.61140 On the Deformed Theory of Special Relativity Won Sang Chung 1

More information

Newton s Second Law in a Noncommutative Space

Newton s Second Law in a Noncommutative Space Newton s Second Law in a Noncommutative Space Juan M. Romero, J.A. Santiago and J. David Vergara Instituto de Ciencias Nucleares, U.N.A.M., Apdo. Postal 70-543, México D.F., México sanpedro, santiago,

More information

Several Solutions of the Damped Harmonic Oscillator with Time-Dependent Frictional Coefficient and Time-Dependent Frequency

Several Solutions of the Damped Harmonic Oscillator with Time-Dependent Frictional Coefficient and Time-Dependent Frequency Advanced Studies in Theoretical Physics Vol. 11, 017, no. 6, 63-73 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/astp.017.676 Several Solutions of the Damped Harmonic Oscillator with Time-Dependent

More information

2 Quantum Mechanics on a Noncommutative Plane

2 Quantum Mechanics on a Noncommutative Plane 6 th International Workshop on Astronomy and Relativistic Astrophysics - IWARA 013 Sep. 9 - Oct. 03, 013, CBPF, Rio de Janeiro, Brazil. http://mesonpi.cat.cbpf.br/iwara SLAC econf/c13099 Physically Consistent

More information

Upper bound of the time-space non-commutative parameter from gravitational quantum well experiment

Upper bound of the time-space non-commutative parameter from gravitational quantum well experiment Journal of Physics: Conference Series OPEN ACCESS Upper bound of the time-space non-commutative parameter from gravitational quantum well experiment To cite this article: A Saha 2014 J. Phys.: Conf. Ser.

More information

Two Constants of Motion in the Generalized Damped Oscillator

Two Constants of Motion in the Generalized Damped Oscillator Advanced Studies in Theoretical Physics Vol. 10, 2016, no. 2, 57-65 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2016.511107 Two Constants o Motion in the Generalized Damped Oscillator

More information

On the f-deformed Boson Algebra and its Application to Thermodynamics

On the f-deformed Boson Algebra and its Application to Thermodynamics Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 4, 143-162 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.61135 On the f-deformed Boson Algebra and its Application to Thermodynamics

More information

Star operation in Quantum Mechanics. Abstract

Star operation in Quantum Mechanics. Abstract July 000 UMTG - 33 Star operation in Quantum Mechanics L. Mezincescu Department of Physics, University of Miami, Coral Gables, FL 3314 Abstract We outline the description of Quantum Mechanics with noncommuting

More information

arxiv: v1 [hep-th] 26 Sep 2007

arxiv: v1 [hep-th] 26 Sep 2007 On statistical mechanics in noncommutative spaces. arxiv:0709.4163v1 [hep-th] 26 Sep 2007 S. A. Alavi Department of Physics, Sabzevar university of Tarbiat Moallem, Sabzevar, P. O. Box 397, Iran and Sabzevar

More information

On the q-deformed Thermodynamics and q-deformed Fermi Level in Intrinsic Semiconductor

On the q-deformed Thermodynamics and q-deformed Fermi Level in Intrinsic Semiconductor Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 5, 213-223 HIKARI Ltd, www.m-hikari.com htts://doi.org/10.12988/ast.2017.61138 On the q-deformed Thermodynamics and q-deformed Fermi Level in

More information

Noncommutative Quantum Mechanics: The Two-Dimensional. Central Field. Abstract

Noncommutative Quantum Mechanics: The Two-Dimensional. Central Field. Abstract DRAFT Noncommutative Quantum Mechanics: The Two-Dimensional Central Field J. Gamboa 1,M.Loewe,F.Méndez 1 and J. C. Rojas 3 1 Departamento de Física, Universidad de Santiago de Chile, Casilla 307, Santiago,

More information

The Octupole Field Effect on the H Atom Spectrum in Noncommutative Space

The Octupole Field Effect on the H Atom Spectrum in Noncommutative Space Adv. Studies Theor. Phys., Vol. 6, 212, no. 18, 887-892 The Octupole Field Effect on the H Atom Spectrum in Noncommutative Space Ahmed Al-Jamel, Hatem Widyan and Eqab M. Rabei Physics Department, Al Al-Bayt

