Basic Structures of Matter - Supergravitation Unified Theory (BSM-SG) based on an alternative space-time concept

Size: px
Start display at page:

Download "Basic Structures of Matter - Supergravitation Unified Theory (BSM-SG) based on an alternative space-time concept"

Transcription

1 Basic Structures of Matter - Supergravitation Unified Theory (BSM-SG) based on an alternative space-time concept (Talk at North York Physics group, 10 Dec 2010, Toronto, Canada) Stoyan Sarg, PhD York University, Toronto, Canada

2 Some of main unanswered questions in contemporary Physics How Nature might keep records of the laws of Physics? Rene Decartes, Newton, Ampere, Faraday, Maxwell, Lord Kelvin, N. Tesla: a different vision about space Einstein in Sidelights on Relativity (1920) General relativity without ether is unthinkable Feynman: There s plenty of room at the bottom (1959) Copenhagen Formalism and Quantum Mechanics Replacement of human logic by mathematical logic; Assumptions in Physics; Rules and violation of rules. It is very difficult to change some earlier adopted assumptions even if they are wrong The present view about microcosmos and Universe is formed through the prism of the concept of space Unsolved problems in Physics - mysteries and speculations

3 Search for a new idea about space some kind of unique underlying structure Why the Newton s law of gravity has a similar dependence on distance like the low of radiation? an indication that might involve some kind of surface pressure (interaction) on a closed volume The unique structure must have some oscillation properties that defines the constant speed of light and also the ZPE envisioned by QM Must exhibit modulation properties defining the electrical and magnetic field Must have unified origin with the elementary particle they must contain the same building blocks as the underlying space structure Must be built by indestructible subelementary blocks Cosmic Lattice (CL): two types of alternative CL nodes made of 4 rods with opposite internal twisting, held by Supergravitational (SG) forces (inverse proportional to the cube of distance in pure empty space) Casimir forces: attractive and repulsive detectable signatures of the SG forces Neutonian Gravity: SG forces propagated through the CL space

4 Mockup for illustration of CL nodes arrangement in CL space A o d abcd o A A - A left handed prism 60 o 60 o right handed prism Fig. 2.6 dabcd ( m) Note: The prisms are not externally twisted but having internal twisted structure

5 Cosmic Lattice (CL) - alternatively arranged right and left-handed flexible CL nodes formed by 4 prisms of same type Gaps between the CL nodes: permits spatial oscillations under SG law Return forces: - symmetrical along xyz axes (weak forces) and asymmetrical along abcd axes (strong forces). Result: Complex CL node oscillations (NRM and SPM vectors) - two identified frequencies : f R = 1.09x10 29 Hz defines light velocity and f c = 1.236x10 20 Hz SPM vector (Compton) frequency involved in QM interactions and constancy of light velocity MQ SPM (Magnetic Quasisphere a hodograph of SPM vector in absence of electrical charge) EQ SPM ( Electrical Quasisphere a hodograph of SPM vector in electrical field or charge) Synchronized MQ SPM: define a magnetic line (it is also left or right-handed curled) Synchronized EQ SPM: defines an electrical line (a different synchronized frequency)

6 CL space structure and properties The central geometrical position of the CL node apex is not stable: The flexible CL node exhibits can oscillate and have an energy well. Two types of CL space energy: Static (enormous) and Dynamic (small). Quantum Mechanics envisions the second one. It is involved in the definition of permeability and permittivity of the physical vacuum. Quantum and space-time properties of the CL space. The SG field propagated by the abcd set of the CL nodes axes (stronger interactions) manifests as Newtonian gravitation. The Magnetic and Electrical fields are defined by two types of CL node oscillations (MQ and EQ SPM) involving the weaker force interactions between the CL nodes along the xyz axes.

