R c = g c-1. c pc R t = g t-1. g c. c pt. g t. a 0 = g c R c g c T 0. t r = 1+ g c-1 2. p r = t c êhg c -1L r. c pc T 0.

Size: px
Start display at page:

Download "R c = g c-1. c pc R t = g t-1. g c. c pt. g t. a 0 = g c R c g c T 0. t r = 1+ g c-1 2. p r = t c êhg c -1L r. c pc T 0."

Transcription

1 MAE 113 SS1 2009, HW #4 Solutions 7.1 Develop a set of equations for parametric analysis of a ramjet engine with losses. Calculate the performance of a ramjet with losses over a Mach number range of 1 to 3 for the following input data: p dmax 0.95, T 0 217K, 1.4, c pc kjêhkgÿkl p b 0.94, h b 0.96, g t 1.3, c pt kjêhkgÿkl p n 0.95, P 0 P 9 1, T t4 1800K, h PR kjêkg For analysis, a ramjet can be considered as a turbojet with t c p c 1, and t t p t 1, since a ramjet does not have a compressor or a turbine. Using equations 7-20 a-y, with equations changed for the ramjet written in red, we get R c -1 c pc R t g t-1 g t c pt a 0 R c T 0 V 0 a 0 M 0 t r M 2 0 g p r t c êh -1L r h r 1 form 0 1 h r HM 0-1L 1.35 form 0 > 1 p d p dmax h r t l c ptt t4 c pc T 0 t c 1 h c undefined, since no compressor t f l -t r h PR h b ëic pc T 0 M-t l t t 1 p t 1 h t undefined, since no turbine P t9 P 0 p P 9 P r p d p b p n 9 M 9 2 g t -1 BJP t9 P 9 N Hg t-1lêg t - 1F

2 2 MAE113_solutions_HW4.nb T 9 T 0 t l c pc HP t9 êp 9 L Igt-1Mëgt c pt V 9 a 0 M 9 g t R t T 9 R c T 0 F m 0 a 0BH1+fL V 9 -M a 0 +H1+fL R tt 9 êt 0 0 R c V 9 êa 0 S f Fêm 0 h T a 0 2 AH1+fLHV 9 êa 0 L 2 -M 2 0 E h P 2 fh PR 2 V 0 HFêm 0L a 0 2 AH1+fLHV 9 êa 0 L 2 -M 0 2 E h 0 h P h T H1-P 0 êp 9 L F If we start to plug in numbers, we find R c R t a 0 1.4J286.9 t l kjêhkgÿkl kj kjêhkgÿkl kj J NH1LH217KL 295.2mês kj 1800K kj 217K I'll let Mathematica do the rest of the values over various Mach numbers: -1 g t -1-1 R c c pc ;R t c pt ;a 0 R c 1000 T 0 ;V0@M_D:a 0 M; tr@m_d1+ M 2 ; hr@m_d HM -1L 1.35 ; g t 2 c pt T t4 t l - tr@md P 0 pr@m_d tr@md gcëigc-1m ; pd@m_d p dmax hr@md; t l ; f@m_d: ; Pt9P9@M_D pr@mdpd@mdp b p n ; c pc T 0 h PR h b ëic pc T 0 M-t l P 9 M9@M_D 2 t-1mëg g t -1 JHPt9P9@MDLIg t -1N ; T9T0@M_D ;V9a0@M_D M9@MD HPt9P9@MDL Igt-1Mëgt c pt Fm0@M_D: a 0 H1 + f@mdlv9a0@md -M + H1 + f@mdl R tt9t0@md H1 -P 0 êp 9 L f@md ;S@M_D R c V9a0@MD Fm0@MD ; t l c pc g t R t R c T9T0@MD ;

3 MAE113_solutions_HW4.nb 3 NumberFormBGridB:8"M 0 ", "1.0", "1.25", "1.5", "1.75", "2.0", "2.25", "2.5", "2.75", "3.0"<, 8"τ r ", τr@1d, τr@1.25d, τr@1.5d, τr@1.75d, τr@2d, τr@2.25d, τr@2.5d, τr@2.75d, τr@3d<, 8"π r ", πr@1d, πr@1.25d, πr@1.5d, πr@1.75d, πr@2d, πr@2.25d, πr@2.5d, πr@2.75d, πr@3d<, 8"f", f@1d, f@1.25d, f@1.5d, f@1.75d, f@2d, f@2.25d, f@2.5d, f@2.75d, f@3d<, 8"P t9 êp 9 ", Pt9P9@1D, Pt9P9@1.25D, Pt9P9@1.5D, Pt9P9@1.75D, Pt9P9@2D, Pt9P9@2.25D, Pt9P9@2.5D, Pt9P9@2.75D, Pt9P9@3D<, 8"M 9 ", M9@1D, M9@1.25D, M9@1.5D, M9@1.75D, M9@2D, M9@2.25D, M9@2.5D, M9@2.75D, M9@3D<, 8"V 9 êa 0 ", V9a0@1D, V9a0@1.25D, V9a0@1.5D, V9a0@1.75D, V9a0@2D, V9a0@2.25D, V9a0@2.5D, V9a0@2.75D, V9a0@3D<, :"Fêm 0 H N L", Fm0@1D, Fm0@1.25D, Fm0@1.5D, kgês Fm0@1.75D, Fm0@2D, Fm0@2.25D, Fm0@2.5D, Fm0@2.75D, Fm0@3D>, :"S H mgês L", S@1D, N S@1.25D, S@1.5D, S@1.75D, S@2D, S@2.25D, S@2.5D, S@2.75D, S@3D>>, 8Frame All<F, 4F M τ r π r f P t9 êp M V 9 êa Fêm 0 H N L kgës S H mgës L N

