General Relativistic Eects on Pulsar Radiation. Dong-Hoon Kim Ewha Womans University

Size: px
Start display at page:

Download "General Relativistic Eects on Pulsar Radiation. Dong-Hoon Kim Ewha Womans University"

Transcription

1 Geneal Relativistic Eects on Pulsa Radiation Dong-Hoon Kim Ewha Womans Univesity The 2nd LeCosPA Intenational Symposium NTU, Taiwan, Dec. 14,

2 Outline 1. Electomagnetic adiation in cuved spacetime 1) Petubed EM adiation due to gavitation 2) Point-paticle & semi-elativistic appoximations 3) Synchoton adiation aound a pulsa 4) Cuvatue adiation aound a pulsa 2. Polaization of cuvatue adiation in pogess) 3. Conclusions and discussion 2

3 1. Electomagnetic adiation in cuved spacetime 1) Petubed EM adiation due to gavitation In cuved spacetime: 2 A µ R ν µ A ν = 4π c j µ ; j µ = e In at spacetime: Γ ḡ µµ zτ), zτ )) u µ τ )δ 4) zτ) zτ )) dτ. A µ = 4π c j µ ; j µ = eu µ. Consideing the gavitation eect, we may assume Then we have A µ pet) = A µ flat) + A µ. F µν pet) = µ A ν pet) ν A µ pet) = µ A ν flat) ν A µ flat) + µ A ν ν A µ 0 E x E y E z 0 E x E y E z = E x 0 B z B y E y B z 0 B x + E x 0 B z B y E y B z 0 B x E z B y B x 0 E z B y B x 0 flat) E µ pet) = Eµ flat) + E µ and B µ pet) = Bµ flat) + Bµ. 3

4 2) Point-paticle & semi-elativistic appoximations The system of a sola-mass black hole [neuton sta] and a chage can be modeled as black hole [neuton sta] + point chage. Then EM adiation to be measued by an obseve who is fa away fom this system can be obtained by solving the Maxwell's equations: A µ = 4π c j µ. The solutions ae the Lienad-Wiechet potential, Q µ t et ) A µ t, x) = c [ 1 n Ẋ t et) /c ] x X t et ) whee the chage-dipole moment is tet =t x X c ; n x X t et) x X t et ), Q µ = qx µ. In a semi-elativistic appoximation we identify the chage's tajectoy X µ with a geodesic in the backgound geomety of a BH [NS]: petubed EM adiation esults fom the chage's acceleated obital motion due to the BH [NS]. Q µ pet) = qxµ flat) + qx µ A µ pet) = Aµ flat) + Aµ. 4

5 3) Synchoton adiation aound a pulsa Fo a slowly otating pulsa, we may conside the synchoton adiation as if it was poduced fom electons gyating in a magnetic eld B ove a static neuton sta: the geomety is indistinguishable fom a Schwazschild black hole, ds 2 = 1 2GM ) c 2 dt 2 + c 2 1 2GM ) 1 d dθ 2 + sin 2 θdϕ 2). c 2 5

6 A dipole-type magnetic eld B in the Schwazschild geomety can be eectively modeled by solving the Maxwell's equations with a cuent loop I along the sta's equato [Petteson, Phys. Rev. D, 10, )]: with [solution] j µ = δ µ ϕ 2 A µ = 4π c j µ, 1 R ) 1/2 Schw Iδ R NS ) δ cos θ) 2 [ ln 1 R ) Schw ; R Schw 2GM NS c 2. ] + R2 Schw, 2 2 A ϕ = 3m2 sin 2 θ RSchw 3 + R Schw with the magnetic dipole moment m πrns 2 I [1 R Schw/R NS )] 1/2, and thus Bˆ = g ϕϕ g θθ) 1/2 Aϕ, θ Bˆθ = g ϕϕ g ) 1/2 Aϕ, 6m cos θ = = R 3 Schw 6m sin θ R 3 Schw [ ln [ ln 1 R Schw 1 R Schw ) 1 R Schw ) 1/2 ) + R Schw + R Schw R Schw ] + R2 Schw, 2 2 RSchw 2 ]. 2 R Schw ) 6