7 Helical Structures crystallized from the two types of twisted prisms (rods with internal twisting) Right-Hand Second order LH structure Left-Hand Combined Second order Second order RH combined structure

8 Electron - an oscillating 3-body system with two proper frequencies. The first one is the Compton frequency equal to the SPM frequency of the CL node. Confined motion: A screw-like motion of rotating and oscillating electron interacting with the oscillating CL nodes. Preferred velocities, corresponding to (13.6/n) ev, where n matches the principal quantum number of the Bohr atomic model. Quantum orbit: a closed loop containing a hole number of both frequencies cycles. The denser internal RL lattice modulates the CL node dynamics: electrical and magnetic lines

9 Main CL space parameters expressed by the BSM electron model Static CL pressure, P S : defines the Newtonian mass of elementary particle as a pressure exercised on its denser internal lattice 4 2 me 2 g ehvc (1 α ) 26 PS = c = = (N/m 2 ) (4) V πα c e 2 m = ( P S c ) V H (kg) - Newtonian mass equation of elementary particle (5) Partial CL pressure, P P : - Inertial properties of a particles at confined motion P P = P Sαυ / c (N/m 2 ) where: υ - is a confined motion velocity (6) Dynamical CL pressure, P D : - Pressure exercised on FOHSs of atoms and molecules by ZPE waves that equalize the CL space background energy. 3 c 2 hvc g e hv (1 α ) 3 P = = = N D 3 ( cs e παc m 2 Hz ) (7) Signature of P D - the observed Cosmic Microwave Background (CMB). Therefore, the estimated temperature of 2.72K (by fitting of CMB to a blackbody curve) in fact is a CL space background parameter. The derived theoretical expression is: T = N S 2 A W hv c ( R C 2 cr + r C r e p R ) 3 ig L 2 PC µ µ e n = K Other estimated CL space parameters CL node distance (at xyz axes) ~ x10-20 (m), NRM (resonance) frequency: x10 29 (Hz) SPM frequency = Compton s frequency (known): x10 20 (Hz) (8)

10 Particle Physics data for revealing the particles substructure Standard Model BSM-SG model Internal structure of proton and neutron Important features from particle physics experiments analyzed by BSM-SG: The masses of stable elementary particles and the unstable particles - pions, kaons and muons are measured with very high accuracy. The mass accuracy of other unstable particles is very poor. This is a signature that the proton and neutron have not spherical but a loop shapes enclosing other loop shape structures.

11 Elementary particles BSM-SG Model vs Standard Model BSM-SG Model The elementary particles posses superdense 3D material structures The electron and positron possesses a one coil helical structure Proton, neutron, pions and kaon are made of 3D helical structures of higher order. They are stable only in a loop configuration. If the loop is broken (in particle colliding experiments) they decay. Pion decays into muon and then to electron (positron). Intermediate decay products have a short lifetime that depends on the velocity through the CL space. Standard Model All stable and unstable particles are assumed to have a spherical (or oval) shape. No 3D material structure is envisioned. They are grouped in tables of lepton, fermions, bosons, quarks with properties denoted by metaphoric atributes: strangeness, color charge, color force, flavor, up, down, bottom, charm, strange. The unstable particles in the Standard Model are in fact fractions and combination of fractions of the helical structure from which the stable elementary particles are composed.

12 Proton and neutron and their internal structure Using BSM-SG models and the data from particle experiments the overall shape and internal structure of the proton and neutron are identified. They are composed by helical structures built by the same prisms that are embedded in the Cosmic Lattice.

13 Simplest atoms and nuclear chains The Atlas of Atomic Nuclear Structure is one of the major derivatives from the BSM-SG theory. It explains the raw and column pattern of the Periodic table, the valences, the Pauli exclusion principle, the Hund s rule, the oxygen number, the nuclear spin (NMR), the p-type of electronic orbits, the radioactivity and other properties.

14

15 Argon nucleus mockup Elevated side view Top view

16 Clickable Periodic Table of the element showing the Atomic Nuclear Structures using symbols for the protons and neutrons

17 Radioactivity. Alpha decay example Conclusion: The alpha decay is a cold fusion at room temperature. The fusion barrier is much lower than in the case of hot fusion due to the properly oriented protons in the Gd nucleus.

18

19 The simplest molecules E V C 2Eq 2E = q L L q q SG 4 2 [[ q(1)](1 απ )] C = G m = (2 hν + hν α )( L (1) L ) = C SG 0 0 c c q p SG Gm = p p k - Vibrational energy levels - Density ratio between the superdense SG matter and the atomic matter

20 Fine structure of the molecules using the BSM atomic models (Chapter 9 of BSM-SG)

21 Identification of C4H4 molecule conformations r n - internuclear distance estimated (approximately) by BSM-SG Model A - the valence protons lie in the drawing plane B - the valence protons are perpendicular to the drawing plane C - the valence protons are at 45 o in respect to the drawing plane

22 Organic Molecules

23 Ozone problem CH 4 O 3 CB CB CB CB CB CB CB Cl CB CB The chlorine molecule (or atom) attracted by the SG forces breaks the bonds CB of the ozone molecule. When the protruded section of the methane molecule is inserted into the ozone molecule hole it stabilizes it.

