Introduction to Aspects of Multiscale Modeling as Applied to Porous Media

Size: px
Start display at page:

Download "Introduction to Aspects of Multiscale Modeling as Applied to Porous Media"

Transcription

1 Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Part III Todd Arbogast Department of Mathematics and Center for Subsurface Modeling, Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin

2 Mathematical Homogenization

3 Periodicity The solution u has high frequency wiggles due to the heterogeneity of k. u(x) ū(x) x We want the average behavior! Can we find ū(x) without knowing u(x)? The wiggles are irregular, so they are hard to deal with. Idea : Assume that the heterogeneity is periodic, so that the wiggles are regular, and thus easily identified. This is basically our closure assumption. Idea : Let the period of oscillation be ǫ, and let ǫ. This should remove the wiggles.

4 Convergence of Wiggles Example: Let u ǫ (x) = sin(x/ǫ). As ǫ, sin(x/ǫ) does not converge, it just oscillates more and more between - and. But it becomes a blur, so is it not? (At least in some sense?)

5 Test Functions Idea 3: Consider a weaker form of convergence. Theorem: If then f = g. f(x) φ(x) dx = g(x) φ(x) dx φ C φ(x) We test f by multiplying by φ and integrating. If we know all such tests, we know f. f(x)

6 Convergence of Wiggles Let φ(x) C and consider uǫ (x) φ(x) dx = sin(x/ǫ) φ(x) dx = ǫcos(x/ǫ) φ (x) dx We call this weak convergence, and write u ǫ

7 Definition: If lim ǫ u ǫ (x) φ(x) dx = Weak Convergence u(x) φ(x) dx φ C then u ǫ converges weakly to u. We write u ǫ u. Definition: The L -norm of a function u is u { u(x) dx } / Theorem: If there is C > independent of ǫ such that u ǫ C < then there exists u such that u ǫ u.

8 Obtaining Periodic Wiggles Suppose that the domain Ω has a periodic structure with period ǫy. As ǫ, we obtain our macro-scale model for the average flow. Y Question: How do we proceed? Homogenization is very mathematical, and involves deep analysis and partial differential equations. Fortunately there is a simpler, more physical way to view homogenization.

9 Formal Homogenization Scaling: We assume that the space variable has both a slow (x) and fast (y) component. x x + ǫy At any point x, y allows us to see the local details, which disappear as ǫ. x x + ǫy y Y Ω Formal assumption: We assume without proof that we can expand the true solution p(x) into a power series involving ǫ: p(x) p (x, y) + ǫ p (x, y) + ǫ p (x, y) + wherein y = x/ǫ and each p k is periodic in y. Gradient scaling: Then x + ǫ y

10 Homogenization of Darcy Flow Recall the model of Darcy flow (ignore outer BCs): (k ǫ p ǫ ) = f in Ω Make the closure assumption that k ǫ (x) = k(x, x/ǫ), where k(x, y) is periodic of period in y, so k ǫ (x) has periodic oscillations of period ǫ. Note that k ǫ (x) can vary slowly over the domain with only the local variability being periodic. Formal expansion: Substitute p ǫ (x) = p (x, y) + ǫ p (x, y) + ǫ p (x, y) + and = x + ǫ y to find (ǫ y + x ) [k(x, y)(ǫ y + x ) ( p (x, y) + ǫ p (x, y) + ǫ p (x, y) + )] = f in Ω Y

11 We rewrite our expansion Homogenization of Darcy Flow (ǫ y + x ) [k(x, y)(ǫ y + x ) ( p (x, y) as a power series in ǫ ǫ { y [ k(x, y) y p (x, y) ]} + ǫ p (x, y) + ǫ p (x, y) + )] = f in Ω Y + ǫ { y [ k(x, y) ( y p (x, y) + x p (x, y) )] x [ k(x, y) y p (x, y) ]} + ǫ { y [ k(x, y) ( y p (x, y) + x p (x, y) )] + = f in Ω Y x [ k(x, y) ( y p (x, y) + x p (x, y) )]} This should hold for all ǫ as ǫ, so it must hold for each term.