7 [Example] Magnetic eld B o at the pola cap A caeful geneal elativistic teatment of a magnetized otating body can give an estimate fo the magnetic eld B o at the pola cap of a neuton sta of R NS = 10 6 cm and M NS = 1.4 M PSR ). Fo a slowly otating body, we nd E ot = 1 2 IΩ2 = 2π2 I P, 2 whee the geneal elativistic moment of inetia can be well-appoximated by an empiical fom [Lattime and Schutz, ApJ, 629, )] [ I J Ω ± 0.008) MR M 10 5 cm M M R ) 4 ] cm. M R Now, we assume de ot /dt = EM adiation powe as measued by an obseve in an inetial efeence fame, whee de ot = d ) 1 dt dt 2 I NSΩ 2 = 4π 2 I NS P 3 P, EM adiation powe = 2 3c 3 = 8π4 27 d 2 m inet) sin 2 θ i c 3 P 4 dt 2 ) 2 = 2 3c 3 sin θi Ω 2 m inet) ) 2 1 R Schw R NS ) [ln B 2ˆ = R NS, θ = 0)RSchw 6 ) 1 R Schw R NS + R Schw R NS ] 2. + R2 Schw 2RNS 2 7

8 Then we nd B o Bˆ = R NS, θ = 0) to be ) 1/2 ) 3 1 R Schw R [ln 1 R Schw NS R NS B o = πrschw 3 sin θ i + R Schw R NS ] + R2 Schw 2RNS c3 I NS P P ) 1/2. Fo PSR with obseved values P = s and P = , we obtain B o 9.5 ± G/ sin θ i. Howeve, in the at-spacetime computation, we take I = 2 5 MR2 Newtonian) and R Schw 0, then obtain [Caol and Ostlie, An Intoduction to Moden Astophysics 2nd ed 2007)] B o G/ sin θ i. Theefoe, we nd ω cuv) ω flat) = B ocuv) B oflat) = 9.5 ± G/ sin θ i G/ sin θ i 10.5 ± 3.7 % incease! 8

9 4) Cuvatue adiation aound a pulsa The magnetic eld lines aound a pulsa fo cuvatue adiation) can be obtained fom the dieential equation [Konno and Kojima, Pog. Theo. Phys., 104, )]: 3m2 sin 2 θ R 3 Schw d dθ = B [ ln 1 R Schw ) B θ A ϕ = const., + R Schw + R2 Schw 2 2 ] = k const.) : coheent eld lines. Cuvatue adiation is chaacteized by the adius of cuvatue: ρ, θ) = 3m sin 2 θ = ) 1 dθ d = dl + dθ [ ) ln 1 R Schw 3 R 3 Schw k ) 2 and in the at spacetime limit + 2 R 2 Schw ρ, θ) ] + 2R Schw ) 1 + cot 2 ln 1 R Schw θ ) ln 1 R Schw 3m sin θ cos2 θ. k + R Schw + R Schw R Schw + R2 Schw 2 2 R2 Schw 2 R Schw ) 2, 9

10 Magnetic eld lines aound a pulsa: plotted in cuved and at spacetimes. Note ρ cuv < ρ flat. Theefoe, ω cuv = βc > ω flat = βc. c.f. ω CR Hz vs. ρ cuv ρ flat ω cyc Hz) 10

11 2. Polaization of cuvatue adiation in pogess) Geometic conguation of a chage in motion along a cuve fo cuvatue adiation) Cedit: [Gil and Snakowski, Aston. Astophys. 234, )]) While a chage moves along the cuved magnetic eld lines, cuvatue adiation will be emitted, which is stongly polaized in the plane of cuvatue. We have E ω) = E o ω δ 2 + φ 2) [ ω K 2/3 δ 2 + φ 2) ] 3/2 3ω o E ω) = ie o ωφ δ 2 + φ 2) 1/2 K1/3 [ ω 3ω o δ 2 + φ 2) 3/2 c.f. K 2/3, K 1/3 : modied Bessel functions) exp i ωr c ] exp ), i ωr c ) ; E o = 2eω o 3cR, ω o = βc ρ. 11