24 Brown gas unknown state of the water molecule The two quantum orbits of the protons in H2O molecule are with a size 2 (corresponding to a maximum quantum energy of 3.41 ev), so they can hold a total quantum energy of 2 x 3.4 = 6.8 ev. In Brown gas state of the water molecule the two electrons occupy a common orbit with a size 1 corresponding to 13.6 ev. Then the maximum total quantum energy is: 2 x 13.6 = 27.2 ev. Consequently the Brown gas molecule can hold an excessive energy of 20.4 ev at quantum mechanical level.

25 Water chain molecule with an option of a closed loop The long chain obtains a helical shape because of the interaction between the SG forces (known as Van del Waal) and the electrical repulsions between the valence protons at close proximity. If the chain forms a closed loop such molecule can store an energy at quantum mechanical level because one or more energy states could be synchronously rotated in a closed loop.

26 Energy storage mechanism of biomolecules

27 High resolution images from a tunneling microscope and synthetic images obtained by BSM-SG models of atoms

28 Application of BSM-SG atomic models in nanotechnology 3-D view of synthetic model of graphene sheet P1 and P2 protons are perpendicular to the drawing plane

29 Signature of BSM-SG model of carbon atom from high resolution electron microscopy a. Single wall Carbon sheet from TEAM microscope b. Processed image showing a signature of 2 parallel planes Single wall carbon nanotube (Courtesy of A. Javey et al. Nano Lett., 4, 1319, (2004)

30 BSM-SG publications First publication in: (2001 regularly updated) First and second electronic editions archived in National Library of Canada, (2002 and 2005) Article about the electron in Physics Essays (2003) and other articles in the on-line Journal of Theoretics. A poster report in Physics of the IIIrd Millennium Conference, 3-5 Apr 2005, Huntsville, AL, USA Report in IX International conference Space, Time, Gravitation 7-11 Aug 2006, Proceedings, St. Petersburg, Russia Presentations in four other conferences and seminars Book Beyond the Visible Universe, 2005 (popular presentation) Book Basic Structures of Matter Supergravitation Unified Theory, 2006 Trafford Publishing, full theory (paper back Amazon.com & electronic book) Books review in Physics in Canada, v. 62, No 4, , (2006)

Stoyan Sarg York University, Toronto, Canada

Stoyan Sarg York University, Toronto, Canada Major predictions of the BSM- Supergravitation unified theory: Space energy of non-em type; supercommunication by longitudinal waves; possibility to control the gravitational mass of material object Stoyan

More information

Atoms connected in molecules by electronic

Atoms connected in molecules by electronic Atoms connected in molecules by electronic bonds S. Sarg Selected material from BSM thesis: (www.helical-structure.org) Note: The numbers of the figures and equations shown in square brackets match the

More information

ATLAS OF ATOMIC NUCLEAR STRUCTURES

ATLAS OF ATOMIC NUCLEAR STRUCTURES Atlas of Atomic Nuclear Structures APPENDIX: ATLAS OF ATOMIC NUCLEAR STRUCTURES 1. S. Sarg 2001, Atlas of Atomic Nuclear Structures, monograph Archived in the National Library of Canada (April 2002) http://www.nlc-bnc.ca/amicus/index-e.html

More information

Journal of Theoretics

Journal of Theoretics Journal of Theoretics Journal Home Page Application of BSM Atomic Models for Theoretical Analysis of Biomolecules S. Sarg sarg@helical-structures.org Abstract: The proteins have amazing properties of guiding

More information

Journal of Theoretics

Journal of Theoretics Journal of Theoretics Journal Home Page Atlas of Atomic Nuclear Structures According to the Basic Structures of Matter Theory S. Sarg sarg@helical-structures.org Abstract The Atlas of Atomic Nuclear Structures

More information

Zero Point Energy from the Viewpoint of an Alternative Concept of Space According to the BSM-Supergravitation Unified Theory Dr. Stoyan Sarg Toronto,