4 4 MAE113_solutions_HW4.nb 7.3 Calculate and compare the performance of turbojet engines with the basic data of Example 7.1 for components with technology level 2 values in Table 6.2 (assume cooled turbine and the same diffuser and nozzle values as in Example 7.1). Comment on the changes in engine performance. M 0 2, T K, 1.4, c pc kjêhkgÿkl,g t 1.3 c pt kjêhkgÿkl,h PR kjêkg, p dmax 0.95, p b 0.92 p n 0.96, e c 0.84, e t 0.83, h b 0.94, h m 0.97, P 0 êp 9 0.5, T t4 1390K, p c 10 The equations we use are the same as in example 7.1 R c -1 c g pc kjêhkgÿkl kj c 1.4 R t g t-1 c g pt kjêhkgÿkl kj t 1.3 a 0 R c T 0 1.4µ286.9 J µ 1µ216.7K 295.0mês f t t 1- V 0 a 0 M 0 H295.0mêsLH2L 590.0mês t r M g p r t c êh -1L r h r HM 0-1L p d p dmax h r t l c ptt t4 c pc T 0 t l -t r t c h PR h b ëic pc T 0 M-t l 1 h m H1+fL H1.239 kjêhkgÿklh1390kl H1.004 kjêhkgÿklh216.7kl gc-1 gcec t c p c H0.84L h c p c gc-1 gc -1 t c H1.8L H2.1884L H kjêkgµ0.94lêh1.004 kjêhkgÿklµ216.7kl t r t l Ht c - 1L H L p t t t gt Igt-1Met H0.3L H L h t 1-t t t 1êet t P t9 P 0 p P 9 P r p d p c p b p t p n H0.5LH7.8244LH0.8788LH10LH0.92LH0.1900LH0.96L

5 MAE113_solutions_HW4.nb 5 M 9 T 9 T 0 2 g t -1 BJP t9 P 9 N Hg t-1lêg t - 1F t l t t HP t9 êp 9 L Igt-1Mëgt c pc c pt F m 0 a 0 BH1+fL V 9 a 0 -M 0 +H1+fL R tt 9 êt 0 R c V 9 êa 0 V 9 a 0 M 9 g t R t T 9 R c T H1-P 0 êp 9 L F 295AH L H L h T a 0 2 AH1+fLHV 9 êa 0 L 2 -M 0 2 E 2 fh PR h P S f Fêm 0 2 V 0 HFêm 0L a 0 2 AH1+fLHV 9 êa 0 L 2 -M 0 2 E kgës H0.2859L H0.2869L mgês H295mêsL2 AH LH3.0945L E 1000 J` 2H1LH LJ kjêkg N 2H1L 590H L kj AH LH3.0945L E h 0 h P h T % H1-0.5L E kgês % % In Example 7.1, F m mgês, f , and S Here, we had a 46.8% decrease in specific 0 kgês kg thrust, a 37.0% decrease in fuel to air ratio, and thus, a 18.5% increase in thrust specific fuel consumption.

6 6 MAE113_solutions_HW4.nb You are required to design an internal compression inlet with a fixed capture area A c 14 ft 2 1.3m 2 that will operate for a cruise Mach number M with an inlet throat Mach number M t 1.2. a) Determine and A c ê for cruise Note that for ideal flight, A c, as shown on page 702 A c A * A * and since we know the Mach numbers at 0 and t, we can find the AêA * ratios by looking up in an isentropic flow table or using equation We get A c H LI M and now we can find A c ft ft m 2 b) If the throat area is held constant, can this inlet be started for M 0 4 or less? When M 0 4, using equation 10.7, A * , and P AI A A * M P 02 E M0 H LH0.1388L So A c would have to be or less in order for the engine to start. However, based on part a, that ratio is , so the inlet will not start since the throat area is too small. c) If it is desired to start the inlet at M 0 2.0, find the required values of A c and. At M 0 2, such that and A * , and P AI A A * M P 02 E M0 H1.6875LH0.7209L A c A c ft ft m 2

7 MAE113_solutions_HW4.nb An aircraft with a turbojet engine uses a fixed contraction ratio, internal compression inlet designed for M The aircraft is flying at M with the inlet started, and the shock is optimally positioned when the inlet suddenly unstarts, popping the shock. a) Find the maximum pressure recovery for the started and unstarted conditions. When M 0 3.0, When M and started, we already know the A c ratio, so we can use A * , and P AI A A * M P 02 E M0 H4.2346LH0.3283L A c A * A * A * H1.6875L A* A * For this AêA * ratio, from the isentropic table, M t A shock with this initial Mach number will have a pressure ratio P For the unstarted case, the shock has the initial Mach number of M2, and thus P b) Find the ratio of unstarted inlet mass flow rate to the started inlet mass flow rate. Fraction Spilled A cê - ê A c ê %

The Turbofan cycle. Chapter Turbofan thrust

The Turbofan cycle. Chapter Turbofan thrust Chapter 5 The Turbofan cycle 5. Turbofan thrust Figure 5. illustrates two generic turbofan engine designs. The upper figure shows a modern high bypass ratio engine designed for long distance cruise at

More information

Parametric Cycle Analysis of Real Turbofan

Parametric Cycle Analysis of Real Turbofan Parametric Cycle Analysis of Real Turbofan Introduction Parametric cycle analysis of a real turbofan The behaviour of a turbofan operating at optimum bypass ratio Cycle Analysis of Real Turbofan Assumptions