More information

Generalized Wigner distributions and scalar field on a fuzzy sphere

Generalized Wigner distributions and scalar field on a fuzzy sphere Generalized Wigner distributions and scalar field on a fuzzy sphere Juraj Tekel The Graduate Center and The City College The City University of New York work with V.P. Nair and A. Polychronakos Models

More information

arxiv: v2 [hep-th] 6 Jul 2009

arxiv: v2 [hep-th] 6 Jul 2009 HIP-9-/TH Dirac Equation in Noncommutative Space for Hydrogen Atom arxiv:9.86v [hep-th] 6 Jul 9 T. C. Adorno, M. C. Baldiotti, M. Chaichian, D. M. Gitman and A. Tureanu Instituto de Física, Universidade

More information

Path Integral for Spin

Path Integral for Spin Path Integral for Spin Altland-Simons have a good discussion in 3.3 Applications of the Feynman Path Integral to the quantization of spin, which is defined by the commutation relations [Ŝj, Ŝk = iɛ jk

More information

arxiv:hep-th/ v2 29 Aug 2003

arxiv:hep-th/ v2 29 Aug 2003 UV divergence-free QFT on noncommutative plane arxiv:hep-th/0308193v 9 Aug 003 Anais Smailagic, Euro Spallucci Sezione INFN di Trieste, Strada Costiera 11, 34014 Trieste, Italy Department of Theoretical

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

No-Go of Quantized General Relativity

No-Go of Quantized General Relativity Advanced Studies in Theoretical Physics Vol. 10, 2016, no. 8, 415-420 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2016.6928 No-Go of Quantized General Relativity Johan Hansson Division of

More information

Quantum Physics 2006/07

Quantum Physics 2006/07 Quantum Physics 6/7 Lecture 7: More on the Dirac Equation In the last lecture we showed that the Dirac equation for a free particle i h t ψr, t = i hc α + β mc ψr, t has plane wave solutions ψr, t = exp

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

A note on the Lipkin model in arbitrary fermion number

A note on the Lipkin model in arbitrary fermion number Prog. Theor. Exp. Phys. 017, 081D01 9 pages) DOI: 10.1093/ptep/ptx105 Letter A note on the Lipkin model in arbitrary fermion number Yasuhiko Tsue 1,,, Constança Providência 1,, João da Providência 1,,

More information

( ) in the interaction picture arises only

( ) in the interaction picture arises only Physics 606, Quantum Mechanics, Final Exam NAME 1 Atomic transitions due to time-dependent electric field Consider a hydrogen atom which is in its ground state for t < 0 For t > 0 it is subjected to a

More information

P3317 HW from Lecture and Recitation 7

P3317 HW from Lecture and Recitation 7 P3317 HW from Lecture 1+13 and Recitation 7 Due Oct 16, 018 Problem 1. Separation of variables Suppose we have two masses that can move in 1D. They are attached by a spring, yielding a Hamiltonian where

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

BFT embedding of noncommutative D-brane system. Abstract

BFT embedding of noncommutative D-brane system. Abstract SOGANG-HEP 271/00 BFT embedding of noncommutative D-brane system Soon-Tae Hong,WonTaeKim, Young-Jai Park, and Myung Seok Yoon Department of Physics and Basic Science Research Institute, Sogang University,

More information

P3317 HW from Lecture and Recitation 10

P3317 HW from Lecture and Recitation 10 P3317 HW from Lecture 18+19 and Recitation 10 Due Nov 6, 2018 Problem 1. Equipartition Note: This is a problem from classical statistical mechanics. We will need the answer for the next few problems, and

More information

The Dirac Equation. Topic 3 Spinors, Fermion Fields, Dirac Fields Lecture 13

The Dirac Equation. Topic 3 Spinors, Fermion Fields, Dirac Fields Lecture 13 The Dirac Equation Dirac s discovery of a relativistic wave equation for the electron was published in 1928 soon after the concept of intrisic spin angular momentum was proposed by Goudsmit and Uhlenbeck

More information

E = φ 1 A The dynamics of a particle with mass m and charge q is determined by the Hamiltonian

E = φ 1 A The dynamics of a particle with mass m and charge q is determined by the Hamiltonian Lecture 9 Relevant sections in text: 2.6 Charged particle in an electromagnetic field We now turn to another extremely important example of quantum dynamics. Let us describe a non-relativistic particle

More information

2-Group Global Symmetry

2-Group Global Symmetry 2-Group Global Symmetry Clay Córdova School of Natural Sciences Institute for Advanced Study April 14, 2018 References Based on Exploring 2-Group Global Symmetry in collaboration with Dumitrescu and Intriligator