12 Step, ǫ -terms: Homogenization of Darcy Flow 3 y [k(x, y) y p (x, y) ] = in Ω Y p (x, y) is periodic in y Note that there are no derivatives in x, so x is just a parameter. We have a partial differential equation (PDE) in y only. It is not particularly difficult to see that p (x, y) must be constant in y. Conclusion: p = p (x) only. Question: Why is this result important? That is, why should the leading order of the solution not depend on y?

13 Step, ǫ -terms: Homogenization of Darcy Flow 4 y [ k(x, y) ( y p (x, y) + x p (x, y) )] From Step, one term vanishes. Thus x [k(x, y) y p (x, y) ] in Ω Y y [ k(x, y) y p (x, y) ] = y [k(x, y) p (x) ] in Ω Y p (x, y) is periodic in y Again x is basically a parameter, and this is a PDE in y for p (x, y), if we are given x p (x). But x p (x) is a constant vector in y! Trick: Use the linearity! Since p = j e j j p, replace p by e j and solve.

14 Homogenization of Darcy Flow 5 We solve (for each fixed x of interest) y [ k(x, y) y ω j (x, y) ] = y [ k(x, y)e j ] ω j (x, y) is periodic in y Then, multiplying by j p and summing, j j p (x) y [ k(x, y) y ω j (x, y) ] = j in Ω Y j p (x) y [ k(x, y)e j ] Linearity and constancy in y of j p allow us to move things inside y [ k(x, y) y ω j (x, y) j p (x) ] = y [ k(x, y) p (x) ] Conclusion: j p (x, y) = j ω j (x, y) j p (x) solves our problem y [ k(x, y) y p (x, y) ] = y [k(x, y) p (x) ] in Ω Y p (x, y) is periodic in y

15 Homogenization of Darcy Flow 6 Step 3 (Final Step), ǫ -terms: y [ k(x, y) ( y p (x, y) + x p (x, y) )] x [k(x, y) ( y p (x, y) + p (x) )] = f in Ω Y Trick: Remove y by averaging (integrate over y and divide by the volume of Y, Y ). For the first piece, we get Y Y y [ k(x, y) ( y p (x, y) + x p (x, y) )] dy = Y due to periodicity! Y [ k(x, y) ( y p (x, y) + x p (x, y) )] ν ds(y) = Easily, the third piece is Y Y f(x) dy = f(x)

16 Note that Homogenization of Darcy Flow 8 p (x, y) = j ω j (x, y) j p (x) tells us that we know p if we know p. Thus the second piece is Y Y x [ k(x, y) ( y p (x, y) + p (x) )] dy = Y k(x, Y y)( y ω j (x, y) j p (x) + p (x) ) dy = i = i = i i Y j j i ( Y j k(x, Y y)( y i ω j(x, y) j p (x) + j j Y k(x, y)( y i ω j(x, y) + δ ij i (ˆk ij j p (x) ) = (ˆk p ). ) dy ) j p (x) δ ij j p (x) ) dy We have derived our homogenized coefficient ˆk from k. It is a tensor! Conclusion: Collecting pieces, we have our desired result: (ˆk p ) = f in Ω

17 Homogenization of Darcy Flow 9 Summary: Starting from (k ) ǫ p ǫ = f in Ω we found that, as ǫ, p ǫ p, where (ˆk p ) = f in Ω and ˆk(x) can be computed as the tensor ˆk ij (x) = Y k(x, Y y)( y i ω ) j(x, y) + δ ij dy and ω j (x, y) can be computed from the local cell problems: y [ k(x, y) y ω j (x, y) ] = y [ k(x, y)e j ] ω j (x, y) is periodic in y in Ω Y

18 The Homogenized Permeability Lemma: ˆk is symmetric and positive definite: ξ ˆkξ = i,j ξ iˆk ij ξ j > for all vectors ξ. Thus, ˆk has three principle eigenvectors and only positive eigenvalues. Question: Why is this important? Lemma (Voigt-Reiss Inequality): ˆk lies between the harmonic and arithmetic averages. More precisely, if ( ) k h = Y (k(x, Y y)) dy and k a = k(x, y) dy Y Y then ξ k h ξ ξ ˆkξ ξ k a ξ

19 Convergence Theorem: As ǫ, we have weak convergence p ǫ p In fact, p ǫ p and p ǫ p Cǫ Moreover, if p ǫ = p + ǫ j ω j (x, x/ǫ) j p (x), then (p ǫ p ǫ) C ǫ

20 Computational Upscaling via Homogenization In our small -D problem, we obtain the following. Log-permeability and xx and yy local averages (xy = yx set to ): Computed pressure: homogenized avg 8 8 computed average Relative errors: Harmonic.4, Homog..36, Computational.8.