More information

Lecture 43: Aircraft Propulsion

Lecture 43: Aircraft Propulsion Lecture 43: Aircraft Propulsion Turbojet Engine: 1 3 4 fuel in air in exhaust gases Diffuser Compressor Combustor Turbine Nozzle 43.1 T Ideal Ccle: w T,s = w C,s s 1 s w T,s w C,s 3 4 s s Processes: 1:

More information

ME 440 Aerospace Engineering Fundamentals

ME 440 Aerospace Engineering Fundamentals Fall 00 ME 440 Aerospace Engineering Fundamentals Propulsion Examples Example: Compressor Turbine Determine the outlet temperature and pressure for a turbine whose purpose is to power the compressor described

More information

Contents. Preface... xvii

Contents. Preface... xvii Contents Preface... xvii CHAPTER 1 Idealized Flow Machines...1 1.1 Conservation Equations... 1 1.1.1 Conservation of mass... 2 1.1.2 Conservation of momentum... 3 1.1.3 Conservation of energy... 3 1.2

More information

Civil aeroengines for subsonic cruise have convergent nozzles (page 83):

Civil aeroengines for subsonic cruise have convergent nozzles (page 83): 120 Civil aeroengines for subsonic cruise have convergent nozzles (page 83): Choked convergent nozzle must be sonic at the exit A N. Consequently, the pressure (p 19 ) at the nozzle exit will be above

More information

CONTENTS Real chemistry e ects Scramjet operating envelope Problems

CONTENTS Real chemistry e ects Scramjet operating envelope Problems Contents 1 Propulsion Thermodynamics 1-1 1.1 Introduction.................................... 1-1 1.2 Thermodynamic cycles.............................. 1-8 1.2.1 The Carnot cycle.............................

More information

SPC 407 Sheet 2 - Solution Compressible Flow - Governing Equations

SPC 407 Sheet 2 - Solution Compressible Flow - Governing Equations SPC 407 Sheet 2 - Solution Compressible Flow - Governing Equations 1. Is it possible to accelerate a gas to a supersonic velocity in a converging nozzle? Explain. No, it is not possible. The only way to

More information

A Thermodynamic Analysis of a Turbojet Engine ME 2334 Course Project

A Thermodynamic Analysis of a Turbojet Engine ME 2334 Course Project A Thermodynamic Analysis of a Turbojet Engine ME 2334 Course Project By Jeffrey Kornuta Kornuta 2 Introduction This paper looks into the thermodynamic analysis of an ideal turbojet engine, focusing on

More information

Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet

Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet Lecture 41 1 Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet 2 Problem-1 Ramjet A ramjet is flying at Mach 1.818 at an altitude 16.750 km altitude (Pa = 9.122 kpa, Ta= - 56.5 0 C = 216.5

More information

Preliminary Design of a Turbofan Engine

Preliminary Design of a Turbofan Engine Preliminary Design of a Turbofan Engine MAE 112 Propulsion Justin Oyas ID#43026527 University of California, Irvine Henry Samueli School of Engineering Department of Mechanical and Aerospace Engineering

More information

6.1 Propellor e ciency

6.1 Propellor e ciency Chapter 6 The Turboprop cycle 6. Propellor e ciency The turboprop cycle can be regarded as a very high bypass limit of a turbofan. Recall that the propulsive e ciency of a thruster with P e = P 0 and f

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. #01 Lecture No. # 07 Jet Engine Cycles For Aircraft propulsion

More information

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow 1. Consider subsonic Rayleigh flow of air with a Mach number of 0.92. Heat is now transferred to the fluid and the Mach number increases to 0.95.

More information

Review of Fundamentals - Fluid Mechanics

Review of Fundamentals - Fluid Mechanics Review of Fundamentals - Fluid Mechanics Introduction Properties of Compressible Fluid Flow Basics of One-Dimensional Gas Dynamics Nozzle Operating Characteristics Characteristics of Shock Wave A gas turbine

More information

Analysis (a) Process 1-2: isentropic compression. p = 755K. R7] h87kpa.m 3/kg.K }30~ = O.906m 3/kg = V max

Analysis (a) Process 1-2: isentropic compression. p = 755K. R7] h87kpa.m 3/kg.K }30~ = O.906m 3/kg = V max ~ Chapter 8 Gas Power Cycles Analysis (a) Process 1-2: isentropic compression. p - f ii, f T2=1j ( - VI = (300KX8)0.4 = 689K k-l I V2 - ~..., I ~=~ T2 Process 2-3: v = constant heat addition. q23,in =U3

More information

In the next lecture... Tutorial on ideal cycles and component performance.

In the next lecture... Tutorial on ideal cycles and component performance. In the next lecture... utoril on idel cycles nd component performnce. rof. Bhskr Roy, rof. A M rdeep, Deprtment of Aerospce, II Bomby roblem # Lect-9 A Bryton cycle opertes with regenertor of 75% effectiveness.

