Homogenization in Elasticity

Size: px
Start display at page:

Download "Homogenization in Elasticity"

Transcription

1 uliya Gorb November 9 13, 2015

2 uliya Gorb Homogenization of Linear Elasticity problem We now study Elasticity problem in Ω ε R 3, where the domain Ω ε possess a periodic structure with period 0 < ε 1 and has a smooth boundary Ω = Γ D Γ N, where Γ D Γ N = Consider the reference periodic cell = [0,1] 3 Assume that elastic coeff s C ε (x) = {C ε ijkl(x)} i,j,k,l=1,2,3 are periodic functions of x Ω ε with period 0 < ε 1, defined as follows: Let C(y) = {C ijkl (y)} i,j,k,l=1,2,3 be bounded, -periodic function, extended by periodicity to whole R 3 and that for all y satisfies and Define and study C ijkl = C jikl = C klij (1) m > 0 s.t. τ (τ ij = τ ji) : C ijkl τ kl τ ij mτ ijτ ij (2) ( x C ε (x) = C ε)

3 uliya Gorb Homogenization of Linear Elasticity problem (cont.) Classical Formulation of Linear Elasticity problem: σij ε +f i(x) = 0, x Ω ε x j ( i {1,2,3} : σij ε x ) = C ijkl e kl (u ε ) ε ui ε (x) = 0, x Γ D σijn ε j = 0, x Γ N (3) where n = (n 1,n 2,n 3) is the unit outer normal to Γ N Definition Homogenization of (3) consists in finding the limit of the solution u ε of (3) as ε 0

4 uliya Gorb Two-scale Asymptotic Method Look for expansions of ui ε (x) and σij(x) ε in the forms: ( ui ε (x) = ui 0 x, x ) ( +εui 1 x, x ) ( +ε 2 ui 2 x, x ) +..., ε ε ε σij(x) ε = 1 ( ε σ 1 ij x, x ) ( +σij 0 x, x ) ( +εσij 1 x, x ) +... ε ε ε (4) where u m i (x,y) and σ m ij (x,y) are the -periodic functions of y = x ε, i {1,2,3}, m {0,1,...} Substitute (4) back to (3) using e ij(u) = 1 ε ey ij (u0 )+ε 0[ ] e y ij (u1 )+eij(u x 0 ) +..., where eij(v) x = 1 ( ) vi + vj, e y ij 2 x j x (v) = 1 ( ) vi + vj i 2 y j y i Then σij(x,y) ε = 1 ε C ijkl(y)e y ij (u0 )+ε 0[ ] C ijkl (y)e y ij (u1 )+C ijkl (y)eij(u x 0 ) +...,

5 uliya Gorb Homogenization of Linear Elasticity problem (cont.) Hence, σ 1 ij (x,y) = C ijkl (y)e y kl (u0 ) [ ] (5) σij(x,y) 0 = C ijkl (y) e y kl (u1 )+ekl(u x 0 ) Now plug (4.1) into (3) and collect the terms of the same powers of ε to obtain σ 1 ε 2 ij : (x,y) = 0, y y j ε 1 σij 0 : (x,y) = σ 1 ij (x,y), y (6) y j x j ε 0 σij 1 : (x,y) = σ0 ij (x,y) f i(x), y y j x j The suitable space for variational formulation for u 0 and u 1 is { } W = v H0(Ω) 1 3 : v is periodic, v(y)dy = 0 equipped with the norm [ v V = ( v 2 + v 2 ) dx Ω ] 1/2

6 Determination of u 0 uliya Gorb From (6.1) we have σ 1 ij y j (x,y) = 0, y σ 1 ij (x,y) is periodic in y Variational Formulation for (6.1) where Find u 0 W s.t. v W : a (u 0,v) = 0, (7) a (u 0,v) = C ijkl (y)e kl (u 0 ) e ij(v) dy It is easy to see that the solution u 0 of (10) is a constant w.r.t. y, that is, u 0 (x,y) = u 0 (x)

7 Determination of u 1 uliya Gorb From (6.2) we use the following ansatz for solution u 1 (x,y) = λ mn(y)e x mn(u 0 )+û 1 (x) (8) that we substitute back in (6.2) to obtain the Cell Problem i,m,n {1,2,3} : Select P mn(y) = ( P 1 mn(y),p 2 mn(y),p 3 mn(y) ) where [C ijkl (y)e y kl (λmn)] = Cijmn(y), y y j y j λ mn(y) is periodic (9) P i mn(y) = y nδ im, i,m,n {1,2,3} where δ im the Kronecker delta then (9) becomes {C ijkl (y)e y kl [λmn +Pmn(y)]} = 0, y i,m,n {1,2,3} : y j λ mn(y) is periodic