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Part II Todd Arbogast Department of Mathematics and Center for Subsurface Modeling, Institute for Computational Engineering and

More information

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Part IV Todd Arbogast Department of Mathematics and Center for Subsurface Modeling, Institute for Computational Engineering and

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Physics 250 Green s functions for ordinary differential equations

Physics 250 Green s functions for ordinary differential equations Physics 25 Green s functions for ordinary differential equations Peter Young November 25, 27 Homogeneous Equations We have already discussed second order linear homogeneous differential equations, which

More information

TRANSPORT IN POROUS MEDIA

TRANSPORT IN POROUS MEDIA 1 TRANSPORT IN POROUS MEDIA G. ALLAIRE CMAP, Ecole Polytechnique 1. Introduction 2. Main result in an unbounded domain 3. Asymptotic expansions with drift 4. Two-scale convergence with drift 5. The case

More information

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence 1 CONVERGENCE THEOR G. ALLAIRE CMAP, Ecole Polytechnique 1. Maximum principle 2. Oscillating test function 3. Two-scale convergence 4. Application to homogenization 5. General theory H-convergence) 6.

More information

Math The Laplacian. 1 Green s Identities, Fundamental Solution

Math The Laplacian. 1 Green s Identities, Fundamental Solution Math. 209 The Laplacian Green s Identities, Fundamental Solution Let be a bounded open set in R n, n 2, with smooth boundary. The fact that the boundary is smooth means that at each point x the external

More information

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018 Lecture 10 Partial derivatives Dan Nichols nichols@math.umass.edu MATH 233, Spring 2018 University of Massachusetts February 27, 2018 Last time: functions of two variables f(x, y) x and y are the independent

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Fall 20 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Spring 208 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

Formal Asymptotic Homogenization

Formal Asymptotic Homogenization September 21 25, 2015 Formal asymptotic homogenization Here we present a formal asymptotic technique (sometimes called asymptotic homogenization) based on two-spatial scale expansions These expansions

More information

100 CHAPTER 4. SYSTEMS AND ADAPTIVE STEP SIZE METHODS APPENDIX

100 CHAPTER 4. SYSTEMS AND ADAPTIVE STEP SIZE METHODS APPENDIX 100 CHAPTER 4. SYSTEMS AND ADAPTIVE STEP SIZE METHODS APPENDIX.1 Norms If we have an approximate solution at a given point and we want to calculate the absolute error, then we simply take the magnitude

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Diffusion on the half-line. The Dirichlet problem

Diffusion on the half-line. The Dirichlet problem Diffusion on the half-line The Dirichlet problem Consider the initial boundary value problem (IBVP) on the half line (, ): v t kv xx = v(x, ) = φ(x) v(, t) =. The solution will be obtained by the reflection

More information

TEST CODE: MMA (Objective type) 2015 SYLLABUS

TEST CODE: MMA (Objective type) 2015 SYLLABUS TEST CODE: MMA (Objective type) 2015 SYLLABUS Analytical Reasoning Algebra Arithmetic, geometric and harmonic progression. Continued fractions. Elementary combinatorics: Permutations and combinations,

More information

MATH 425, HOMEWORK 3 SOLUTIONS

MATH 425, HOMEWORK 3 SOLUTIONS MATH 425, HOMEWORK 3 SOLUTIONS Exercise. (The differentiation property of the heat equation In this exercise, we will use the fact that the derivative of a solution to the heat equation again solves the

More information

HARMONIC ANALYSIS. Date:

HARMONIC ANALYSIS. Date: HARMONIC ANALYSIS Contents. Introduction 2. Hardy-Littlewood maximal function 3. Approximation by convolution 4. Muckenhaupt weights 4.. Calderón-Zygmund decomposition 5. Fourier transform 6. BMO (bounded