Zero Point Energy from the Viewpoint of an Alternative Concept of Space According to the BSM-Supergravitation Unified Theory Dr. Stoyan Sarg Toronto, Zero Point Energy from the Viewpoint of an Alternative Concept of Space According to the BSM-Supergravitation Unified Theory Dr. Stoyan Sarg Toronto, Canada www.helical-structures.org 1 Problems in Theoretical

More information

Physics Essays An International Journal Dedicated to Fundamental Questions in Physics

Physics Essays An International Journal Dedicated to Fundamental Questions in Physics Physics Essays An International Journal Dedicated to Fundamental Questions in Physics VOLUME 16 NUMBER JUNE 003 155 Quantum References: The Determination of a Zero Point in Quantum Systems Richard Oldani

More information

New approach for building of unified theory about the Universe and some results

New approach for building of unified theory about the Universe and some results New approach for building of unified theory about the Universe and some results S. Sarg E-mail: sarg@helical-structures.org Web site: www.helical-structures.org The physical models of a successful unified

More information

Theoretical Feasibility of Cold Fusion According to the BSM - Supergravitation Unified Theory

Theoretical Feasibility of Cold Fusion According to the BSM - Supergravitation Unified Theory Theoretical Feasibility of Cold Fusion According to the BSM - Supergravitation Unified Theory Stoyan Sarg Sargoytchev York University, Toronto, Canada * E-mail: stoyans@yorku.ca Advances in the field of

More information

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Journal of Theoretics

Journal of Theoretics Journal of Theoretics Journal Home Page Brief Introduction to the Basic Structures of Matter Theory and Derived Atomic Models S. Sarg sarg@helical-structures.org Journal Home Page Brief introduction to

More information

Theoretical Feasibility of Cold Fusion According to the BSM - Supergravitation Unified Theory

Theoretical Feasibility of Cold Fusion According to the BSM - Supergravitation Unified Theory Theoretical Feasibility of Cold Fusion According to the BSM - Supergravitation Unified Theory Stoyan Sarg Sargoytchev York University, Toronto, Canada * E-mails: stoyans@.cse.yorku.ca sarg137@yahoo.com

More information

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007 Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405

More information

Keywords: neutral plasma, glow discharge spectrum, Rydberg matter, electron spin flip, EM emissions during lightning

Keywords: neutral plasma, glow discharge spectrum, Rydberg matter, electron spin flip, EM emissions during lightning Heterodyne Resonance Mechanism in a transient process in plasma. Experimental study and spectra Dr. Stoyan Sarg Sargoytchev World Institute for Scientific Exploration Abstract: The Heterodyne Resonance

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 2 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 2 1 / 44 Outline 1 Introduction 2 Standard Model 3 Nucleus 4 Electron István Szalai

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

The Extraordinary Ideas of Nikola Tesla Inspiration for New Discoveries

The Extraordinary Ideas of Nikola Tesla Inspiration for New Discoveries The Extraordinary Ideas of Nikola Tesla Inspiration for New Discoveries Dr. Stoyan Sarg Canada Nikola Tesla (1856-1943) 1 The secret of Nikola Tesla ingenuity Tesla phylosophy: - physical reality, causality

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Physics 107 Final Exam May 6, Your Name: 1. Questions

Physics 107 Final Exam May 6, Your Name: 1. Questions Physics 107 Final Exam May 6, 1996 Your Name: 1. Questions 1. 9. 17. 5.. 10. 18. 6. 3. 11. 19. 7. 4. 1. 0. 8. 5. 13. 1. 9. 6. 14.. 30. 7. 15. 3. 8. 16. 4.. Problems 1. 4. 7. 10. 13.. 5. 8. 11. 14. 3. 6.

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.00pm LRB Intro lecture 28-Jan-15 12.00pm LRB Problem solving (2-Feb-15 10.00am E Problem Workshop) 4-Feb-15

More information

The Scale-Symmetric Theory as the Origin of the Standard Model

The Scale-Symmetric Theory as the Origin of the Standard Model Copyright 2017 by Sylwester Kornowski All rights reserved The Scale-Symmetric Theory as the Origin of the Standard Model Sylwester Kornowski Abstract: Here we showed that the Scale-Symmetric Theory (SST)

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

PHYS 340 ( From Atoms to the Universe ): SECTION A

PHYS 340 ( From Atoms to the Universe ): SECTION A PHYS 340 ( From Atoms to the Universe ): (Tuesday, April 26th, 2011) 12.00-2.30 pm, Room Hennings 301 FINAL EXAM This exam will last 2 hrs and 30 mins. The only material allowed into the exam will be pens,

More information

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass.