12 Then the Stokes paametes ae given by I = E E + E E = E 2 o ω 2 { δ 2 + φ 2) 2 K 2 2/3 [ ω +φ 2 δ 2 + φ 2) K 2 1/3 [ ω 3ω o δ 2 + φ 2) 3/2 ]}, Q = E E E E = E 2 o ω 2 { δ 2 + φ 2) 2 K 2 2/3 [ ω φ 2 δ 2 + φ 2) K 2 1/3 U = E E + E E = 0, [ ω 3ω o δ 2 + φ 2) 3/2 ]}, δ 2 + φ 2) ] 3/2 3ω o δ 2 + φ 2) ] 3/2 3ω o V = i E E E E ) = 2Eo 2 ω 2 φ δ 2 + φ 2) { 3/2 δ 2 + φ 2) [ ] 2 K 2 ω 2/3 3ω [ o ω K 2/9 δ 2 + φ 2) ] [ 9/2 ω K 1/3 δ 2 + φ 2) ] 3/2, 3ω o 3ω o Modulation of ρ in cuved spacetime leads to modulation of the Stokes paametes. The atio between linea and cicula polaization should change in cuved spacetime: atio = V L = V Q2 + U = V 2 Q. 12

13 Specta of I ω) solid), L ω) = Q ω) dashed), and V ω) dotted) coesponding to φ = 0.25 o. Cedit: [Gil and Snakowski, Aston. Astophys. 234, )]) In cuved spacetime these specta will change and shift to the ight due to incease of the eld intensity and chaacteistic fequency: E o ω o ρ 1, ω c ω o ρ 1. 13

14 3. Conclusions and discussion Point-paticle and semi-elativistic appoximations can be applied to the study of electomagnetic adiation nea compact objects - black holes o neuton stas; solving Maxwell's equations in cuved spacetime. Fequency modulation of electomagnetic adiation - synchoton/cuvatue adiation in cuved spacetime aound a pulsa can be estimated using the above computational methods. Futhe elated studies such as special elativistic beaming eects in conjunction with this should follow in the futue. Modulation of the Stokes paametes in cuved spacetime will change between linea and cicula polaization of cuvatue adiation. Futhe investigation of this should follow in the futue. Induction of electic eld in the magnetosphee of a pulsa can be appoached by the Goldeich-Julian model. Investigation of this poblem in cuved spacetime will be highly inteesting; extending the model to a non-aligned otating conducting sphee in Schwazschild spacetime. 14

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

3. Electromagnetic Waves II

3. Electromagnetic Waves II Lectue 3 - Electomagnetic Waves II 9 3. Electomagnetic Waves II Last time, we discussed the following. 1. The popagation of an EM wave though a macoscopic media: We discussed how the wave inteacts with

More information

From Gravitational Collapse to Black Holes

From Gravitational Collapse to Black Holes Fom Gavitational Collapse to Black Holes T. Nguyen PHY 391 Independent Study Tem Pape Pof. S.G. Rajeev Univesity of Rocheste Decembe 0, 018 1 Intoduction The pupose of this independent study is to familiaize

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source Multipole Radiation Febuay 29, 26 The electomagnetic field of an isolated, oscillating souce Conside a localized, oscillating souce, located in othewise empty space. We know that the solution fo the vecto

More information

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GILBERT WEINSTEIN 1. Intoduction Recall that the exteio Schwazschild metic g defined on the 4-manifold M = R R 3 \B 2m ) = {t,, θ, φ): > 2m}

More information

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

The Precession of Mercury s Perihelion

The Precession of Mercury s Perihelion The Pecession of Mecuy s Peihelion Owen Biesel Januay 25, 2008 Contents 1 Intoduction 2 2 The Classical olution 2 3 Classical Calculation of the Peiod 4 4 The Relativistic olution 5 5 Remaks 9 1 1 Intoduction

More information

Introduction to General Relativity 2

Introduction to General Relativity 2 Intoduction to Geneal Relativity 2 Geneal Relativity Diffeential geomety Paallel tanspot How to compute metic? Deviation of geodesics Einstein equations Consequences Tests of Geneal Relativity Sola system

More information

Galaxy Disks: rotation and epicyclic motion

Galaxy Disks: rotation and epicyclic motion Galaxy Disks: otation and epicyclic motion 1. Last time, we discussed how you measue the mass of an elliptical galaxy. You measue the width of the line and apply the adial Jeans equation, making some assumptions

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

1 Dark Cloud Hanging over Twentieth Century Physics

1 Dark Cloud Hanging over Twentieth Century Physics We ae Looking fo Moden Newton by Caol He, Bo He, and Jin He http://www.galaxyanatomy.com/ Wuhan FutueSpace Scientific Copoation Limited, Wuhan, Hubei 430074, China E-mail: mathnob@yahoo.com Abstact Newton