8 uliya Gorb Determination of u 1 (cont.) Variational Formulation for (6.1) Find λ mn W s.t. v W : a (λ mn +P mn,v) = 0, m,n {1,2,3} (10) where a (ξ,η) = C ijkl (y)e kl (ξ) e ij(η) dy

9 Effective Elasticity uliya Gorb We now determine equation satisfied by u 0 Substitute (8) into (6) σ 0 ij (x,y) = C ijkl(y) [ e y kl (λmn)+δ mkδ nl ] e x mn (u 0 ) = [ C ijkl (y)e y kl (λmn)+c ijmn(y) ] e x mn (u0 ) Now average σij(x,y) 0 over : { ˆσ ij(x) 0 1 := [C ijkl (y)e y kl }e (λmn)+cijmn(y)] dy mn(u x 0 ) =: C ijmnemn(u x 0 ), where Effective Elasticity Remark: C ijmn = 1 [C ijkl (y)e y kl (λmn)+cijmn(y)] dy (11) Expression ˆσ 0 ij(x) = C ijmne x mn(u 0 ) is the stress-strain relation for the homogenized body

10 Macroscopic Equation uliya Gorb The macroscopic balance equation is obtained from (6.3) by integrating it over : σij 1 σ 0 ij (x,y) dy = (x,y)dy f i(x)dy y j x j Using the periodicity of σij(x,y) 1 in y and that f is a function of x Ω: σij(x,y) 0 dy +f i(x) = 0, x Ω x j Hence, Macroscopic Equation: i {1,2,3} : where C is given by (11) ˆσ 0 ij (x)+f i(x) = 0, x j ˆσ ij(x) 0 = C ijmnemn(u x 0 ) u 0 i (x) = 0, x Ω x Γ D ˆσ 0 ij(x)n j = 0, x Γ N That is, the homogenized material is linearly elastic

11 Macroscopic Equation uliya Gorb Remark: The macroscopic stress tensor ˆσ ij 0 := σ 0 ij(x,y)dy is defined as the volumeric mean of σij(x,y). 0 Below we show that it also can be given via surface mean σik 0 due to (6.1): (x,y) = 0, y y k Multiply the above equation by y j and integrate the result over : σik 0 (x,y)y j dy = 0 y k The integration by parts yields: Macroscopic Stress ˆσ ij(x) 0 = σ 0 ik(x,y)n k y j ds y (12)

12 uliya Gorb Properties of Homogenized Coefficient As in the previous cases of homogenization of diffusion and Stokes flow, it is easy to check that the effective elasticity tensor C is given by (11) is 1 symmetric: C ijkl = C jikl = C klij 2 and positive definite: Remark: m > 0 s.t. τ (τ ij = τ ji) : C ijklτ kl τ ij mτ ijτ ij where constant m is the same as in (2) Even if the original (heterogeneous) material is isotropic the homogenized one is anisotropic! Indeed, in (3) consider C ijkl (y) = λ(y)δ ijδ kl +µ(y)(δ ik δ jl +δ il δ jk ) and substitute this into (11), and obtain C ijkl = λ δ ijδ kl +µ (δ ik δ jl +δ il δ jk )+δ ij λ(y)emm(λ y kl ) dy+2 where λ = λ(y) dy, µ = µ(y) dy µ(y)e y ij (λ kl) dy

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations 6.2 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive quations Constitutive quations For elastic materials: If the relation is linear: Û σ ij = σ ij (ɛ) = ρ () ɛ ij σ ij =

More information

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Somnath Bhowmick Materials Science and Engineering, IIT Kanpur April 6, 2018 Tensile test and Hooke s Law Upto certain strain (0.75),

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

A short review of continuum mechanics

A short review of continuum mechanics A short review of continuum mechanics Professor Anette M. Karlsson, Department of Mechanical ngineering, UD September, 006 This is a short and arbitrary review of continuum mechanics. Most of this material

More information

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive

More information

Problem Set 4. Eshelby s Inclusion

Problem Set 4. Eshelby s Inclusion ME34B Elasticity of Microscopic Structures Wei Cai Stanford University Winter 24 Problem Set 4. Eshelby s Inclusion Chris Weinberger and Wei Cai c All rights reserved Problem 4. (5 Spherical inclusion.

More information

BACKGROUNDS. Two Models of Deformable Body. Distinct Element Method (DEM)

BACKGROUNDS. Two Models of Deformable Body. Distinct Element Method (DEM) BACKGROUNDS Two Models of Deformable Body continuum rigid-body spring deformation expressed in terms of field variables assembly of rigid-bodies connected by spring Distinct Element Method (DEM) simple

More information

Understand basic stress-strain response of engineering materials.