More information

Homogenization and Multiscale Modeling

Homogenization and Multiscale Modeling Ralph E. Showalter http://www.math.oregonstate.edu/people/view/show Department of Mathematics Oregon State University Multiscale Summer School, August, 2008 DOE 98089 Modeling, Analysis, and Simulation

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

Lagrange Multipliers

Lagrange Multipliers Optimization with Constraints As long as algebra and geometry have been separated, their progress have been slow and their uses limited; but when these two sciences have been united, they have lent each

More information

Regularity for Poisson Equation

Regularity for Poisson Equation Regularity for Poisson Equation OcMountain Daylight Time. 4, 20 Intuitively, the solution u to the Poisson equation u= f () should have better regularity than the right hand side f. In particular one expects

More information

Mixed Multiscale Methods for Heterogeneous Elliptic Problems

Mixed Multiscale Methods for Heterogeneous Elliptic Problems Mixed Multiscale Methods for Heterogeneous Elliptic Problems Todd Arbogast Abstract We consider a second order elliptic problem written in mixed form, i.e., as a system of two first order equations. Such

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

Partial differential equations (ACM30220)

Partial differential equations (ACM30220) (ACM3. A pot on a stove has a handle of length that can be modelled as a rod with diffusion constant D. The equation for the temperature in the rod is u t Du xx < x

More information

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Analysis III (BAUG Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Question 1 et a 0,..., a n be constants. Consider the function. Show that a 0 = 1 0 φ(xdx. φ(x = a 0 + Since the integral

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 208 Version A refers to the regular exam and Version B to the make-up. Version A. A particle

More information

u xx + u yy = 0. (5.1)

u xx + u yy = 0. (5.1) Chapter 5 Laplace Equation The following equation is called Laplace equation in two independent variables x, y: The non-homogeneous problem u xx + u yy =. (5.1) u xx + u yy = F, (5.) where F is a function

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives with respect to those variables. Most (but

More information

HOMOGENIZATION OF A CONVECTIVE, CONDUCTIVE AND RADIATIVE HEAT TRANSFER PROBLEM

HOMOGENIZATION OF A CONVECTIVE, CONDUCTIVE AND RADIATIVE HEAT TRANSFER PROBLEM Homogenization of a heat transfer problem 1 G. Allaire HOMOGENIZATION OF A CONVECTIVE, CONDUCTIVE AND RADIATIVE HEAT TRANSFER PROBLEM Work partially supported by CEA Grégoire ALLAIRE, Ecole Polytechnique

More information

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly.

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly. C PROPERTIES OF MATRICES 697 to whether the permutation i 1 i 2 i N is even or odd, respectively Note that I =1 Thus, for a 2 2 matrix, the determinant takes the form A = a 11 a 12 = a a 21 a 11 a 22 a

More information

Lecture 7 - Separable Equations

Lecture 7 - Separable Equations Lecture 7 - Separable Equations Separable equations is a very special type of differential equations where you can separate the terms involving only y on one side of the equation and terms involving only

More information

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math 16.

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math 16. Leplace s Analyzing the Analyticity of Analytic Analysis Engineering Math 16.364 1 The Laplace equations are built on the Cauchy- Riemann equations. They are used in many branches of physics such as heat

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georgia Tech PHYS 612 Mathematical Methods of Physics I Instructor: Predrag Cvitanović Fall semester 2012 Homework Set #5 due October 2, 2012 == show all your work for maximum credit, == put labels, title,

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

Math 220A - Fall 2002 Homework 5 Solutions

Math 220A - Fall 2002 Homework 5 Solutions Math 0A - Fall 00 Homework 5 Solutions. Consider the initial-value problem for the hyperbolic equation u tt + u xt 0u xx 0 < x 0 u t (x, 0) ψ(x). Use energy methods to show that the domain of dependence

More information

Math 10C - Fall Final Exam

Math 10C - Fall Final Exam Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient

More information

Chapter 2: First Order DE 2.6 Exact DE and Integrating Fa

Chapter 2: First Order DE 2.6 Exact DE and Integrating Fa Chapter 2: First Order DE 2.6 Exact DE and Integrating Factor First Order DE Recall the general form of the First Order DEs (FODE): dy dx = f(x, y) (1) (In this section x is the independent variable; not

More information

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w.