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

Conformal transformations + Schwarzschild

Conformal transformations + Schwarzschild Intoduction to Geneal Relativity Solutions of homewok assignments 5 Confomal tansfomations + Schwazschild 1. To pove the identity, let s conside the fom of the Chistoffel symbols in tems of the metic tenso

More information

Experiment 09: Angular momentum

Experiment 09: Angular momentum Expeiment 09: Angula momentum Goals Investigate consevation of angula momentum and kinetic enegy in otational collisions. Measue and calculate moments of inetia. Measue and calculate non-consevative wok

More information

The Schwartzchild Geometry

The Schwartzchild Geometry UNIVERSITY OF ROCHESTER The Schwatzchild Geomety Byon Osteweil Decembe 21, 2018 1 INTRODUCTION In ou study of geneal elativity, we ae inteested in the geomety of cuved spacetime in cetain special cases

More information

The Concept of the Effective Mass Tensor in GR. Clocks and Rods

The Concept of the Effective Mass Tensor in GR. Clocks and Rods The Concept of the Effective Mass Tenso in GR Clocks and Rods Miosław J. Kubiak Zespół Szkół Technicznych, Gudziądz, Poland Abstact: In the pape [] we pesented the concept of the effective ass tenso (EMT)

More information

The Schwarzschild Solution

The Schwarzschild Solution The Schwazschild Solution Johannes Schmude 1 Depatment of Physics Swansea Univesity, Swansea, SA2 8PP, United Kingdom Decembe 6, 2007 1 pyjs@swansea.ac.uk Intoduction We use the following conventions:

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Adiabatic evolution of the constants of motion in resonance (I)

Adiabatic evolution of the constants of motion in resonance (I) Adiabatic evolution of the constants of motion in esonance (I) BH Gavitational 重 力力波 waves Takahio Tanaka (YITP, Kyoto univesity) R. Fujita, S. Isoyama, H. Nakano, N. Sago PTEP 013 (013) 6, 063E01 e-pint:

More information

Geodesic motion in Kerr spacetime

Geodesic motion in Kerr spacetime Chapte 20 Geodesic motion in Ke spacetime Let us conside a geodesic with affine paamete λ and tangent vecto u µ = dxµ dλ ẋµ. (20.1) In this section we shall use Boye-Lindquist s coodinates, and the dot

More information

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3)

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3) Physics 506 Winte 2008 Homewok Assignment #10 Solutions Textbook poblems: Ch. 12: 12.10, 12.13, 12.16, 12.19 12.10 A chaged paticle finds itself instantaneously in the equatoial plane of the eath s magnetic

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is thee a magnification paadox in gavitational ing? Olaf Wucknitz wucknitz@asto.uni-bonn.de Astophysics semina/colloquium, Potsdam, 6 Novembe 7 Is thee a magnification paadox in gavitational ing? gavitational

More information

Classical Mechanics Homework set 7, due Nov 8th: Solutions

Classical Mechanics Homework set 7, due Nov 8th: Solutions Classical Mechanics Homewok set 7, due Nov 8th: Solutions 1. Do deivation 8.. It has been asked what effect does a total deivative as a function of q i, t have on the Hamiltonian. Thus, lets us begin with

More information

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract A themodynamic degee of feedom solution to the galaxy cluste poblem of MOND E.P.J. de Haas (Paul) Nijmegen, The Nethelands (Dated: Octobe 23, 2015) Abstact In this pape I discus the degee of feedom paamete

More information

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy Fascati Physics Seies Vol. X (998), pp. 47-54 4 th Advanced ICFA Beam Dynamics Wokshop, Fascati, Oct. -5, 997 EFFECTS OF FRININ FIELDS ON SINLE PARTICLE DYNAMICS M. Bassetti and C. Biscai INFN-LNF, CP

More information

Gravitational Memory?