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass. The Four Fundamental Forces What are the four fundamental forces? The Four Fundamental Forces What are the four fundamental forces? Weaker Stronger Gravitational, Electromagnetic, Strong and Weak Nuclear

More information

THE STANDARD MODEL OF MATTER

THE STANDARD MODEL OF MATTER VISUAL PHYSICS ONLINE THE STANDARD MODEL OF MATTER The "Standard Model" of subatomic and sub nuclear physics is an intricate, complex and often subtle thing and a complete study of it is beyond the scope

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 5 The thermal universe - part I In the last lecture we have shown that our very early universe was in a very hot and dense state. During

More information

Introduction to Particle Physics

Introduction to Particle Physics Introduction to Particle Physics The Particle Zoo Symmetries The Standard Model Thomas Gajdosik Vilnius Universitetas Teorinės Fizikos Katedra Introduction to Particle Physics http://web.vu.lt/ff/t.gajdosik/wop/

More information

ISP209 Spring Exam #3. Name: Student #:

ISP209 Spring Exam #3. Name: Student #: ISP209 Spring 2014 Exam #3 Name: Student #: Please write down your name and student # on both the exam and the scoring sheet. After you are finished with the exam, please place the scoring sheet inside

More information

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PHYSICAL SCIENCE TEST SERIES # 4. Atomic, Solid State & Nuclear + Particle

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PHYSICAL SCIENCE TEST SERIES # 4. Atomic, Solid State & Nuclear + Particle UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM BOOKLET CODE PH PHYSICAL SCIENCE TEST SERIES # 4 Atomic, Solid State & Nuclear + Particle SUBJECT CODE 05 Timing: 3: H M.M: 200 Instructions 1.

More information

Neutron Decay Disagree

Neutron Decay Disagree Neutron Decay Disagree In fact, one of the biggest disagreements involves one of the most common particles in the Universe: the neutron. [4] The Weak Interaction transforms an electric charge in the diffraction

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.pm LRB Intro lecture 28-Jan-15 12.pm LRB Problem solving (2-Feb-15 1.am E Problem Workshop) 4-Feb-15 12.pm

More information

The Higgs - Theory. The Higgs. Theory. Arthur H. Compton Lecture th. Martin Bauer. Oct. 26 Arthur H. Compton Lectures Oct 26th 2013

The Higgs - Theory. The Higgs. Theory. Arthur H. Compton Lecture th. Martin Bauer. Oct. 26 Arthur H. Compton Lectures Oct 26th 2013 The Higgs - Theory The Higgs Martin Bauer Arthur H. Compton Lecture th Martin Oct. 26 2013Bauer Arthur H. Compton Lectures Oct 26th 2013 Theory Outline The Higgs: A new interaction How the Higgs field

More information

1. What does this poster contain?

1. What does this poster contain? This poster presents the elementary constituents of matter (the particles) and their interactions, the latter having other particles as intermediaries. These elementary particles are point-like and have

More information

CHAPTER 7 TEST REVIEW

CHAPTER 7 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont McGRAW-HILL, INC. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal New Delhi

More information

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell Click on the SUBATOMIC roadmap button on the left. Explore the Subatomic Universe Roadmap to answer the following questions. Matter 1. What 3 atoms is a water molecule made of? Two Hydrogen atoms and one

More information

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32.1 Biological Effects of Ionizing Radiation γ-rays (high-energy photons) can penetrate almost anything, but do comparatively little damage.

More information

Cyclotron Radiation Measured from a Single Electron

Cyclotron Radiation Measured from a Single Electron Cyclotron Radiation Measured from a Single Electron The cyclotron radiation emitted by a single electron has been measured for the first time by a team of physicists in the US and Germany. The research

More information

Particles and Forces

Particles and Forces Particles and Forces Particles Spin Before I get into the different types of particle there's a bit more back story you need. All particles can spin, like the earth on its axis, however it would be possible

More information

i. This is the best evidence for the fact that electrons in an atom surround the nucleus in certain allowed energy levels or orbitals ii.

i. This is the best evidence for the fact that electrons in an atom surround the nucleus in certain allowed energy levels or orbitals ii. Atomic Structure I. The Atom A. Atomic theory: Devised in 1807 by John Dalton, states that all matter is made up of a small number of different kinds of atoms that are indivisible and indestructible but