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w. Math, Final Exam, Spring Problem Solution. Consider three position vectors (tails are the origin): u,, v 4,, w,, (a) Find an equation of the plane passing through the tips of u, v, and w. (b) Find an equation

More information

RANDOM PROPERTIES BENOIT PAUSADER

RANDOM PROPERTIES BENOIT PAUSADER RANDOM PROPERTIES BENOIT PAUSADER. Quasilinear problems In general, one consider the following trichotomy for nonlinear PDEs: A semilinear problem is a problem where the highest-order terms appears linearly

More information

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Bessel s Equation MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background Bessel s equation of order ν has the form where ν is a constant. x 2 y + xy

More information

First and Second Order ODEs

First and Second Order ODEs Civil Engineering 2 Mathematics Autumn 211 M. Ottobre First and Second Order ODEs Warning: all the handouts that I will provide during the course are in no way exhaustive, they are just short recaps. Notation

More information

1. Differential Equations (ODE and PDE)

1. Differential Equations (ODE and PDE) 1. Differential Equations (ODE and PDE) 1.1. Ordinary Differential Equations (ODE) So far we have dealt with Ordinary Differential Equations (ODE): involve derivatives with respect to only one variable

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

MATH 220: Problem Set 3 Solutions

MATH 220: Problem Set 3 Solutions MATH 220: Problem Set 3 Solutions Problem 1. Let ψ C() be given by: 0, x < 1, 1 + x, 1 < x < 0, ψ(x) = 1 x, 0 < x < 1, 0, x > 1, so that it verifies ψ 0, ψ(x) = 0 if x 1 and ψ(x)dx = 1. Consider (ψ j )

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II February 23 2017 Separation of variables Wave eq. (PDE) 2 u t (t, x) = 2 u 2 c2 (t, x), x2 c > 0 constant. Describes small vibrations in a homogeneous string. u(t, x)

More information

MATH34032 Mid-term Test 10.00am 10.50am, 26th March 2010 Answer all six question [20% of the total mark for this course]

MATH34032 Mid-term Test 10.00am 10.50am, 26th March 2010 Answer all six question [20% of the total mark for this course] MATH3432: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH3432 Mid-term Test 1.am 1.5am, 26th March 21 Answer all six question [2% of the total mark for this course] Qu.1 (a)

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 9 November 13 November Deadline to hand in the homeworks: your exercise class on week 16 November 20 November Exercises (1) Show that if T B(X, Y ) and S B(Y, Z)

More information

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots,

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots, Chapter 8 Elliptic PDEs In this chapter we study elliptical PDEs. That is, PDEs of the form 2 u = lots, where lots means lower-order terms (u x, u y,..., u, f). Here are some ways to think about the physical

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

TEST CODE: MIII (Objective type) 2010 SYLLABUS

TEST CODE: MIII (Objective type) 2010 SYLLABUS TEST CODE: MIII (Objective type) 200 SYLLABUS Algebra Permutations and combinations. Binomial theorem. Theory of equations. Inequalities. Complex numbers and De Moivre s theorem. Elementary set theory.

More information

Homework I, Solutions

Homework I, Solutions Homework I, Solutions I: (15 points) Exercise on lower semi-continuity: Let X be a normed space and f : X R be a function. We say that f is lower semi - continuous at x 0 if for every ε > 0 there exists

More information

Nonlinear Diffusion. 1 Introduction: Motivation for non-standard diffusion

Nonlinear Diffusion. 1 Introduction: Motivation for non-standard diffusion Nonlinear Diffusion These notes summarize the way I present this material, for my benefit. But everything in here is said in more detail, and better, in Weickert s paper. 1 Introduction: Motivation for

More information

Chapter 4 Notes, Calculus I with Precalculus 3e Larson/Edwards

Chapter 4 Notes, Calculus I with Precalculus 3e Larson/Edwards 4.1 The Derivative Recall: For the slope of a line we need two points (x 1,y 1 ) and (x 2,y 2 ). Then the slope is given by the formula: m = y x = y 2 y 1 x 2 x 1 On a curve we can find the slope of a