More information

Lecture 19 (Nov. 15, 2017)

Lecture 19 (Nov. 15, 2017) Lecture 19 8.31 Quantum Theory I, Fall 017 8 Lecture 19 Nov. 15, 017) 19.1 Rotations Recall that rotations are transformations of the form x i R ij x j using Einstein summation notation), where R is an

More information

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation 1 Content of the course Quantum Field Theory by M. Srednicki, Part 1. Combining QM and relativity We are going to keep all axioms of QM: 1. states are vectors (or rather rays) in Hilbert space.. observables

More information

Classical and Quantum Mechanics of a Charged Particle Moving in Electric and Magnetic Fields

Classical and Quantum Mechanics of a Charged Particle Moving in Electric and Magnetic Fields Classical Mechanics Classical and Quantum Mechanics of a Charged Particle Moving in Electric and Magnetic Fields In this section I describe the Lagrangian and the Hamiltonian formulations of classical

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Topological DBI actions and nonlinear instantons

Topological DBI actions and nonlinear instantons 8 November 00 Physics Letters B 50 00) 70 7 www.elsevier.com/locate/npe Topological DBI actions and nonlinear instantons A. Imaanpur Department of Physics, School of Sciences, Tarbiat Modares University,

More information

On the Heisenberg and Schrödinger Pictures

On the Heisenberg and Schrödinger Pictures Journal of Modern Physics, 04, 5, 7-76 Published Online March 04 in SciRes. http://www.scirp.org/ournal/mp http://dx.doi.org/0.436/mp.04.5507 On the Heisenberg and Schrödinger Pictures Shigei Fuita, James

More information

Classifications of Special Curves in the Three-Dimensional Lie Group

Classifications of Special Curves in the Three-Dimensional Lie Group International Journal of Mathematical Analysis Vol. 10, 2016, no. 11, 503-514 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2016.6230 Classifications of Special Curves in the Three-Dimensional

More information

Exam in TFY4205 Quantum Mechanics Saturday June 10, :00 13:00

Exam in TFY4205 Quantum Mechanics Saturday June 10, :00 13:00 NTNU Page 1 of 9 Institutt for fysikk Contact during the exam: Professor Arne Brataas Telephone: 7359367 Exam in TFY5 Quantum Mechanics Saturday June 1, 6 9: 13: Allowed help: Alternativ C Approved Calculator.

More information

Damped harmonic oscillator with time-dependent frictional coefficient and time-dependent frequency. Abstract

Damped harmonic oscillator with time-dependent frictional coefficient and time-dependent frequency. Abstract Damped harmonic oscillator with time-dependent frictional coefficient and time-dependent frequency Eun Ji Jang, Jihun Cha, Young Kyu Lee, and Won Sang Chung Department of Physics and Research Institute

More information

Quantization of the open string on exact plane waves and non-commutative wave fronts

Quantization of the open string on exact plane waves and non-commutative wave fronts Quantization of the open string on exact plane waves and non-commutative wave fronts F. Ruiz Ruiz (UCM Madrid) Miami 2007, December 13-18 arxiv:0711.2991 [hep-th], with G. Horcajada Motivation On-going

More information

Finite temperature form factors in the free Majorana theory

Finite temperature form factors in the free Majorana theory Finite temperature form factors in the free Majorana theory Benjamin Doyon Rudolf Peierls Centre for Theoretical Physics, Oxford University, UK supported by EPSRC postdoctoral fellowship hep-th/0506105

More information

1 Canonical quantization conformal gauge

1 Canonical quantization conformal gauge Contents 1 Canonical quantization conformal gauge 1.1 Free field space of states............................... 1. Constraints..................................... 3 1..1 VIRASORO ALGEBRA...........................

More information

On divergent 3-vertices in noncommutative SU(2) gauge theory

On divergent 3-vertices in noncommutative SU(2) gauge theory On divergent 3-vertices in noncommutative SU2 gauge theory arxiv:hep-th/0410085v1 8 Oct 2004 Maja Burić and Voja Radovanović Faculty of Physics, P.O. Box 368, 11001 Belgrade, Serbia and Montenegro Abstract

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

On Existance of a Large Symmetry Group for Non-Linear Sigma Models and a Self-Consistency Condition for P-Branes?