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, IIT Bombay Module No. # 01 Lecture No. # 08 Cycle Components and Component

More information

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II Section 4.1: Introduction to Jet Propulsion Jet Propulsion Basics Squeeze Bang Blow Suck Credit: USAF Test Pilot School 2 Basic Types of Jet Engines Ramjet High Speed, Supersonic Propulsion, Passive Compression/Expansion

More information

Overall Performance Design of Ramjet for Combined Engine

Overall Performance Design of Ramjet for Combined Engine 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida AIAA 2009-1426 Overall Performance Design of Ramjet for Combined Engine

More information

3. Write a detailed note on the following thrust vector control methods:

3. Write a detailed note on the following thrust vector control methods: Code No: R05322103 Set No. 1 1. Starting from the first principles and with the help of neatly drawn velocity triangles obtain the following relationship: Ψ = 2 Φ (tan β 2 + tan β 3 ) where Ψ is the blade

More information

DESIGN AND DEVELOPMENT OF A SIMULATION TOOL FOR AIRCRAFT PROPULSION SYSTEMS

DESIGN AND DEVELOPMENT OF A SIMULATION TOOL FOR AIRCRAFT PROPULSION SYSTEMS Simulation Department EA, July 2014 DESIGN AND DEVELOPMENT OF A SIMULATION TOOL FOR AIRCRAFT PROPULSION SYSTEMS Author: Daniel Gordillo Barragán d.gordillo.b.90@gmail.com Teaching mentor: Dr. José Luis

More information

I. Introduction. external compression. supersonic flow. II. Design Criteria

I. Introduction. external compression. supersonic flow. II. Design Criteria Design Optimization of High Speed Inlets Doyle D Knight Dept of Mechanical and Aerospace Engineering Rutgers - The State University of New Jersey New Brunswick, NJ 08903 knight@soemailrutgersedu I Introduction

More information

REVERSE ENGINEERING OF A MICRO TURBOJET ENGINE. Onur Tuncer and Ramiz 0mür İçke Istanbul Technical University Istanbul, Turkey

REVERSE ENGINEERING OF A MICRO TURBOJET ENGINE. Onur Tuncer and Ramiz 0mür İçke Istanbul Technical University Istanbul, Turkey 6. ANKARA INTERNATIONAL AEROSPACE CONFERENCE 14-16 September 2011 - METU, Ankara TURKEY REVERSE ENGINEERING OF A MICRO TURBOJET ENGINE Onur Tuncer and Ramiz 0mür İçke Istanbul Technical University Istanbul,

More information

UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS

UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS UNIT 1 COMPRESSIBLE FLOW FUNDAMENTALS 1) State the difference between compressible fluid and incompressible fluid? 2) Define stagnation pressure? 3) Express the stagnation enthalpy in terms of static enthalpy

More information

PARAMETRIC IDEAL CYCLE ANALYSIS OF A SCRAMJET ENGINE AT A CONSTANT COMBUSTION MACH NUMBER. An Undergraduate Honors Thesis Project

PARAMETRIC IDEAL CYCLE ANALYSIS OF A SCRAMJET ENGINE AT A CONSTANT COMBUSTION MACH NUMBER. An Undergraduate Honors Thesis Project PARAMETRIC IDEAL CYCLE ANALYSIS OF A SCRAMJET ENGINE AT A CONSTANT COMBUSTION MACH NUMBER An Undergraduate Honors Thesis Project presented to the MAE Honors Committee at the University of Missouri - Columbia

More information

AME 436. Energy and Propulsion. Lecture 15 Propulsion 5: Hypersonic propulsion

AME 436. Energy and Propulsion. Lecture 15 Propulsion 5: Hypersonic propulsion AME 436 Energy and Propulsion Lecture 5 Propulsion 5: Hypersonic propulsion Outline!!!!!! Why hypersonic propulsion? What's different about it? Conventional ramjet heat addition at M

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Lecture No. #03 Jet Engine Basic Performance Parameters We are talking

More information

Final 1. (25) 2. (10) 3. (10) 4. (10) 5. (10) 6. (10) TOTAL = HW = % MIDTERM = % FINAL = % COURSE GRADE =

Final 1. (25) 2. (10) 3. (10) 4. (10) 5. (10) 6. (10) TOTAL = HW = % MIDTERM = % FINAL = % COURSE GRADE = MAE101B: Advanced Fluid Mechanics Winter Quarter 2017 http://web.eng.ucsd.edu/~sgls/mae101b_2017/ Name: Final This is a three hour open-book exam. Please put your name on the top sheet of the exam. Answer

More information

ÂF = Ù. ı s. Ù u(ru) nds PRODUCTION OF THRUST. For x-component of vectors:

ÂF = Ù. ı s. Ù u(ru) nds PRODUCTION OF THRUST. For x-component of vectors: PRODUCTION OF THRUST Newton s 2 nd Law (e.g. S F = d/dt (mv)) for a control volume of fixed mass with steady flow in and out and no acceleration of the frame of reference relative to inertial coordinates:

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Fluid Mechanics Compressible Fluid Flow Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi Bhooshan

More information

Gasdynamics 1-D compressible, inviscid, stationary, adiabatic flows

Gasdynamics 1-D compressible, inviscid, stationary, adiabatic flows Gasdynamics 1-D compressible, inviscid, stationary, adiabatic flows 1st law of thermodynamics ρ const Kontrollfläche 1 2 m u 2 u 1 z Q 12 +P 12 = ṁ } h 2 h {{} 1 Enthalpy Q 12 + 1 2 (u2 2 u2 1 }{{} ) +

More information

Results from SP2, Analysis of the Westinghouse J-30 Turbojet using Gasturb. Kevin Hoopes

Results from SP2, Analysis of the Westinghouse J-30 Turbojet using Gasturb. Kevin Hoopes Results from SP2, Analysis of the Westinghouse J-30 Turbojet using Gasturb Kevin Hoopes November 8, 2011 Introduction and Problem Description The Westinghouse J-30 was the first American made turbojet