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

BSM Chapter 8. Atomic nuclear structures

BSM Chapter 8. Atomic nuclear structures Chapter 8. Atomic nuclear structures Appendix: Atlas of atomic nuclear structures. The Mendeleev s Periodical law and the pattern of the Periodical table are signatures of the nuclear building tendency

More information

2 Electons Electrons: Quantum Numbers, Energy Levels and Electron Configurations

2 Electons Electrons: Quantum Numbers, Energy Levels and Electron Configurations Electrons: Quantum Numbers, Energy Levels and Electron Configurations For chemical reactions to occur a collision between atoms or molecules must happen. These collisions typically result in an exchange

More information

Physics Important Terms and their Definitions

Physics Important Terms and their Definitions Physics Important Terms and their S.No Word Meaning 1 Acceleration The rate of change of velocity of an object with respect to time 2 Angular Momentum A measure of the momentum of a body in rotational

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

Electron Configurations

Electron Configurations Ch08 Electron Configurations We now understand the orbital structure of atoms. Next we explore how electrons filling that structure change it. version 1.5 Nick DeMello, PhD. 2007-2016 2 Ch08 Putting Electrons

More information

Building Blocks of the Universe

Building Blocks of the Universe Building Blocks of the Universe S4.1 The Quantum Revolution Our goals for learning: How has the quantum revolution changed our world? The Quantum Realm Light behaves like particles (photons). Atoms consist

More information

NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS

NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS History of Elementary Particles THE CLASSICAL ERA (1897-1932) Elementary particle physics was born in 1897 with J.J. Thomson s discovery of the ELECTRONS

More information

CVB102 Lecture 1 - Chemical Structure and Reactivity. Contact Information: Dr. Bill Lot Electronic Structure of Atoms

CVB102 Lecture 1 - Chemical Structure and Reactivity. Contact Information: Dr. Bill Lot Electronic Structure of Atoms CVB102 Lecture 1 - Chemical Structure and Reactivity Contact Information: Dr. Bill Lot b.lott@qut.edu.au Electronic Structure of Atoms Text: Blackman, et al Pp. 127-147 (Pp. 148-159 recommended) The periodic

More information

Lecture 3: Quarks and Symmetry in Quarks

Lecture 3: Quarks and Symmetry in Quarks Lecture 3: Quarks and Symmetry in Quarks Quarks Cross Section, Fermions & Bosons, Wave Eqs. Symmetry: Rotation, Isospin (I), Parity (P), Charge Conjugate (C), SU(3), Gauge symmetry Conservation Laws: http://faculty.physics.tamu.edu/kamon/teaching/phys627/

More information

Modern Physics: Standard Model of Particle Physics (Invited Lecture)

Modern Physics: Standard Model of Particle Physics (Invited Lecture) 261352 Modern Physics: Standard Model of Particle Physics (Invited Lecture) Pichet Vanichchapongjaroen The Institute for Fundamental Study, Naresuan University 1 Informations Lecturer Pichet Vanichchapongjaroen

More information

Weak Interactions Made Simple

Weak Interactions Made Simple Weak Interactions Made Simple P. R. Silva Retired associated professor Departamento de Física ICEx Universidade Federal de Minas Gerais email: prsilvafis@gmail.com ABSTRACT A very simplified way of calculating

More information

Light. Light (con t.) 2/28/11. Examples

Light. Light (con t.) 2/28/11. Examples Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Chapter S4: Building Blocks of the Universe

Chapter S4: Building Blocks of the Universe Chapter S4 Lecture Chapter S4: Building Blocks of the Universe Building Blocks of the Universe S4.1 The Quantum Revolution Our goals for learning: How has the quantum revolution changed our world? How

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Chapter 5: Electrons in Atoms 5 Section 5.1 Section Section 5.3 Table Of Contents Light and Quantized Energy Electron Configuration Compare the wave and particle natures of

More information

Chemistry Terms. atomic number The atomic number of an element is the number of protons in the nucleus of each atom.