Understand basic stress-strain response of engineering materials. Module 3 Constitutive quations Learning Objectives Understand basic stress-strain response of engineering materials. Quantify the linear elastic stress-strain response in terms of tensorial quantities

More information

Elastic Fields of Dislocations in Anisotropic Media

Elastic Fields of Dislocations in Anisotropic Media Elastic Fields of Dislocations in Anisotropic Media a talk given at the group meeting Jie Yin, David M. Barnett and Wei Cai November 13, 2008 1 Why I want to give this talk Show interesting features on

More information

Fundamentals of Linear Elasticity

Fundamentals of Linear Elasticity Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy

More information

3D and Planar Constitutive Relations

3D and Planar Constitutive Relations 3D and Planar Constitutive Relations A School on Mechanics of Fibre Reinforced Polymer Composites Knowledge Incubation for TEQIP Indian Institute of Technology Kanpur PM Mohite Department of Aerospace

More information

Gyroviscosity in the NIMROD code. A.Y. Pankin D. D. Schnack C. Sovinec S. E. Kruger

Gyroviscosity in the NIMROD code. A.Y. Pankin D. D. Schnack C. Sovinec S. E. Kruger Gyroviscosity in the NIMROD code A.Y. Pankin D. D. Schnack C. Sovinec S. E. Kruger Outline Introduction Two possible implementations Testing GV in the NIMROD code Convergence Summary ε = ω / Ω i ξ = V

More information

Basic concepts to start Mechanics of Materials

Basic concepts to start Mechanics of Materials Basic concepts to start Mechanics of Materials Georges Cailletaud Centre des Matériaux Ecole des Mines de Paris/CNRS Notations Notations (maths) (1/2) A vector v (element of a vectorial space) can be seen

More information

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components Cartesian Tensors Reference: Jeffreys Cartesian Tensors 1 Coordinates and Vectors z x 3 e 3 y x 2 e 2 e 1 x x 1 Coordinates x i, i 123,, Unit vectors: e i, i 123,, General vector (formal definition to

More information

Introduction to fracture mechanics

Introduction to fracture mechanics Introduction to fracture mechanics Prof. Dr. Eleni Chatzi Dr. Giuseppe Abbiati, Dr. Konstantinos Agathos Lecture 6-9 November, 2017 Institute of Structural Engineering, ETH Zu rich November 9, 2017 Institute

More information

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February.

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February. Engineering Sciences 241 Advanced Elasticity, Spring 2001 J. R. Rice Homework Problems / Class Notes Mechanics of finite deformation (list of references at end) Distributed Thursday 8 February. Problems

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139 MASSACHUSETTS NSTTUTE OF TECHNOLOGY DEPARTMENT OF MATERALS SCENCE AND ENGNEERNG CAMBRDGE, MASSACHUSETTS 39 3. MECHANCAL PROPERTES OF MATERALS PROBLEM SET SOLUTONS Reading Ashby, M.F., 98, Tensors: Notes

More information

CML Lecture Series Primer on Homogenization

CML Lecture Series Primer on Homogenization C ecture Series Primer on Homogenization Bing C. Chen The University of ichigan, Department of echanical Engineering Computational echanics aboratory utline odel problem: asymptotic analysis for a uni-directional

More information

Mathematical Preliminaries

Mathematical Preliminaries Mathematical Preliminaries Introductory Course on Multiphysics Modelling TOMAZ G. ZIELIŃKI bluebox.ippt.pan.pl/ tzielins/ Table of Contents Vectors, tensors, and index notation. Generalization of the concept

More information

A.1 Appendix on Cartesian tensors

A.1 Appendix on Cartesian tensors 1 Lecture Notes on Fluid Dynamics (1.63J/2.21J) by Chiang C. Mei, February 6, 2007 A.1 Appendix on Cartesian tensors [Ref 1] : H Jeffreys, Cartesian Tensors; [Ref 2] : Y. C. Fung, Foundations of Solid

More information

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations Math 575-Lecture 13 In 1845, tokes extended Newton s original idea to find a constitutive law which relates the Cauchy stress tensor to the velocity gradient, and then derived a system of equations. The

More information

Chapter 7. Kinematics. 7.1 Tensor fields

Chapter 7. Kinematics. 7.1 Tensor fields Chapter 7 Kinematics 7.1 Tensor fields In fluid mechanics, the fluid flow is described in terms of vector fields or tensor fields such as velocity, stress, pressure, etc. It is important, at the outset,

More information

CH.1. THERMODYNAMIC FOUNDATIONS OF CONSTITUTIVE MODELLING. Computational Solid Mechanics- Xavier Oliver-UPC