More information

One-Dimensional Isentropic Flow

One-Dimensional Isentropic Flow Cairo University Second Year Faculty of Engineering Gas Dynamics AER 201B Aerospace Department Sheet (1) 2011-2012 One-Dimensional Isentropic Flow 1. Assuming the flow of a perfect gas in an adiabatic,

More information

Continuous Differentiation of Complex Systems Applied to a Hypersonic Vehicle

Continuous Differentiation of Complex Systems Applied to a Hypersonic Vehicle Continuous of Complex Systems Applied to a Vehicle AIAA Aircraft Flight Mechanics Conference Derek J. Dalle, Sean M. Torrez, James F. Driscoll University of Michigan, Ann Arbor, MI 4819 August 15, 212,

More information

AEROSPACE ENGINEERING

AEROSPACE ENGINEERING AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics

More information

MAE 11. Homework 8: Solutions 11/30/2018

MAE 11. Homework 8: Solutions 11/30/2018 MAE 11 Homework 8: Solutions 11/30/2018 MAE 11 Fall 2018 HW #8 Due: Friday, November 30 (beginning of class at 12:00p) Requirements:: Include T s diagram for all cycles. Also include p v diagrams for Ch

More information

AME 436. Energy and Propulsion. Lecture 11 Propulsion 1: Thrust and aircraft range

AME 436. Energy and Propulsion. Lecture 11 Propulsion 1: Thrust and aircraft range AME 436 Energy and Propulsion Lecture 11 Propulsion 1: Thrust and aircraft range Outline!!!!! Why gas turbines? Computation of thrust Propulsive, thermal and overall efficiency Specific thrust, thrust

More information

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii Contents 1 Working Principles... 1 1.1 Definition of a Turbomachine... 1 1.2 Examples of Axial Turbomachines... 2 1.2.1 Axial Hydraulic Turbine... 2 1.2.2 Axial Pump... 4 1.3 Mean Line Analysis... 5 1.4

More information

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017 MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING EMEC 426 Thermodynamics of Propulsion Systems Spring 2017 Instructor: Dr. Alan H. George Office: Roberts 119 Office Hours: to be announced

More information

ANALYSIS OF TURBOFAN ENGINE DESIGN MODIFICATION TO ADD INTER-TURBINE COMBUSTOR

ANALYSIS OF TURBOFAN ENGINE DESIGN MODIFICATION TO ADD INTER-TURBINE COMBUSTOR Journal of KONES Powertrain and Transport, Vol. 22, No. 3 2015 ANALYSIS OF TURBOFAN ENGINE DESIGN MODIFICATION TO ADD INTER-TURBINE COMBUSTOR Robert Jakubowski Rzeszow University of Technology Department

More information

In which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0.

In which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0. bernoulli_11 In which of the following scenarios is applying the following form of Bernoulli s equation: p V z constant! g + g + = from point 1 to point valid? a. 1 stagnant column of water steady, inviscid,

More information

MAE 113, Summer Session 1, 2009

MAE 113, Summer Session 1, 2009 HW #1 1., 1.7, 1.14,.3,.6 MAE 113, Summer Seion 1, 9 1. Develop the following analytical expreion for a turbojet engine: a) When m f

More information

Quiz 2 May 18, Statement True False 1. For a turbojet, a high. gives a high thermodynamic efficiency at any compression ratio.

Quiz 2 May 18, Statement True False 1. For a turbojet, a high. gives a high thermodynamic efficiency at any compression ratio. Quiz 2 May 18, 2011 16.50 Propulsion Systems Spring 2011 Two hours, open book, open notes TRUE-FALSE QUESTIONS Justify your answer in no more than two lines. 4 points for correct answer and explanation

More information

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

More information

Effect Of Inlet Performance And Starting Mach Number On The Design Of A Scramjet Engine

Effect Of Inlet Performance And Starting Mach Number On The Design Of A Scramjet Engine Effect Of Inlet Performance And Starting Mach Number On The Design Of A Scramjet Engine P. Karthikeyan 1, B. Prakash 3 2, S. R. Balakrishnan 3 PG scholar 1, Professor 2, Director/H.O.D 3 1,2,3 Department

More information

Development of Two-Dimensional Convergent-Divergent Nozzle Performance Rapid Analysis Project

Development of Two-Dimensional Convergent-Divergent Nozzle Performance Rapid Analysis Project International Forum on Energy, Environment Science and Materials (IFEESM 015) Development of Two-Dimensional Convergent-Divergent Nozzle Performance Rapid Analysis Project Yaxiong YANG 1,a *, Eri Qitai,b,

More information

The ramjet cycle. Chapter Ramjet flow field

The ramjet cycle. Chapter Ramjet flow field Chapter 3 The ramjet cycle 3. Ramjet flow field Before we begin to analyze the ramjet cycle we will consider an example that can help us understand how the flow through a ramjet comes about. The key to

More information

Analysis and Design of a Scramjet Engine Inlet Operating from Mach 5 to Mach 10

Analysis and Design of a Scramjet Engine Inlet Operating from Mach 5 to Mach 10 International Journal of Mechanical Engineering and Applications 016; 4(1): 11-3 Published online February 16, 016 (http://www.sciencepublishinggroup.com/j/ijmea) doi: 10.11648/j.ijmea.0160401.1 ISSN:

More information

SARDAR RAJA COLLEGES

SARDAR RAJA COLLEGES SARDAR RAJA COLLEGES SARDAR RAJA COLLEGE OF ENGINEERING, ALANGULAM. DEPARTMENT OF MECHANICAL ENGINEERING MICRO LESSON PLAN SUBJECT : ME2351 - GAS DYNAMICS AND JET ROPULSION CLASS : III Year / VI SEM STAFF:

More information

Simulation And Cycle Analyses For High Bypass Turbofan Engine A Comparative Study

Simulation And Cycle Analyses For High Bypass Turbofan Engine A Comparative Study Proceedings of The National Conference On Undergraduate Research (NCUR) 2017 University of Memphis, TN Memphis Tennessee April 6-8, 2017 Simulation And Cycle Analyses For High Bypass Turbofan Engine A

More information

Cruising Flight Envelope Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Cruising Flight Envelope Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Cruising Flight Envelope Robert Stengel, Aircraft Flight Dynamics, MAE 331, 018 Learning Objectives Definitions of airspeed Performance parameters Steady cruising flight conditions Breguet range equations

More information

for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory?

for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? 1. 5% short answers for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? in what country (per Anderson) was the first

More information

IX. COMPRESSIBLE FLOW. ρ = P

IX. COMPRESSIBLE FLOW. ρ = P IX. COMPRESSIBLE FLOW Compressible flow is the study of fluids flowing at speeds comparable to the local speed of sound. This occurs when fluid speeds are about 30% or more of the local acoustic velocity.

More information

Compressible Flow. Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist

Compressible Flow. Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist Compressible Flow Professor Ugur GUVEN Aerospace Engineer Spacecraft Propulsion Specialist What is Compressible Flow? Compressible Flow is a type of flow in which the density can not be treated as constant.

More information

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS 2nd AIAA Aerospace Sciences Paper 2-33 Meeting and Exhibit January -8, 2, Reno, NV THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS E. Wintenberger and J. E. Shepherd Graduate Aeronautical

More information

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2018

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2018 MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING EMEC 426 Thermodynamics of Propulsion Systems Spring 2018 Instructor: Dr. Alan H. George Office: Roberts 119 Office Hours: to be announced

More information

Lect-36. In this lecture... Tutorial on radial flow turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-36. In this lecture... Tutorial on radial flow turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lect- 36 1 In this lecture... Lect-36 Tutorial on radial flow turbines 2 Problem # 1 Lect-36 The rotor of an IFR turbine, which is designed to operate at the nominal condition, is 23.76 cm in diameter

More information

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2) Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

Unified Quiz: Thermodynamics

Unified Quiz: Thermodynamics Unified Quiz: Thermodynamics October 14, 2005 Calculators allowed. No books or notes allowed. A list of equations is provided. Put your ID number on each page of the exam. Read all questions carefully.

More information

Dynamic Modeling and Simulation on GE90 Engine

Dynamic Modeling and Simulation on GE90 Engine The International Journal Of Engineering And Science (IJES) Volume 5 Issue 12 Pages PP 111-119 2016 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Dynamic Modeling and Simulation on GE90 Engine Shray Benawra

More information

SUPERSONIC WIND TUNNEL Project One. Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078

SUPERSONIC WIND TUNNEL Project One. Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 41 SUPERSONIC WIND UNNEL Project One Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 Project One in MAE 3293 Compressible Flow September

More information

Numerical investigation of second-law characteristics of ramjet throttling

Numerical investigation of second-law characteristics of ramjet throttling Scholars' Mine Masters Theses Student Research & Creative Works Spring 2012 Numerical investigation of second-law characteristics of ramjet throttling Jonathan Albert Sheldon Follow this and additional

More information

High Speed Propulsion

High Speed Propulsion High Speed Propulsion KTH Rocket Course 28 Ulf.Olsson.Thn @Telia.com What velocities? Isaac Newton: Law of gravity 1687 g = R g R 2 2 Perigee Apogee V = 2gR 112 m/s to leave earth. Hyperbolic velocity.

More information

ME 300 Thermodynamics II Spring 2015 Exam 3. Son Jain Lucht 8:30AM 11:30AM 2:30PM

ME 300 Thermodynamics II Spring 2015 Exam 3. Son Jain Lucht 8:30AM 11:30AM 2:30PM NAME: PUID#: ME 300 Thermodynamics II Spring 05 Exam 3 Circle your section (-5 points for not circling correct section): Son Jain Lucht 8:30AM :30AM :30PM Instructions: This is a closed book/note exam.

More information

DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS

DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS Kathleen Tran and Walter F. O'Brien, Jr Center for Turbomachinery and Propulsion Research Virginia Polytechnic Institute

More information

PART 2 POWER AND PROPULSION CYCLES

PART 2 POWER AND PROPULSION CYCLES PAR 2 POWER AND PROPULSION CYCLES PAR 2 POWER AND PROPULSION CYCLES 2A Gas Power and Propulsion Cycles [SB&VW -.8,.9,.,.,.2,.3,.4] In this section we analyze several gas cycles used in practical applications

More information

EVALUATION OF THE BEHAVIOUR OF STEAM EXPANDED IN A SET OF NOZZLES, IN A GIVEN TEMPERATURE

EVALUATION OF THE BEHAVIOUR OF STEAM EXPANDED IN A SET OF NOZZLES, IN A GIVEN TEMPERATURE Equatorial Journal of Engineering (2018) 9-13 Journal Homepage: www.erjournals.com ISSN: 0184-7937 EVALUATION OF THE BEHAVIOUR OF STEAM EXPANDED IN A SET OF NOZZLES, IN A GIVEN TEMPERATURE Kingsley Ejikeme