On Existance of a Large Symmetry Group for Non-Linear Sigma Models and a Self-Consistency Condition for P-Branes? Adv. Studies Theor. Phys., Vol. 7, 2013, no. 7, 341-347 HIKARI Ltd, www.m-hikari.com On Existance of a Large Symmetry Group for Non-Linear Sigma Models and a Self-Consistency Condition for P-Branes? E.B.

More information

Emergent space-time and gravity in the IIB matrix model

Emergent space-time and gravity in the IIB matrix model Emergent space-time and gravity in the IIB matrix model Harold Steinacker Department of physics Veli Losinj, may 2013 Geometry and physics without space-time continuum aim: (toy-?) model for quantum theory

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Prof. Boris Altshuler March 8, 011 1 Lecture 19 1.1 Second Quantization Recall our results from simple harmonic oscillator. We know the Hamiltonian very well so no need to repeat here.

More information

The Ruled Surfaces According to Type-2 Bishop Frame in E 3

The Ruled Surfaces According to Type-2 Bishop Frame in E 3 International Mathematical Forum, Vol. 1, 017, no. 3, 133-143 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/imf.017.610131 The Ruled Surfaces According to Type- Bishop Frame in E 3 Esra Damar Department

More information

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 39, 1919-1928 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.54124 Improvements in Newton-Rapshon Method for Nonlinear

More information

Quantum Mechanics I Physics 5701

Quantum Mechanics I Physics 5701 Quantum Mechanics I Physics 5701 Z. E. Meziani 02/24//2017 Physics 5701 Lecture Commutation of Observables and First Consequences of the Postulates Outline 1 Commutation Relations 2 Uncertainty Relations

More information

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 9, 2015, no. 58, 2889-2900 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121002 Linearization of Two Dimensional Complex-Linearizable Systems of

More information

A kappa deformed Clifford Algebra, Hopf Algebras and Quantum Gravity

A kappa deformed Clifford Algebra, Hopf Algebras and Quantum Gravity A kappa deformed Clifford Algebra, Hopf Algebras and Quantum Gravity Carlos Castro Perelman June 2015 Universidad Tecnica Particular de Loja, San Cayetano Alto, Loja, 1101608 Ecuador Center for Theoretical

More information

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces Applied Mathematical Sciences, Vol. 11, 2017, no. 12, 549-560 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.718 The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive

More information

Solving Homogeneous Systems with Sub-matrices

Solving Homogeneous Systems with Sub-matrices Pure Mathematical Sciences, Vol 7, 218, no 1, 11-18 HIKARI Ltd, wwwm-hikaricom https://doiorg/112988/pms218843 Solving Homogeneous Systems with Sub-matrices Massoud Malek Mathematics, California State

More information

Berry s phase in Hall Effects and Topological Insulators

Berry s phase in Hall Effects and Topological Insulators Lecture 6 Berry s phase in Hall Effects and Topological Insulators Given the analogs between Berry s phase and vector potentials, it is not surprising that Berry s phase can be important in the Hall effect.

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

On Positive Stable Realization for Continuous Linear Singular Systems

On Positive Stable Realization for Continuous Linear Singular Systems Int. Journal of Math. Analysis, Vol. 8, 2014, no. 8, 395-400 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.4246 On Positive Stable Realization for Continuous Linear Singular Systems

More information

Lévy-Leblond and Schrödinger equations. for Spinor Wavefunctions

Lévy-Leblond and Schrödinger equations. for Spinor Wavefunctions Adv. Studies Theor. Phys., Vol. 7, 2013, no. 17, 825-837 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2013.3672 Generalized Lévy-Leblond and Schrödinger Equations for Spinor Wavefunctions

More information

We do not derive F = ma; we conclude F = ma by induction from. a large series of observations. We use it as long as its predictions agree

We do not derive F = ma; we conclude F = ma by induction from. a large series of observations. We use it as long as its predictions agree THE SCHRÖDINGER EQUATION (A REVIEW) We do not derive F = ma; we conclude F = ma by induction from a large series of observations. We use it as long as its predictions agree with our experiments. As with

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

arxiv:quant-ph/ v1 10 May 1999

arxiv:quant-ph/ v1 10 May 1999 Minimal Length Uncertainty Relation and Hydrogen Atom F. Brau Université de Mons-Hainaut, B-7 Mons, BELGIQUE (February 1, 8) arxiv:quant-ph/99533v1 1 May 1999 Abstract We propose a new approach to calculate