Chemistry Terms. atomic number The atomic number of an element is the number of protons in the nucleus of each atom. Chemistry Terms atomic number The atomic number of an element is the number of protons in the nucleus of each atom. chemical reaction A process in which atoms and molecules interact, resulting in the alteration

More information

Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms What is the origin of color in matter? Demo: flame tests What does this have to do with the atom? Why are atomic properties periodic? 6.1 The Wave Nature of Light

More information

* = 2 = Probability distribution function. probability of finding a particle near a given point x,y,z at a time t

* = 2 = Probability distribution function. probability of finding a particle near a given point x,y,z at a time t Quantum Mechanics Wave functions and the Schrodinger equation Particles behave like waves, so they can be described with a wave function (x,y,z,t) A stationary state has a definite energy, and can be written

More information

Chapter 6 - Electronic Structure of Atoms

Chapter 6 - Electronic Structure of Atoms Chapter 6 - Electronic Structure of Atoms 6.1 The Wave Nature of Light To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation Visible light is an example

More information

Lecture 01. Introduction to Elementary Particle Physics

Lecture 01. Introduction to Elementary Particle Physics Introduction to Elementary Particle Physics Particle Astrophysics Particle physics Fundamental constituents of nature Most basic building blocks Describe all particles and interactions Shortest length

More information

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS COLLEGE PHYSICS Chapter 30 ATOMIC PHYSICS Matter Waves: The de Broglie Hypothesis The momentum of a photon is given by: The de Broglie hypothesis is that particles also have wavelengths, given by: Matter

More information

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Chapter 2. Atomic structure and interatomic bonding 2.1. Atomic structure 2.1.1.Fundamental concepts 2.1.2. Electrons in atoms 2.1.3. The periodic table 2.2. Atomic bonding in solids 2.2.1. Bonding forces

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Bill Murray, RAL, Quarks and leptons Bosons and forces The Higgs March 2002 1 Outline: An introduction to particle physics What is the Higgs Boson? Some unanswered questions

More information

New theory of light and ether

New theory of light and ether New theory of light and ether Author: Udrea Sergiu, Montreal, Canada http://www.lightethertheory.com/ mail to: serudr@yahoo.com, serudr@gmail.com Abstract Light as a wave needs a medium of propagation.

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

Atomic Structure and the Composition of Matter

Atomic Structure and the Composition of Matter Atomic Structure and the Composition of Matter The atom is a basic building block of minerals. Matter is a special form of energy; it has mass and occupies space. Neither matter nor energy may be created

More information

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON FACULTY OF SCIENCE High Energy Physics WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON AIM: To explore nature on the smallest length scales we can achieve Current status (10-20 m)

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of.

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of. Notes: ATOMS AND THE PERIODIC TABLE Atomic Structure: : the smallest particle that has the properties of an element. From the early concept of the atom to the modern atomic theory, scientists have built

More information

Instead, the probability to find an electron is given by a 3D standing wave.

Instead, the probability to find an electron is given by a 3D standing wave. Lecture 24-1 The Hydrogen Atom According to the Uncertainty Principle, we cannot know both the position and momentum of any particle precisely at the same time. The electron in a hydrogen atom cannot orbit

More information

Quantum Gravity and Entanglement

Quantum Gravity and Entanglement Quantum Gravity and Entanglement The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

fusion production of elements in stars, 345

fusion production of elements in stars, 345 I N D E X AC circuits capacitive reactance, 278 circuit frequency, 267 from wall socket, 269 fundamentals of, 267 impedance in general, 283 peak to peak voltage, 268 phase shift in RC circuit, 280-281

More information

Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom

Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom Use the Venn Diagram to compare and contrast the Bohr Model of the atom with the Quantum Mechanical Model of atom Bohr Model Quantum Model Energy level Atomic orbital Quantum Atomic number Quantum mechanical

More information

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories The Standard Model 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories Bosons (force carriers) Photon, W, Z, gluon, Higgs Fermions (matter particles) 3 generations

More information

Optics Definitions. The apparent movement of one object relative to another due to the motion of the observer is called parallax.

Optics Definitions. The apparent movement of one object relative to another due to the motion of the observer is called parallax. Optics Definitions Reflection is the bouncing of light off an object Laws of Reflection of Light: 1. The incident ray, the normal at the point of incidence and the reflected ray all lie in the same plane.