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. GATE 015 Q. 1 Q. 5 carry one mark each. Q.1 The partial differential equation (A) linear and first order (C) non-linear and first order u u + = 0 is t x (B) linear and second order (D) non-linear and second

More information

A Novel Airfoil Circulation Augment Flow Control Method Using Co-Flow Jet

A Novel Airfoil Circulation Augment Flow Control Method Using Co-Flow Jet AIAA Paper 2004-2208, 2004 A Novel Airfoil Circulation Augment Flow Control Method Using Co-Flow Jet Ge-Cheng Zha and Craig D. Paxton Dept. of Mechanical & Aerospace Engineering University of Miami Coral

More information

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

More information

GAS DYNAMICS AND JET PROPULSION

GAS DYNAMICS AND JET PROPULSION GAS DYNAMICS AND JE PROPULSION 1. What is the basic difference between compressible and incompressible fluid flow? Compressible Incompressible 1. Fluid velocities are appreciable 1. Fluid velocities are

More information

Concept: Propulsion. Narayanan Komerath. Mach nmber, 1-D analysis, Thermodynamic efficiency, Propulsive efficiency, thrust,

Concept: Propulsion. Narayanan Komerath. Mach nmber, 1-D analysis, Thermodynamic efficiency, Propulsive efficiency, thrust, 1 Concept: Propulsion 2 Narayanan Komerath 3 4 Keywords: compressor, turbine Mach nmber, 1-D analysis, Thermodynamic efficiency, Propulsive efficiency, thrust, 5 6 7 8 9 1. Definition Propulsion is the

More information

Nonlinear Aircraft Engine Model for Future Integrated Power Center Development

Nonlinear Aircraft Engine Model for Future Integrated Power Center Development Nonlinear Aircraft Engine Model for Future Integrated Power Center Development Hossein Balaghi Enalou, Mohamed Rashed, Ponggorn Kulsangcharoen, Christopher Ian Hill, Serhiy Bozhko Department of Electrical

More information

ME 6139: High Speed Aerodynamics

ME 6139: High Speed Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering, BUET Lecture-01 04 November 2017 teacher.buet.ac.bd/toufiquehasan/ toufiquehasan@me.buet.ac.bd 1 Aerodynamics is the study of dynamics

More information

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy;

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy; MAE 320 HW 7B his comprehensive homework is due Monday, December 5 th, 206. Each problem is worth the points indicated. Copying of the solution from another is not acceptable. Multi-choice, multi-answer

More information

Analysis of a Dual-Mode Scramjet Engine Isolator Operating From Mach 3.5 to Mach 6

Analysis of a Dual-Mode Scramjet Engine Isolator Operating From Mach 3.5 to Mach 6 International Journal of Mechanical Engineering and Applications 016; 4(5): 189-198 http://www.sciencepublishinggroup.com/j/ijmea doi: 10.11648/j.ijmea.0160405.14 ISSN: 330-03X (Print); ISSN: 330-048 (Online)

More information

Multistage Rocket Performance Project Two

Multistage Rocket Performance Project Two 41 Multistage Rocket Performance Project Two Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 Project Two in MAE 3293 Compressible Flow December

More information

A Computational Study on the Thrust Performance of a Supersonic Pintle Nozzle

A Computational Study on the Thrust Performance of a Supersonic Pintle Nozzle June 30 - July 3, 2015 Melbourne, Australia 9 P-10 A Computational Study on the Thrust Performance of a Supersonic Pintle Nozzle Ruoyu Deng Department of Mechanical Engineering Andong National University,

More information

Simulation of Condensing Compressible Flows

Simulation of Condensing Compressible Flows Simulation of Condensing Compressible Flows Maximilian Wendenburg Outline Physical Aspects Transonic Flows and Experiments Condensation Fundamentals Practical Effects Modeling and Simulation Equations,

More information

Gas Dynamics and Propulsion Dr. Babu Viswanathan Department of Mechanical Engineering Indian Institute of Technology - Madras. Lecture 01 Introduction

Gas Dynamics and Propulsion Dr. Babu Viswanathan Department of Mechanical Engineering Indian Institute of Technology - Madras. Lecture 01 Introduction Gas Dynamics and Propulsion Dr. Babu Viswanathan Department of Mechanical Engineering Indian Institute of Technology - Madras Lecture 01 Introduction Good morning. I will start our lecture today with brief

More information

Thermodynamics is the Science of Energy and Entropy

Thermodynamics is the Science of Energy and Entropy Definition of Thermodynamics: Thermodynamics is the Science of Energy and Entropy - Some definitions. - The zeroth law. - Properties of pure substances. - Ideal gas law. - Entropy and the second law. Some

More information

ME6604-GAS DYNAMICS AND JET PROPULSION. Prepared by C.Thirugnanam AP/MECH TWO MARK QUESTIONS AND ANSWERS UNIT I ISENTROPIC FLOW

ME6604-GAS DYNAMICS AND JET PROPULSION. Prepared by C.Thirugnanam AP/MECH TWO MARK QUESTIONS AND ANSWERS UNIT I ISENTROPIC FLOW SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2008 Certified Institution Dr. E.M.Abdullah

More information

Applied Gas Dynamics Flow With Friction and Heat Transfer

Applied Gas Dynamics Flow With Friction and Heat Transfer Applied Gas Dynamics Flow With Friction and Heat Transfer Ethirajan Rathakrishnan Applied Gas Dynamics, John Wiley & Sons (Asia) Pte Ltd c 2010 Ethirajan Rathakrishnan 1 / 121 Introduction So far, we have

More information

Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA Problem Set 11

Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA Problem Set 11 Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA 02139 16.003/16.004 Unified Engineering III, IV Spring 2007 Problem Set 11 Name: Due Date: 05/01/2007 T17

More information

Design of Radial Turbines & Turbochargers

Design of Radial Turbines & Turbochargers RMD50 Design of Radial Turbines & Turbochargers Session delivered by: Prof. Q. H. Nagpurwala 4 @ M S Ramaiah School of Advanced Studies, Bengaluru Session Objective RMD50 To discuss the design of radial

More information

Feasibility Study of Replacing Steam Ejector with Liquid Ring Vacuum Pump (LRVP) in 210 MW Plant of Vijayawada Thermal Power Station (V.T.P.