CH.1. THERMODYNAMIC FOUNDATIONS OF CONSTITUTIVE MODELLING. Computational Solid Mechanics- Xavier Oliver-UPC CH.1. THERMODYNAMIC FOUNDATIONS OF CONSTITUTIVE MODELLING Computational Solid Mechanics- Xavier Oliver-UPC 1.1 Dissipation approach for constitutive modelling Ch.1. Thermodynamical foundations of constitutive

More information

Constitutive Relations

Constitutive Relations Constitutive Relations Dr. Andri Andriyana Centre de Mise en Forme des Matériaux, CEMEF UMR CNRS 7635 École des Mines de Paris, 06904 Sophia Antipolis, France Spring, 2008 Outline Outline 1 Review of field

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

L8. Basic concepts of stress and equilibrium

L8. Basic concepts of stress and equilibrium L8. Basic concepts of stress and equilibrium Duggafrågor 1) Show that the stress (considered as a second order tensor) can be represented in terms of the eigenbases m i n i n i. Make the geometrical representation

More information

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Fig. 1. Circular fiber and interphase between the fiber and the matrix. Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In

More information

Exam in Fluid Mechanics 5C1214

Exam in Fluid Mechanics 5C1214 Eam in Fluid Mechanics 5C1214 Final eam in course 5C1214 13/01 2004 09-13 in Q24 Eaminer: Prof. Dan Henningson The point value of each question is given in parenthesis and you need more than 20 points

More information

Constitutive Relations

Constitutive Relations Constitutive Relations Andri Andriyana, Ph.D. Centre de Mise en Forme des Matériaux, CEMEF UMR CNRS 7635 École des Mines de Paris, 06904 Sophia Antipolis, France Spring, 2008 Outline Outline 1 Review of

More information

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004 Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

More information

Useful Formulae ( )

Useful Formulae ( ) Appendix A Useful Formulae (985-989-993-) 34 Jeremić et al. A.. CHAPTER SUMMARY AND HIGHLIGHTS page: 35 of 536 A. Chapter Summary and Highlights A. Stress and Strain This section reviews small deformation

More information

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA Review of Fundamentals displacement-strain relation stress-strain relation balance of momentum (deformation) (constitutive equation) (Newton's Law)

More information

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ. Mohr s Circle By drawing Mohr s circle, the stress transformation in -D can be done graphically. σ = σ x + σ y τ = σ x σ y + σ x σ y cos θ + τ xy sin θ, 1 sin θ + τ xy cos θ. Note that the angle of rotation,

More information

Dr. Parveen Lata Department of Basic and Applied Sciences, Punjabi University, Patiala, Punjab, India.

Dr. Parveen Lata Department of Basic and Applied Sciences, Punjabi University, Patiala, Punjab, India. International Journal of Theoretical and Applied Mechanics. ISSN 973-685 Volume 12, Number 3 (217) pp. 435-443 Research India Publications http://www.ripublication.com Linearly Distributed Time Harmonic

More information

MICROMECHANICS AND HOMOGENIZATION. Materials Containing Coated and Uncoated Spherical Inhomogeneities

MICROMECHANICS AND HOMOGENIZATION. Materials Containing Coated and Uncoated Spherical Inhomogeneities MICROMECHANICS AND HOMOGENIZATION Materials Containing Coated and Uncoated Spherical Inhomogeneities Václav Nežerka, 2012 i Acknowledgement I would like to thank my supervisor, Jan Zeman, who supported

More information

Research Article Divergent Integrals in Elastostatics: General Considerations

Research Article Divergent Integrals in Elastostatics: General Considerations International Scholarly Research Network ISRN Applied Mathematics olume 2011, Article ID 726402, 25 pages doi:10.5402/2011/726402 Research Article Divergent Integrals in Elastostatics: General Considerations..

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 57 AA242B: MECHANICAL VIBRATIONS Dynamics of Continuous Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations: Theory

More information

ASYMPTOTIC HOMOGENISATION IN STRENGTH AND FATIGUE DURABILITY ANALYSIS OF COMPOSITES

ASYMPTOTIC HOMOGENISATION IN STRENGTH AND FATIGUE DURABILITY ANALYSIS OF COMPOSITES IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics Ed: A.B.Movchan), ISBN 1-4020-1780-4, Kluwer, 2003, 293-403 ASYMPTOTIC HOMOGENISATION IN STRENGTH AND FATIGUE DURABILITY

More information

Formal Asymptotic Homogenization

Formal Asymptotic Homogenization September 21 25, 2015 Formal asymptotic homogenization Here we present a formal asymptotic technique (sometimes called asymptotic homogenization) based on two-spatial scale expansions These expansions