More information

We can instead solve the problem algebraically by introducing up and down ladder operators b + and b

We can instead solve the problem algebraically by introducing up and down ladder operators b + and b Physics 17c: Statistical Mechanics Second Quantization Ladder Operators in the SHO It is useful to first review the use of ladder operators in the simple harmonic oscillator. Here I present the bare bones

More information

Wound String Scattering in NCOS Theory

Wound String Scattering in NCOS Theory UUITP-09/00 hep-th/0005 Wound String Scattering in NCOS Theory Fredric Kristiansson and Peter Rajan Institutionen för Teoretisk Fysik, Box 803, SE-75 08 Uppsala, Sweden fredric.kristiansson@teorfys.uu.se,

More information

Solution to Problem Set No. 6: Time Independent Perturbation Theory

Solution to Problem Set No. 6: Time Independent Perturbation Theory Solution to Problem Set No. 6: Time Independent Perturbation Theory Simon Lin December, 17 1 The Anharmonic Oscillator 1.1 As a first step we invert the definitions of creation and annihilation operators

More information

Chiral sound waves from a gauge theory of 1D generalized. statistics. Abstract

Chiral sound waves from a gauge theory of 1D generalized. statistics. Abstract SU-ITP # 96/ Chiral sound waves from a gauge theory of D generalized statistics Silvio J. Benetton Rabello arxiv:cond-mat/9604040v 6 Apr 996 Department of Physics, Stanford University, Stanford CA 94305

More information

Spacetime Quantum Geometry

Spacetime Quantum Geometry Spacetime Quantum Geometry Peter Schupp Jacobs University Bremen 4th Scienceweb GCOE International Symposium Tohoku University 2012 Outline Spacetime quantum geometry Applying the principles of quantum

More information

Snyder noncommutative space-time from two-time physics

Snyder noncommutative space-time from two-time physics arxiv:hep-th/0408193v1 25 Aug 2004 Snyder noncommutative space-time from two-time physics Juan M. Romero and Adolfo Zamora Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México Apartado

More information

Quantum Chemistry Exam 2 Solutions

Quantum Chemistry Exam 2 Solutions Chemistry 46 Fall 17 Dr. Jean M. Standard November 8, 17 Name KEY Quantum Chemistry Exam Solutions 1.) ( points) Answer the following questions by selecting the correct answer from the choices provided.

More information

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00 MSci EXAMINATION PHY-415 (MSci 4242 Relativistic Waves and Quantum Fields Time Allowed: 2 hours 30 minutes Date: XX th May, 2010 Time: 14:30-17:00 Instructions: Answer THREE QUESTIONS only. Each question

More information

Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree Polynomial Forcing Function

Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree Polynomial Forcing Function Advanced Studies in Theoretical Physics Vol., 207, no. 2, 679-685 HIKARI Ltd, www.m-hikari.com https://doi.org/0.2988/astp.207.7052 Solution for a non-homogeneous Klein-Gordon Equation with 5th Degree

More information

Chapter 2 Solutions of the Dirac Equation in an External Electromagnetic Field

Chapter 2 Solutions of the Dirac Equation in an External Electromagnetic Field Chapter 2 Solutions of the Dirac Equation in an External Electromagnetic Field In this chapter, the solutions of the Dirac equation for a fermion in an external electromagnetic field are presented for

More information

Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7

Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7 Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7 In Lecture 1 and 2, we have discussed how to represent the state of a quantum mechanical system based the superposition

More information

The graded generalized Fibonacci sequence and Binet formula

The graded generalized Fibonacci sequence and Binet formula The graded generaized Fibonacci sequence and Binet formua Won Sang Chung,, Minji Han and Jae Yoon Kim Department of Physics and Research Institute of Natura Science, Coege of Natura Science, Gyeongsang

More information

PY 351 Modern Physics - Lecture notes, 3

PY 351 Modern Physics - Lecture notes, 3 PY 351 Modern Physics - Lecture notes, 3 Copyright by Claudio Rebbi, Boston University, October 2016. These notes cannot be duplicated and distributed without explicit permission of the author. Time dependence

More information

16.1. PROBLEM SET I 197

16.1. PROBLEM SET I 197 6.. PROBLEM SET I 97 Answers: Problem set I. a In one dimension, the current operator is specified by ĵ = m ψ ˆpψ + ψˆpψ. Applied to the left hand side of the system outside the region of the potential,