Feasibility Study of Replacing Steam Ejector with Liquid Ring Vacuum Pump (LRVP) in 210 MW Plant of Vijayawada Thermal Power Station (V.T.P. Feasibility Study of Replacing Steam Ejector with Liquid Ring Vacuum Pump (LRVP) in 210 MW Plant of Vijayawada Thermal Power Station (V.T.P.S) V.SAIRAM M.Tech student, Department of Mechanical Engineering

More information

Performance Assessment of a Boundary Layer Ingesting Distributed Propulsion System at Off-Design

Performance Assessment of a Boundary Layer Ingesting Distributed Propulsion System at Off-Design Performance Assessment of a Boundary Layer Ingesting Distributed Propulsion System at Off-Design C. Goldberg, D. Nalianda P. Laskaridis and P. Pilidis Cranfield University, Bedfordshire, MK43 AL, United

More information

Prob and Stats, Sep 23

Prob and Stats, Sep 23 Prob and Stats, Sep 23 Calculator Scatter Plots and Equations of Lines of Fit Book Sections: 4.1 Essential Questions: How can the calculator help me to produce a scatter plot, and also the equation of

More information

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES Chapter 10 THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES It is not the sun to overtake the moon, nor doth the night outstrip theday.theyfloateachinanorbit. The Holy Qur-ān In many engineering applications,

More information

Gas Dynamics and Jet Propulsion

Gas Dynamics and Jet Propulsion Gas Dynamics and Jet Propulsion (For B.E. Mechanical Engineering Students) (As per Anna University and Leading Universities New Revised Syllabus) Prof. K. Pandian Dr. A.Anderson, M.E., Ph.D., Professor

More information

Notes #4a MAE 533, Fluid Mechanics

Notes #4a MAE 533, Fluid Mechanics Notes #4a MAE 533, Fluid Mechanics S. H. Lam lam@princeton.edu http://www.princeton.edu/ lam October 23, 1998 1 The One-dimensional Continuity Equation The one-dimensional steady flow continuity equation

More information

AGENA ROCKET NOZZLE: PROPERTIES AND GEOMETRY. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University

AGENA ROCKET NOZZLE: PROPERTIES AND GEOMETRY. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University AGENA ROCKET NOZZLE: PROPERTIES AND GEOMETRY Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 MAE 443 Project 1 Gas Power Oct 0, 000 Agena

More information

AIAA American Institute of Aeronautics and Astronautics Page 1. * Research Engineer, Aerospace Systems Design Laboratory

AIAA American Institute of Aeronautics and Astronautics Page 1. * Research Engineer, Aerospace Systems Design Laboratory A Method for Comprehensive Evaluation of Propulsion System Thermodynamic Performance and Loss Dr. Bryce Roth * Georgia Institute of Technology, Atlanta, GA 3332-15 www.asdl.gatech.edu Abstract * This paper

More information

Propulsion Thermodynamics

Propulsion Thermodynamics Chapter 1 Propulsion Thermodynamics 1.1 Introduction The Figure below shows a cross-section of a Pratt and Whitney JT9D-7 high bypass ratio turbofan engine. The engine is depicted without any inlet, nacelle

More information

Thermal Energy Final Exam Fall 2002

Thermal Energy Final Exam Fall 2002 16.050 Thermal Energy Final Exam Fall 2002 Do all eight problems. All problems count the same. 1. A system undergoes a reversible cycle while exchanging heat with three thermal reservoirs, as shown below.

More information

What is the crack propagation rate for 7075-T6 aluminium alloy.

What is the crack propagation rate for 7075-T6 aluminium alloy. - 130 - APPENDIX 4A 100 QUESTIONS BASED ON SOURCE DOCUMENTS LISTED IN APPENDIX 4B 20-06 Magnitude of reductions in heat transfer on the nose region of a body when ablation of the surface takes place. (PI2002)

More information

Summer AS5150# MTech Project (summer) **

Summer AS5150# MTech Project (summer) ** AE1 - M.Tech Aerospace Engineering Sem. Course No Course Name Lecture Tutorial Extended Tutorial Afternoon Lab Session Time to be spent outside of class 1 AS5010 Aerodynamics and Aircraft 3 0 0 0 6 9 performance

More information

Technology of Rocket

Technology of Rocket Technology of Rocket Parts of Rocket There are four major parts of rocket Structural system Propulsion system Guidance system Payload system Structural system The structural system of a rocket includes

More information

An Experiment on Aerodynamic Nozzles at M= 2

An Experiment on Aerodynamic Nozzles at M= 2 R. & M. No. 3382 MINISTRY OF AVIATION AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA An Experiment on Aerodynamic Nozzles at M= 2 " By J. REID LONDON: HER MAJESTY'S STATIONERY OFFICE 1964 PRICE 15s.

More information