More information

Homework 7-8 Solutions. Problems

Homework 7-8 Solutions. Problems Homework 7-8 Solutions Problems 26 A rhombus is a parallelogram with opposite sides of equal length Let us form a rhombus using vectors v 1 and v 2 as two adjacent sides, with v 1 = v 2 The diagonals of

More information

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity 6.20 HANDOUT #2 Fall, 2002 Review of General Elasticity NOTATION REVIEW (e.g., for strain) Engineering Contracted Engineering Tensor Tensor ε x = ε = ε xx = ε ε y = ε 2 = ε yy = ε 22 ε z = ε 3 = ε zz =

More information

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Thermodynamics Derivation Hooke s Law: Anisotropic Elasticity

More information

ρ t + (ρu j ) = 0 (2.1) x j +U j = 0 (2.3) ρ +ρ U j ρ

ρ t + (ρu j ) = 0 (2.1) x j +U j = 0 (2.3) ρ +ρ U j ρ Chapter 2 Mathematical Models The following sections present the equations which are used in the numerical simulations documented in this thesis. For clarity, equations have been presented in Cartesian

More information

Higher Dimensions. Introduction. Differential Forms

Higher Dimensions. Introduction. Differential Forms 8 Vector Analysis in Higher Dimensions 8.1 An Introduction to Differential Forms 8.2 Manifolds and Integrals of k-forms 8.3 The Generalized Stokes s Theorem True/False Exercises for Chapter 8 Miscellaneous

More information

Chapter 3 Stress, Strain, Virtual Power and Conservation Principles

Chapter 3 Stress, Strain, Virtual Power and Conservation Principles Chapter 3 Stress, Strain, irtual Power and Conservation Principles 1 Introduction Stress and strain are key concepts in the analytical characterization of the mechanical state of a solid body. While stress

More information

ICES REPORT February Saumik Dana and Mary F. Wheeler

ICES REPORT February Saumik Dana and Mary F. Wheeler ICE REPORT 18-2 February 218 A framework for arriving at bounds on effective moduli in heterogeneous poroelastic solids by aumik Dana and Mary F. Wheeler The Institute for Computational Engineering and

More information

TRANSPORT IN POROUS MEDIA

TRANSPORT IN POROUS MEDIA 1 TRANSPORT IN POROUS MEDIA G. ALLAIRE CMAP, Ecole Polytechnique 1. Introduction 2. Main result in an unbounded domain 3. Asymptotic expansions with drift 4. Two-scale convergence with drift 5. The case

More information

Lattice Boltzmann Method

Lattice Boltzmann Method 3 Lattice Boltzmann Method 3.1 Introduction The lattice Boltzmann method is a discrete computational method based upon the lattice gas automata - a simplified, fictitious molecular model. It consists of

More information

Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal

Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal DEVELOPING CLOSURES FOR TURBULENT FLOW OF VISCOELASTIC FENE-P FLUIDS F. T. Pinho Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal C. F. Li Dep. Energy, Environmental

More information

Homogenization of Kirchhoff plate equation

Homogenization of Kirchhoff plate equation Homogenization of Kirchhoff plate equation Jelena Jankov J. J. STROSSMAYER UNIVERSITY OF OSIJEK DEPARTMENT OF MATHEMATICS Trg Ljudevita Gaja 6 31000 Osijek, Croatia http://www.mathos.unios.hr jjankov@mathos.hr

More information

VECTORS, TENSORS AND INDEX NOTATION

VECTORS, TENSORS AND INDEX NOTATION VECTORS, TENSORS AND INDEX NOTATION Enrico Nobile Dipartimento di Ingegneria e Architettura Università degli Studi di Trieste, 34127 TRIESTE March 5, 2018 Vectors & Tensors, E. Nobile March 5, 2018 1 /

More information

IMA Preprint Series # 2053

IMA Preprint Series # 2053 NONAFFINE CORRELATIONS IN RANDOM ELASTIC MEDIA By B.A. DiDonna and T.C. Lubensky IMA Preprint Series # 253 ( June 25 ) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY OF MINNESOTA 4 Lind Hall

More information

Mechanics PhD Preliminary Spring 2017

Mechanics PhD Preliminary Spring 2017 Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n

More information

HÅLLFASTHETSLÄRA, LTH Examination in computational materials modeling

HÅLLFASTHETSLÄRA, LTH Examination in computational materials modeling HÅLLFASTHETSLÄRA, LTH Examination in computational materials modeling TID: 2016-28-10, kl 14.00-19.00 Maximalt 60 poäng kan erhållas på denna tenta. För godkänt krävs 30 poäng. Tillåtet hjälpmedel: räknare