More information

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique Int. Journal of Math. Analysis, Vol. 7, 3, no. 53, 65-636 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ijma.3.3894 A Study on Linear and Nonlinear Stiff Problems Using Single-Term Haar Wavelet Series

More information

221A Lecture Notes Electromagnetic Couplings

221A Lecture Notes Electromagnetic Couplings 221A Lecture Notes Electromagnetic Couplings 1 Classical Mechanics The coupling of the electromagnetic field with a charged point particle of charge e is given by a term in the action (MKSA system) S int

More information

3 Quantization of the Dirac equation

3 Quantization of the Dirac equation 3 Quantization of the Dirac equation 3.1 Identical particles As is well known, quantum mechanics implies that no measurement can be performed to distinguish particles in the same quantum state. Elementary

More information

Quantization of the LTB Cosmological Equation

Quantization of the LTB Cosmological Equation Adv. Studies Theor. Phys., Vol. 7, 2013, no. 15, 723-730 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2013.3660 Quantization of the LTB Cosmological Equation Antonio Zecca 1 2 Dipartimento

More information

On Symmetric Bi-Multipliers of Lattice Implication Algebras

On Symmetric Bi-Multipliers of Lattice Implication Algebras International Mathematical Forum, Vol. 13, 2018, no. 7, 343-350 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2018.8423 On Symmetric Bi-Multipliers of Lattice Implication Algebras Kyung Ho

More information

Magnetic fields in noncommutative quantum mechanics

Magnetic fields in noncommutative quantum mechanics Journal of Physics: Conference Series Magnetic fields in noncommutative quantum mechanics To cite this article: F Delduc et al 2008 J. Phys.: Conf. Ser. 103 012020 View the article online for updates and

More information

Prancing Through Quantum Fields

Prancing Through Quantum Fields November 23, 2009 1 Introduction Disclaimer Review of Quantum Mechanics 2 Quantum Theory Of... Fields? Basic Philosophy 3 Field Quantization Classical Fields Field Quantization 4 Intuitive Field Theory

More information

Lecture 7. More dimensions

Lecture 7. More dimensions Lecture 7 More dimensions 67 68 LECTURE 7. MORE DIMENSIONS 7.1 Introduction In this lecture we generalize the concepts introduced so far to systems that evolve in more than one spatial dimension. While

More information

arxiv:hep-th/ v1 15 Aug 2000

arxiv:hep-th/ v1 15 Aug 2000 hep-th/0008120 IPM/P2000/026 Gauged Noncommutative Wess-Zumino-Witten Models arxiv:hep-th/0008120v1 15 Aug 2000 Amir Masoud Ghezelbash,,1, Shahrokh Parvizi,2 Department of Physics, Az-zahra University,

More information

Algebras, Representations and Quant Title. Approaches from mathematical scienc. Mechanical and Macroscopic Systems)

Algebras, Representations and Quant Title. Approaches from mathematical scienc. Mechanical and Macroscopic Systems) Algebras, Representations and Quant Title Approaches from mathematical scienc information, Chaos and Nonlinear Dy Mechanical and Macroscopic Systems) Author(s) Tanimura, Shogo Citation 物性研究 (2005), 84(3):

More information

Twist deformation quantization, gravity and Einstein spaces. Paolo Aschieri U.Piemonte Orientale, Alessandria

Twist deformation quantization, gravity and Einstein spaces. Paolo Aschieri U.Piemonte Orientale, Alessandria Bayrischzell 15.5.2010 Noncommutativity and Physics: Spacetime Quantum Geometry Twist deformation quantization, gravity and Einstein spaces Paolo Aschieri U.Piemonte Orientale, Alessandria I recall the

More information

S-Duality for D3-Brane in NS-NS and R-R Backgrounds

S-Duality for D3-Brane in NS-NS and R-R Backgrounds S-Duality for D3-Brane in NS-NS and R-R Backgrounds Chen-Te Ma Collaborator: Pei-Ming Ho National Taiwan University arxiv:1311.3393 [hep-th] January 17, 2014 Reference P. -M. Ho and Y. Matsuo, M5 from

More information

An Abundancy Result for the Two Prime Power Case and Results for an Equations of Goormaghtigh