Gravitational Memory? Gavitational Memoy? a Petubative Appoach T. Haada 1, Depatment of Physics, Waseda Univesity, Shinjuku, Tokyo 169-8555, Japan B.J. Ca 2,andC.A.Goyme 3 Astonomy Unit, Queen May and Westfield College, Univesity

More information

Physics NYB problem set 5 solution

Physics NYB problem set 5 solution Physics NY poblem set 5 solutions 1 Physics NY poblem set 5 solution Hello eveybody, this is ED. Hi ED! ED is useful fo dawing the ight hand ule when you don t know how to daw. When you have a coss poduct

More information

Physics 161: Black Holes: Lecture 5: 22 Jan 2013

Physics 161: Black Holes: Lecture 5: 22 Jan 2013 Physics 161: Black Holes: Lectue 5: 22 Jan 2013 Pofesso: Kim Giest 5 Equivalence Pinciple, Gavitational Redshift and Geodesics of the Schwazschild Metic 5.1 Gavitational Redshift fom the Schwazschild metic

More information

A New Approach to General Relativity

A New Approach to General Relativity Apeion, Vol. 14, No. 3, July 7 7 A New Appoach to Geneal Relativity Ali Rıza Şahin Gaziosmanpaşa, Istanbul Tukey E-mail: aizasahin@gmail.com Hee we pesent a new point of view fo geneal elativity and/o

More information

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole Spheical Solutions due to the Exteio Geomety of a Chaged Weyl Black Hole Fain Payandeh 1, Mohsen Fathi Novembe 7, 018 axiv:10.415v [g-qc] 10 Oct 01 1 Depatment of Physics, Payame Noo Univesity, PO BOX

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

Geometry of the homogeneous and isotropic spaces

Geometry of the homogeneous and isotropic spaces Geomety of the homogeneous and isotopic spaces H. Sonoda Septembe 2000; last evised Octobe 2009 Abstact We summaize the aspects of the geomety of the homogeneous and isotopic spaces which ae most elevant

More information

Antennas & Propagation

Antennas & Propagation Antennas & Popagation 1 Oveview of Lectue II -Wave Equation -Example -Antenna Radiation -Retaded potential THE KEY TO ANY OPERATING ANTENNA ot H = J +... Suppose: 1. Thee does exist an electic medium,

More information

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM Honou School of Mathematical and Theoetical Physics Pat C Maste of Science in Mathematical and Theoetical Physics COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM HILARY TERM 18 TUESDAY, 13TH MARCH 18, 1noon

More information

COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS

COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS Pogess In Electomagnetics Reseach, PIER 73, 93 105, 2007 COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS T.-X. Song, Y.-H. Liu, and J.-M. Xiong School of Mechanical Engineeing

More information

Lau Chi Hin The Chinese University of Hong Kong

Lau Chi Hin The Chinese University of Hong Kong Lau Chi Hin The Chinese Univesit of Hong Kong Can Antson each the othe end? 1cms 1 Can I each the othe end? Rubbe band 1m 1ms 1 Can Antson each the othe end? Gottfied Wilhelm Leibniz (1646-1716) Isaac

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electomagnetic scatteing Gaduate Couse Electical Engineeing (Communications) 1 st Semeste, 1390-1391 Shaif Univesity of Technology Geneal infomation Infomation about the instucto: Instucto: Behzad Rejaei

More information

Today in Physics 218: radiation from moving charges

Today in Physics 218: radiation from moving charges Today in Physics 218: adiation fom moving chages Poblems with moving chages Motion, snapshots and lengths The Liénad-Wiechet potentials Fields fom moving chages Radio galaxy Cygnus A, obseved by Rick Peley

More information

Vainshtein mechanism in second-order scalar-tensor theories

Vainshtein mechanism in second-order scalar-tensor theories Vainshtein mechanism in second-ode scala-tenso theoies A. De Felice, R. Kase, S. Tsujikawa Phys. Rev. D 85 044059 (202)! Tokyo Univesity of Science Antonio De Felice, Ryotao Kase and Shinji Tsujikawa Motivation

More information

Causal relation between regions I and IV of the Kruskal extension

Causal relation between regions I and IV of the Kruskal extension Causal elation between egions I and IV of the Kuskal extension Yi-Ping Qin 1,2,3 1 Yunnan Obsevatoy, Chinese Academy of Sciences, Kunming, Yunnan 650011, P. R. China 2 National Astonomical Obsevatoies,