More information

Lecture Note 1. Introduction to Elasticity Equations

Lecture Note 1. Introduction to Elasticity Equations ME34B Elasticity of Microscopic tructures tanford University Winter 24 Lecture Note. Introduction to Elasticity Equations Chris Weinberger and Wei Cai c All rights reserved January 2, 24 Contents Index

More information

Generalized Korn s inequality and conformal Killing vectors

Generalized Korn s inequality and conformal Killing vectors Generalized Korn s inequality and conformal Killing vectors arxiv:gr-qc/0505022v1 4 May 2005 Sergio Dain Max-Planck-Institut für Gravitationsphysik Am Mühlenberg 1 14476 Golm Germany February 4, 2008 Abstract

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Engineering Acoustics Session 1aEA: Thermoacoustics I 1aEA7. On discontinuity

More information

Here, the parameter is the cylindrical coordinate, (a constant) is the radius, and the constant controls the rate of climb.

Here, the parameter is the cylindrical coordinate, (a constant) is the radius, and the constant controls the rate of climb. Line integrals in 3D A line integral in space is often written in the form f( ) d. C To evaluate line integrals, you must describe the path parametrically in the form ( s). s a path in space Often, for

More information

A Locking-Free MHM Method for Elasticity

A Locking-Free MHM Method for Elasticity Trabalho apresentado no CNMAC, Gramado - RS, 2016. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics A Locking-Free MHM Method for Elasticity Weslley S. Pereira 1 Frédéric

More information

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Part III Todd Arbogast Department of Mathematics and Center for Subsurface Modeling, Institute for Computational Engineering and

More information

The Weierstrass Theory For Elliptic Functions. The Burn 2007

The Weierstrass Theory For Elliptic Functions. The Burn 2007 The Weierstrass Theory For Elliptic Functions Including The Generalisation To Higher Genus Department of Mathematics, MACS Heriot Watt University Edinburgh The Burn 2007 Outline Elliptic Function Theory

More information

Waveform inversion and time-reversal imaging in attenuative TI media

Waveform inversion and time-reversal imaging in attenuative TI media Waveform inversion and time-reversal imaging in attenuative TI media Tong Bai 1, Tieyuan Zhu 2, Ilya Tsvankin 1, Xinming Wu 3 1. Colorado School of Mines 2. Penn State University 3. University of Texas

More information

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity PEAT8002 - SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity Nick Rawlinson Research School of Earth Sciences Australian National University Anisotropy Introduction Most of the theoretical

More information

PROBLEM OF CRACK UNDER QUASIBRITTLE FRACTURE V.A. KOVTUNENKO

PROBLEM OF CRACK UNDER QUASIBRITTLE FRACTURE V.A. KOVTUNENKO PROBLEM OF CRACK UNDER QUASIBRITTLE FRACTURE V.A. KOVTUNENKO Overview: 1. Motivation 1.1. Evolutionary problem of crack propagation 1.2. Stationary problem of crack equilibrium 1.3. Interaction (contact+cohesion)

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 1.510 Introduction to Seismology Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 1.510 Introduction to

More information

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components Cartesian Tensors Reference: Jeffreys Cartesian Tensors 1 Coordinates and Vectors z x 3 e 3 y x 2 e 2 e 1 x x 1 Coordinates x i, i 123,, Unit vectors: e i, i 123,, General vector (formal definition to

More information

Comparative Analysis of Mesh Generators and MIC(0) Preconditioning of FEM Elasticity Systems

Comparative Analysis of Mesh Generators and MIC(0) Preconditioning of FEM Elasticity Systems Comparative Analysis of Mesh Generators and MIC(0) Preconditioning of FEM Elasticity Systems Nikola Kosturski and Svetozar Margenov Institute for Parallel Processing, Bulgarian Academy of Sciences Abstract.

More information

3.2 Hooke s law anisotropic elasticity Robert Hooke ( ) Most general relationship

3.2 Hooke s law anisotropic elasticity Robert Hooke ( ) Most general relationship 3.2 Hooke s law anisotropic elasticity Robert Hooke (1635-1703) Most general relationship σ = C ε + C ε + C ε + C γ + C γ + C γ 11 12 yy 13 zz 14 xy 15 xz 16 yz σ = C ε + C ε + C ε + C γ + C γ + C γ yy

More information

Add-on unidirectional elastic metamaterial plate cloak

Add-on unidirectional elastic metamaterial plate cloak Add-on unidirectional elastic metamaterial plate cloak Min Kyung Lee *a and Yoon Young Kim **a,b a Department of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul,

More information

CH.6. LINEAR ELASTICITY. Multimedia Course on Continuum Mechanics

CH.6. LINEAR ELASTICITY. Multimedia Course on Continuum Mechanics CH.6. LINEAR ELASTICITY Multimedia Course on Continuum Mechanics Overview Hypothesis of the Linear Elasticity Theory Linear Elastic Constitutive Equation Generalized Hooke s Law Elastic Potential Isotropic