More information

Baryons, mesons and leptons are affected by particle interactions. Write an account of these interactions. Your account should:

Baryons, mesons and leptons are affected by particle interactions. Write an account of these interactions. Your account should: Baryons, mesons and leptons are affected by particle interactions. Write an account of these interactions. Your account should: include the names of the interactions identify the groups of particles that

More information

Quanta to Quarks. Science Teachers Workshop 2014 Workshop Session. Adrian Manning

Quanta to Quarks. Science Teachers Workshop 2014 Workshop Session. Adrian Manning Quanta to Quarks Science Teachers Workshop 2014 Workshop Session Adrian Manning The Quanta to Quarks module! The Quanta to Quarks module ultimately deals with some of the most fundamental questions about

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 7-3: THE STRUCTURE OF MATTER Questions From Reading Activity? Essential Idea: It is believed that all the matter around us is made up of fundamental

More information

College Physics 10th edition

College Physics 10th edition College Physics 10th edition Raymond A. Serway and Chris Vuille Publisher: Cengage Learning Table of Contents PHY101 covers chapters 1-8 PHY102 covers chapters 9-25 Chapter 1: Introduction 1.1: Standards

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star

The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star Why is the Sun hot and bright? Surface Temperature of the Sun: T =

More information

The Unit Electrical Matter Substructures of Standard Model Particles. James Rees version

The Unit Electrical Matter Substructures of Standard Model Particles. James Rees version The Unit Electrical Matter Substructures of Standard Model Particles version 11-7-07 0 Introduction This presentation is a very brief summary of the steps required to deduce the unit electrical matter

More information

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks + 9.2.E - Particle Physics Year 12 Physics 9.8 Quanta to Quarks + Atomic Size n While an atom is tiny, the nucleus is ten thousand times smaller than the atom and the quarks and electrons are at least

More information

PH 222-2C Fall 2012 ELECTRIC CHARGE. Lecture 1. Chapter 21 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall 2012 ELECTRIC CHARGE. Lecture 1. Chapter 21 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 ELECTRIC CHARGE Lecture 1 Chapter 21 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 21 Electric Charge In this chapter we will introduce a new property of

More information

Elementary particles and typical scales in high energy physics

Elementary particles and typical scales in high energy physics Elementary particles and typical scales in high energy physics George Jorjadze Free University of Tbilisi Zielona Gora - 23.01.2017 GJ Elementary particles and typical scales in HEP Lecture 1 1/18 Contents

More information

Q1 and Q2 Review large CHEMISTRY

Q1 and Q2 Review large CHEMISTRY Q1 and Q2 Review large CHEMISTRY Multiple Choice Identify the choice that best completes the statement or answers the question. 1. E = hv relates the following a. Energy to Planck s constant & wavelength

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 REVIEW Arrangement of Electrons in Atoms SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. In what way does the photoelectric effect support the particle theory

More information

Essential Physics II. Lecture 14:

Essential Physics II. Lecture 14: Essential Physics II E II Lecture 14: 18-01-16 Last lecture of EP2! Congratulations! This was a hard course. Be proud! Next week s exam Next Monday! All lecture slides on course website: http://astro3.sci.hokudai.ac.jp/~tasker/teaching/ep2

More information

Internal Structures of Electron, Neutron, Proton and Nuclei particle masses are not arbitrary

Internal Structures of Electron, Neutron, Proton and Nuclei particle masses are not arbitrary Internal Structures of Electron, Neutron, Proton and Nuclei particle masses are not arbitrary Jose P Koshy josepkoshy@gmail.com Abstract: The mass of neutron is slightly greater than1838 electrons. So

More information

11. The bright-line spectra produced by four elements are represented in the diagram below.

11. The bright-line spectra produced by four elements are represented in the diagram below. 1. Which substance can not be broken down by a chemical change? A) ammonia B) ethanol C) propanal D) zirconium 2. Which particle has no charge? A) electron B) neutron C) positron D) proton 3. Which phrase

More information

Fundamental Particles

Fundamental Particles Fundamental Particles Standard Model of Particle Physics There are three different kinds of particles. Leptons - there are charged leptons (e -, μ -, τ - ) and uncharged leptons (νe, νμ, ντ) and their

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Name The Standard Model of Particle Physics Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Just like there is good and evil, matter must have something like

More information

INTRODUCTION TO THE STRUCTURE OF MATTER

INTRODUCTION TO THE STRUCTURE OF MATTER INTRODUCTION TO THE STRUCTURE OF MATTER A Course in Modern Physics John J. Brehm and William J. Mullin University of Massachusetts Amherst, Massachusetts Fachberelch 5?@8hnlsdie Hochschule Darmstadt! HochschulstraSa

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information