More information

Pressure Calculation of a Constant Density Star in the Dynamic Theory of Gravity

Pressure Calculation of a Constant Density Star in the Dynamic Theory of Gravity Pessue Calculation of a Constant Density Sta in the Dynamic Theoy of Gavity Ioannis Iaklis Haanas Depatment of Physics and Astonomy Yok Univesity A Petie Science Building Yok Univesity Toonto Ontaio CANADA

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212 PHYS 1 Look ove Chapte sections 1-8 xamples, 4, 5, PHYS 111 Look ove Chapte 16 sections 7-9 examples 6, 7, 8, 9 Things To Know 1) What is an lectic field. ) How to calculate the electic field fo a point

More information

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

Relativistic Solutions of Anisotropic Compact Objects

Relativistic Solutions of Anisotropic Compact Objects Relativistic Solutions of Anisotopic Compact Objects axiv:1603.07694v1 [g-qc] 24 Ma 2016 Bikash Chanda Paul a,c, Rumi Deb b a Physics Depatment, Noth Bengal Univesity, Siligui, Dist. : Dajeeling, Pin :

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

arxiv:gr-qc/ v2 8 Jun 2006

arxiv:gr-qc/ v2 8 Jun 2006 On Quantization of the Electical Chage Mass Dmitiy M Palatnik 1 6400 N Sheidan Rd 2605, Chicago, IL 60626 axiv:g-qc/060502v2 8 Jun 2006 Abstact Suggested a non-linea, non-gauge invaiant model of Maxwell

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

3-Axis Vector Magnet: Construction and Characterisation of Split Coils at RT. Semester Project Petar Jurcevic

3-Axis Vector Magnet: Construction and Characterisation of Split Coils at RT. Semester Project Petar Jurcevic 3-Axis Vecto Magnet: Constuction and Chaacteisation of Split Coils at RT Semeste Poject Peta Jucevic Outline Field Calculation and Simulation Constuction Details Field Calculations Chaacteization at RT

More information

Introduction to Accelerator Physics

Introduction to Accelerator Physics Intoduction to Acceleato Physics Pat 3 Pedo Casto / Acceleato Physics Goup (MPY) Intoduction to Acceleato Physics DSY, 5th July 017 acceleating devices vacuum chambe injecto acceleating device staight

More information

Pendulum in Orbit. Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ (December 1, 2017)

Pendulum in Orbit. Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ (December 1, 2017) 1 Poblem Pendulum in Obit Kik T. McDonald Joseph Heny Laboatoies, Pinceton Univesity, Pinceton, NJ 08544 (Decembe 1, 2017) Discuss the fequency of small oscillations of a simple pendulum in obit, say,

More information

Earth and Moon orbital anomalies

Earth and Moon orbital anomalies Eath and Moon obital anomalies Si non è veo, è ben tovato Ll. Bel axiv:1402.0788v2 [g-qc] 18 Feb 2014 Febuay 19, 2014 Abstact A time-dependent gavitational constant o mass would coectly descibe the suspected

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 4

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 4 ECE 6340 Intemediate EM Waves Fall 016 Pof. David R. Jackson Dept. of ECE Notes 4 1 Debye Model This model explains molecula effects. y We conside an electic field applied in the x diection. Molecule:

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

On Physical Behavior of Elementary Particles in Force Fields

On Physical Behavior of Elementary Particles in Force Fields On Physical Behavio of Elementay Paticles in Foce Fields Daniele Sasso * Abstact The physical behavio of elementay paticles, massive and enegetic, in foce fields is studied in this pape. In paticula let

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant. ANTNNAS Vecto and Scala Potentials Maxwell's quations jωb J + jωd D ρ B (M) (M) (M3) (M4) D ε B Fo a linea, homogeneous, isotopic medium and ε ae contant. Since B, thee exists a vecto A such that B A and

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

More information

Quantum Mechanics and General Relativity: Creation Creativity. Youssef Al-Youssef, 2 Rama Khoulandi. University of Aleppo, Aleppo, Syria

Quantum Mechanics and General Relativity: Creation Creativity. Youssef Al-Youssef, 2 Rama Khoulandi. University of Aleppo, Aleppo, Syria Quantum Mechanics and Geneal Relativity: Ceation Ceativity Youssef Al-Youssef, Rama Khoulandi Univesity of Aleppo, Aleppo, Syia Abstact This aticle is concened with a new concept of quantum mechanics theoy