More information

Chapter 13. Eddy Diffusivity

Chapter 13. Eddy Diffusivity Chapter 13 Eddy Diffusivity Glenn introduced the mean field approximation of turbulence in two-layer quasigesotrophic turbulence. In that approximation one must solve the zonally averaged equations for

More information

1 Curvature of submanifolds of Euclidean space

1 Curvature of submanifolds of Euclidean space Curvature of submanifolds of Euclidean space by Min Ru, University of Houston 1 Curvature of submanifolds of Euclidean space Submanifold in R N : A C k submanifold M of dimension n in R N means that for

More information

A Brief Introduction to Tensor

A Brief Introduction to Tensor Gonit Sora Article 1-13 Downloaded from Gonit Sora Gonit Sora: http://gonitsora.com Introductory Article Rupam Haloi Department of Mathematical Sciences, Tezpur University, Napaam - 784028, India. Abstract:

More information

Elements of Rock Mechanics

Elements of Rock Mechanics Elements of Rock Mechanics Stress and strain Creep Constitutive equation Hooke's law Empirical relations Effects of porosity and fluids Anelasticity and viscoelasticity Reading: Shearer, 3 Stress Consider

More information

Faculty of Engineering, Mathematics and Science School of Mathematics

Faculty of Engineering, Mathematics and Science School of Mathematics Faculty of Engineering, Mathematics and Science School of Mathematics JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Module MA3429: Differential Geometry I Trinity Term 2018???, May??? SPORTS

More information

Lecture 8: Tissue Mechanics

Lecture 8: Tissue Mechanics Computational Biology Group (CoBi), D-BSSE, ETHZ Lecture 8: Tissue Mechanics Prof Dagmar Iber, PhD DPhil MSc Computational Biology 2015/16 7. Mai 2016 2 / 57 Contents 1 Introduction to Elastic Materials

More information

STRESS TRANSPORT MODELLING 2

STRESS TRANSPORT MODELLING 2 STRESS TRANSPORT MODELLING 2 T.J. Craft Department of Mechanical, Aerospace & Manufacturing Engineering UMIST, Manchester, UK STRESS TRANSPORT MODELLING 2 p.1 Introduction In the previous lecture we introduced

More information

1. Background. is usually significantly lower than it is in uniaxial tension

1. Background. is usually significantly lower than it is in uniaxial tension NOTES ON QUANTIFYING MODES OF A SECOND- ORDER TENSOR. The mechanical behavior of rocks and rock-like materials (concrete, ceramics, etc.) strongly depends on the loading mode, defined by the values and

More information

RANS Equations in Curvilinear Coordinates

RANS Equations in Curvilinear Coordinates Appendix C RANS Equations in Curvilinear Coordinates To begin with, the Reynolds-averaged Navier-Stokes RANS equations are presented in the familiar vector and Cartesian tensor forms. Each term in the

More information

ENGN 2290: Plasticity Computational plasticity in Abaqus

ENGN 2290: Plasticity Computational plasticity in Abaqus ENGN 229: Plasticity Computational plasticity in Abaqus The purpose of these exercises is to build a familiarity with using user-material subroutines (UMATs) in Abaqus/Standard. Abaqus/Standard is a finite-element

More information

Memoirs on Differential Equations and Mathematical Physics

Memoirs on Differential Equations and Mathematical Physics Memoirs on Differential Equations and Mathematical Physics Volume 55 2012 1 150. Buchukuri O. Chkadua R. Duduchava and D. Natroshvili INERFACE CRACK PROBLEMS FOR MEALLIC-PIEZOELECRIC COMPOSIE SRUCURES

More information

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites ME 75 Lecture Effective Properties of Particulate and Unidirectional Composites Concepts from Elasticit Theor Statistical Homogeneit, Representative Volume Element, Composite Material Effective Stress-

More information

Optimal structures made of two elastic materials and void

Optimal structures made of two elastic materials and void Optimal structures made of two elastic materials and void Grzegorz Dzierżanowski in collaboration with Nathan Briggs and Andrej Cherkaev Introduction In this talk, some novel, recently obtained, exact

More information

NONLINEAR CONTINUUM FORMULATIONS CONTENTS

NONLINEAR CONTINUUM FORMULATIONS CONTENTS NONLINEAR CONTINUUM FORMULATIONS CONTENTS Introduction to nonlinear continuum mechanics Descriptions of motion Measures of stresses and strains Updated and Total Lagrangian formulations Continuum shell

More information

MASTER THESIS 2011 DATE: TITLE: Computational Homogenization with Non-matching Grids treated with Localized Lagrange Multipliers