An Abundancy Result for the Two Prime Power Case and Results for an Equations of Goormaghtigh International Mathematical Forum, Vol. 8, 2013, no. 9, 427-432 HIKARI Ltd, www.m-hikari.com An Abundancy Result for the Two Prime Power Case and Results for an Equations of Goormaghtigh Richard F. Ryan

More information

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 5

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 5 QUANTUM MECHANICS I PHYS 56 Solutions to Problem Set # 5. Crossed E and B fields: A hydrogen atom in the N 2 level is subject to crossed electric and magnetic fields. Choose your coordinate axes to make

More information

Polynomial Heisenberg algebras and higher order supersymmetry

Polynomial Heisenberg algebras and higher order supersymmetry Polynomial Heisenberg algebras and higher order supersymmetry David J. Fernández C. a,andvéronique Hussin b a Depto Física, CINVESTAV, AP 14-740, 07000 México DF, Mexico; b Département de Mathématiques,

More information

UNIVERSITY OF TOKYO. UTMS May 7, T-duality group for open string theory. Hiroshige Kajiura

UNIVERSITY OF TOKYO. UTMS May 7, T-duality group for open string theory. Hiroshige Kajiura UTMS 21 12 May 7, 21 T-duality group for open string theory by Hiroshige Kajiura T UNIVERSITY OF TOKYO GRADUATE SCHOOL OF MATHEMATICAL SCIENCES KOMABA, TOKYO, JAPAN hep-th/1556 UTMS 21-12 May, 21 T-Duality

More information

Dark Energy from Antigravitons in Stringy Black Holes

Dark Energy from Antigravitons in Stringy Black Holes Advanced Studies in Theoretical Physics Vol. 13, 2019, no. 3, 127-132 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2019.929 Dark Energy from Antigravitons in Stringy Black Holes Karim Douhou

More information

Second Quantization Method for Bosons

Second Quantization Method for Bosons Second Quantization Method for Bosons Hartree-Fock-based methods cannot describe the effects of the classical image potential (cf. fig. 1) because HF is a mean-field theory. DFF-LDA is not able either

More information

Harmonic oscillator in Snyder space: The classical case and the quantum case

Harmonic oscillator in Snyder space: The classical case and the quantum case PRAMANA c Indian Academy of Sciences Vol. 74, No. 2 journal of February 2010 physics pp. 169 175 Harmonic oscillator in Snyder space: The classical case and the quantum case CARLOS LEIVA Departamento de

More information

A Quantum Carnot Engine in Three-Dimensions

A Quantum Carnot Engine in Three-Dimensions Adv. Studies Theor. Phys., Vol. 8, 2014, no. 14, 627-633 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2014.4568 A Quantum Carnot Engine in Three-Dimensions Paul Bracken Department of Mathematics

More information

UNIVERSITY OF SURREY FACULTY OF ENGINEERING AND PHYSICAL SCIENCES DEPARTMENT OF PHYSICS. BSc and MPhys Undergraduate Programmes in Physics LEVEL HE2

UNIVERSITY OF SURREY FACULTY OF ENGINEERING AND PHYSICAL SCIENCES DEPARTMENT OF PHYSICS. BSc and MPhys Undergraduate Programmes in Physics LEVEL HE2 Phys/Level /1/9/Semester, 009-10 (1 handout) UNIVERSITY OF SURREY FACULTY OF ENGINEERING AND PHYSICAL SCIENCES DEPARTMENT OF PHYSICS BSc and MPhys Undergraduate Programmes in Physics LEVEL HE PAPER 1 MATHEMATICAL,

More information

Lecture 12. The harmonic oscillator

Lecture 12. The harmonic oscillator Lecture 12 The harmonic oscillator 107 108 LECTURE 12. THE HARMONIC OSCILLATOR 12.1 Introduction In this chapter, we are going to find explicitly the eigenfunctions and eigenvalues for the time-independent

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

The Hamiltonian and the Schrödinger equation Consider time evolution from t to t + ɛ. As before, we expand in powers of ɛ; we have. H(t) + O(ɛ 2 ).

The Hamiltonian and the Schrödinger equation Consider time evolution from t to t + ɛ. As before, we expand in powers of ɛ; we have. H(t) + O(ɛ 2 ). Lecture 12 Relevant sections in text: 2.1 The Hamiltonian and the Schrödinger equation Consider time evolution from t to t + ɛ. As before, we expand in powers of ɛ; we have U(t + ɛ, t) = I + ɛ ( īh ) H(t)

More information