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

Math 209 Assignment 9 Solutions

Math 209 Assignment 9 Solutions Math 9 Assignment 9 olutions 1. Evaluate 4y + 1 d whee is the fist octant pat of y x cut out by x + y + z 1. olution We need a paametic epesentation of the suface. (x, z). Now detemine the nomal vecto:

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

Physics 312 Introduction to Astrophysics Lecture 7

Physics 312 Introduction to Astrophysics Lecture 7 Physics 312 Intoduction to Astophysics Lectue 7 James Buckley buckley@wuphys.wustl.edu Lectue 7 Eath/Moon System Tidal Foces Tides M= mass of moon o sun F 1 = GMm 2 F 2 = GMm ( + ) 2 Diffeence in gavitational

More information

MMAT5520. Lau Chi Hin The Chinese University of Hong Kong

MMAT5520. Lau Chi Hin The Chinese University of Hong Kong MMAT550 Lau Chi Hin The Chinese Univesit of Hong Kong Isaac Newton (1643-177) Keple s Laws of planeta motion 1. The obit is an ellipse with the sun at one of the foci.. A line joining a planet and the

More information

Magnetic field of GRBs in MWT

Magnetic field of GRBs in MWT Adv. Studies Theo. Phys., Vol. 6, 0, no. 3, 37-46 Magnetic field of GRBs in MWT A. Eid, Depatment of Physics, College of Science, Al-Imam Muhammad Ibn Saud Islamic Univesity, Kingdom of Saudi Aabia. Pemanent

More information

Gauss s Law: Circuits

Gauss s Law: Circuits Gauss s Law: Cicuits Can we have excess chage inside in steady state? E suface nˆ A q inside E nˆ A E nˆ A left _ suface ight _ suface q inside 1 Gauss s Law: Junction Between two Wies n 2

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

Collaborative ASSIGNMENT Assignment 3: Sources of magnetic fields Solution

Collaborative ASSIGNMENT Assignment 3: Sources of magnetic fields Solution Electicity and Magnetism: PHY-04. 11 Novembe, 014 Collaboative ASSIGNMENT Assignment 3: Souces of magnetic fields Solution 1. a A conducto in the shape of a squae loop of edge length l m caies a cuent

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination E&M poblems Univesity of Illinois at Chicago Depatment of Physics Electicity & Magnetism Qualifying Examination Januay 3, 6 9. am : pm Full cedit can be achieved fom completely coect answes to 4 questions.

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MAACHUETT INTITUTE OF TECHNOLOGY Depatment of Physics Physics 8. TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t = Exam 3: Equation ummay = Impulse: I F( t ) = p Toque: τ =,P dp F P τ =,P

More information

PY208 Matter & Interactions Final Exam S2005

PY208 Matter & Interactions Final Exam S2005 PY Matte & Inteactions Final Exam S2005 Name (pint) Please cicle you lectue section below: 003 (Ramakishnan 11:20 AM) 004 (Clake 1:30 PM) 005 (Chabay 2:35 PM) When you tun in the test, including the fomula

More information

Translation and Rotation Kinematics

Translation and Rotation Kinematics Tanslation and Rotation Kinematics Oveview: Rotation and Tanslation of Rigid Body Thown Rigid Rod Tanslational Motion: the gavitational extenal foce acts on cente-of-mass F ext = dp sy s dt dv total cm

More information

Lecture 1a: Satellite Orbits

Lecture 1a: Satellite Orbits Lectue 1a: Satellite Obits Outline 1. Newton s Laws of Motion 2. Newton s Law of Univesal Gavitation 3. Calculating satellite obital paametes (assuming cicula motion) Scala & Vectos Scala: a physical quantity

More information

The tunneling spectrum of Einsein Born-Infeld Black Hole. W. Ren2

The tunneling spectrum of Einsein Born-Infeld Black Hole. W. Ren2 Intenational Confeence on Engineeing Management Engineeing Education and Infomation Technology (EMEEIT 015) The tunneling spectum of Einsein Bon-Infeld Black Hole J Tang1 W Ren Y Han3 1 Aba teaches college

More information

1/30/17 Lecture 6 outline

1/30/17 Lecture 6 outline 1/30/17 Lectue 6 outline Recall G µν R µν 1 2 Rg µν = 8πGT µν ; so R µν = 8πG(T µν 1 2 Tg µν). (1) g µν = η µν +h µν G (1) µν (h) = 1 2 2 hµν + 1 2 ρ µ hνρ + 1 2 ρ ν hµρ 1 2 η µν ρ σ hρσ = 8πT µν. Choose