MASTER THESIS 2011 DATE: TITLE: Computational Homogenization with Non-matching Grids treated with Localized Lagrange Multipliers Department of Structural Engineering Faculty of Engineering Science and Technology NTNU- Norwegian University of Science and Technology ACCESSIBILITY MASTER THESIS 211 SUBJECT AREA: Structural Engineering

More information

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Martin Eigel C. Carstensen, C. Löbhard, R.H.W. Hoppe Humboldt-Universität zu Berlin 19.05.2010 1 we know of Guidelines for Applicants

More information

Lubrication and roughness

Lubrication and roughness Lubrication and roughness Laurent Chupin 1 & Sébastien Martin 2 1 - Institut Camille Jordan - Lyon 2 - Laboratoire de Mathématiques - Orsay GdR CHANT - August 2010 Laurent Chupin (ICJ Lyon) Lubrication

More information

Chemnitz Scientific Computing Preprints

Chemnitz Scientific Computing Preprints Arnd Meyer The Koiter shell equation in a coordinate free description CSC/1-0 Chemnitz Scientific Computing Preprints ISSN 1864-0087 Chemnitz Scientific Computing Preprints Impressum: Chemnitz Scientific

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Continuum Mechanics. Continuum Mechanics and Constitutive Equations Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform

More information

Higher dimensional Kerr-Schild spacetimes 1

Higher dimensional Kerr-Schild spacetimes 1 Higher dimensional Kerr-Schild spacetimes 1 Marcello Ortaggio Institute of Mathematics Academy of Sciences of the Czech Republic Bremen August 2008 1 Joint work with V. Pravda and A. Pravdová, arxiv:0808.2165

More information

3D Stress Tensors. 3D Stress Tensors, Eigenvalues and Rotations

3D Stress Tensors. 3D Stress Tensors, Eigenvalues and Rotations 3D Stress Tensors 3D Stress Tensors, Eigenvalues and Rotations Recall that we can think of an n x n matrix Mij as a transformation matrix that transforms a vector xi to give a new vector yj (first index

More information

EFFECTIVE CHARACTERISTICS OF ELASTIC LAMINATES IN SPACE-TIME

EFFECTIVE CHARACTERISTICS OF ELASTIC LAMINATES IN SPACE-TIME EFFECTIVE CHARACTERISTICS OF ELASTIC LAMINATES IN SPACE-TIME WILLIAM C. SANGUINET Date: 04/28/2010. 1 2 WILLIAM C. SANGUINET Acknowledgements I would like to thank Professors Konstantin Lurie and L. R.

More information

Sandra Carillo. SAPIENZA Università diroma. Singular Kernel Problems in Materials with Memory. . p.1

Sandra Carillo. SAPIENZA Università diroma. Singular Kernel Problems in Materials with Memory. . p.1 . p.1 Sandra Carillo SAPIENZA Università diroma Singular Kernel Problems in Materials with Memory Sandra Carillo SAPIENZA Università diroma Singular Kernel Problems in Materials with Memory talk s outline...

More information

Elasticity in two dimensions 1

Elasticity in two dimensions 1 Elasticity in two dimensions 1 Elasticity in two dimensions Chapters 3 and 4 of Mechanics of the Cell, as well as its Appendix D, contain selected results for the elastic behavior of materials in two and

More information

Variational principles in mechanics

Variational principles in mechanics CHAPTER Variational principles in mechanics.1 Linear Elasticity n D Figure.1: A domain and its boundary = D [. Consider a domain Ω R 3 with its boundary = D [ of normal n (see Figure.1). The problem of

More information

2. Conservation Equations for Turbulent Flows

2. Conservation Equations for Turbulent Flows 2. Conservation Equations for Turbulent Flows Coverage of this section: Review of Tensor Notation Review of Navier-Stokes Equations for Incompressible and Compressible Flows Reynolds & Favre Averaging

More information

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS I Main Topics A Why deal with tensors? B Order of scalars, vectors, and tensors C Linear transformation of scalars and vectors (and tensors) II Why

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry CS 468 (Spring 2013) Discrete Differential Geometry Lecture 13 13 May 2013 Tensors and Exterior Calculus Lecturer: Adrian Butscher Scribe: Cassidy Saenz 1 Vectors, Dual Vectors and Tensors 1.1 Inner Product

More information

Mechanics of Composites. J R Willis University of Cambridge

Mechanics of Composites. J R Willis University of Cambridge Mechanics of Composites J R Willis University of Cambridge Contents 1 Basic notions 1 1.1 Introductory remarks 1 1.2 Definition of effective properties 2 1.3 Representative volume element 5 1.4 Other properties

More information