More information

b) (5) What average force magnitude was applied by the students working together?

b) (5) What average force magnitude was applied by the students working together? Geneal Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibium Nov. 3, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults

More information

Conventional Current B = In some materials current moving charges are positive: Ionic solution Holes in some materials (same charge as electron but +)

Conventional Current B = In some materials current moving charges are positive: Ionic solution Holes in some materials (same charge as electron but +) Conventional Cuent In some mateials cuent moving chages ae positive: Ionic solution Holes in some mateials (same chage as electon but +) Obseving magnetic field aound coppe wie: Can we tell whethe the

More information

Module 9: Electromagnetic Waves-I Lecture 9: Electromagnetic Waves-I

Module 9: Electromagnetic Waves-I Lecture 9: Electromagnetic Waves-I Module 9: Electomagnetic Waves-I Lectue 9: Electomagnetic Waves-I What is light, paticle o wave? Much of ou daily expeience with light, paticulaly the fact that light ays move in staight lines tells us

More information

Lecture Series: The Spin of the Matter, Physics 4250, Fall Topic 8: Geometrodynamics of spinning particles First Draft.

Lecture Series: The Spin of the Matter, Physics 4250, Fall Topic 8: Geometrodynamics of spinning particles First Draft. Lectue Seies: The Spin of the Matte, Physics 450, Fall 00 Topic 8: Geometodynamics of spinning paticles Fist Daft D. Bill Pezzaglia CSUEB Physics Updated Nov 8, 00 Outline A. Maxwellian Gavity B. Gavitomagnetic

More information

Magnetic Dipoles Challenge Problem Solutions

Magnetic Dipoles Challenge Problem Solutions Magnetic Dipoles Challenge Poblem Solutions Poblem 1: Cicle the coect answe. Conside a tiangula loop of wie with sides a and b. The loop caies a cuent I in the diection shown, and is placed in a unifom

More information

Magnetostatics. Magnetic Forces. = qu. Biot-Savart Law H = Gauss s Law for Magnetism. Ampere s Law. Magnetic Properties of Materials. Inductance M.

Magnetostatics. Magnetic Forces. = qu. Biot-Savart Law H = Gauss s Law for Magnetism. Ampere s Law. Magnetic Properties of Materials. Inductance M. Magnetic Foces Biot-Savat Law Gauss s Law fo Magnetism Ampee s Law Magnetic Popeties of Mateials nductance F m qu d B d R 4 R B B µ 0 J Magnetostatics M. Magnetic Foces The electic field E at a point in

More information

On the Sun s Electric-Field

On the Sun s Electric-Field On the Sun s Electic-Field D. E. Scott, Ph.D. (EE) Intoduction Most investigatos who ae sympathetic to the Electic Sun Model have come to agee that the Sun is a body that acts much like a esisto with a

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

A QUANTUM EFFECT IN GENERAL RELATIVITY* Yishi Duan+ Stanford Linear Accelerator Center Stanford University, Stanford, California

A QUANTUM EFFECT IN GENERAL RELATIVITY* Yishi Duan+ Stanford Linear Accelerator Center Stanford University, Stanford, California SLAC-PUB-3158 July 1983 T/E A QUANTUM EFFECT IN GENERAL RELATIVITY* Yishi Duan+ Stanfod Linea Acceleato Cente Stanfod Univesity, Stanfod, Califonia -94305 Chong-yuan Yu Physics Depatment, Lanzhou Univesity

More information

Introduction to Arrays

Introduction to Arrays Intoduction to Aays Page 1 Intoduction to Aays The antennas we have studied so fa have vey low diectivity / gain. While this is good fo boadcast applications (whee we want unifom coveage), thee ae cases

More information

Determination Of Newtonian Gravitation From The Schwarzschild Spacetime Within The Region Of Spherical Geometry

Determination Of Newtonian Gravitation From The Schwarzschild Spacetime Within The Region Of Spherical Geometry IOSR Jounal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 12, Issue 4 Ve. IV (Jul. - Aug.2016), PP 77-81 www.iosjounals.og Detemination Of Newtonian Gavitation Fom The Schwazschild

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information