More information

Stochastic homogenization 1

Stochastic homogenization 1 Stochastic homogenization 1 Tuomo Kuusi University of Oulu August 13-17, 2018 Jyväskylä Summer School 1 Course material: S. Armstrong & T. Kuusi & J.-C. Mourrat : Quantitative stochastic homogenization

More information

LESSON 25: LAGRANGE MULTIPLIERS OCTOBER 30, 2017

LESSON 25: LAGRANGE MULTIPLIERS OCTOBER 30, 2017 LESSON 5: LAGRANGE MULTIPLIERS OCTOBER 30, 017 Lagrange multipliers is another method of finding minima and maxima of functions of more than one variable. In fact, many of the problems from the last homework

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

arxiv: v1 [math.ap] 17 May 2017

arxiv: v1 [math.ap] 17 May 2017 ON A HOMOGENIZATION PROBLEM arxiv:1705.06174v1 [math.ap] 17 May 2017 J. BOURGAIN Abstract. We study a homogenization question for a stochastic divergence type operator. 1. Introduction and Statement Let

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017 ACM/CMS 17 Linear Analysis & Applications Fall 217 Assignment 2: PDEs and Finite Element Methods Due: 7th November 217 For this assignment the following MATLAB code will be required: Introduction http://wwwmdunloporg/cms17/assignment2zip

More information

Math 46, Applied Math (Spring 2008): Final

Math 46, Applied Math (Spring 2008): Final Math 46, Applied Math (Spring 2008): Final 3 hours, 80 points total, 9 questions, roughly in syllabus order (apart from short answers) 1. [16 points. Note part c, worth 7 points, is independent of the

More information

Finite Difference Methods for Boundary Value Problems

Finite Difference Methods for Boundary Value Problems Finite Difference Methods for Boundary Value Problems October 2, 2013 () Finite Differences October 2, 2013 1 / 52 Goals Learn steps to approximate BVPs using the Finite Difference Method Start with two-point

More information

Waves in a Shock Tube

Waves in a Shock Tube Waves in a Shock Tube Ivan Christov c February 5, 005 Abstract. This paper discusses linear-wave solutions and simple-wave solutions to the Navier Stokes equations for an inviscid and compressible fluid

More information

Math 76 Practice Problems for Midterm II Solutions

Math 76 Practice Problems for Midterm II Solutions Math 76 Practice Problems for Midterm II Solutions 6.4-8. DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam. You may expect to

More information

Degree Master of Science in Mathematical Modelling and Scientific Computing Mathematical Methods I Thursday, 12th January 2012, 9:30 a.m.- 11:30 a.m.

Degree Master of Science in Mathematical Modelling and Scientific Computing Mathematical Methods I Thursday, 12th January 2012, 9:30 a.m.- 11:30 a.m. Degree Master of Science in Mathematical Modelling and Scientific Computing Mathematical Methods I Thursday, 12th January 2012, 9:30 a.m.- 11:30 a.m. Candidates should submit answers to a maximum of four

More information

Physics 6303 Lecture 11 September 24, LAST TIME: Cylindrical coordinates, spherical coordinates, and Legendre s equation

Physics 6303 Lecture 11 September 24, LAST TIME: Cylindrical coordinates, spherical coordinates, and Legendre s equation Physics 6303 Lecture September 24, 208 LAST TIME: Cylindrical coordinates, spherical coordinates, and Legendre s equation, l l l l l l. Consider problems that are no axisymmetric; i.e., the potential depends

More information

Fourier Transform & Sobolev Spaces

Fourier Transform & Sobolev Spaces Fourier Transform & Sobolev Spaces Michael Reiter, Arthur Schuster Summer Term 2008 Abstract We introduce the concept of weak derivative that allows us to define new interesting Hilbert spaces the Sobolev

More information

PDEs, Homework #3 Solutions. 1. Use Hölder s inequality to show that the solution of the heat equation

PDEs, Homework #3 Solutions. 1. Use Hölder s inequality to show that the solution of the heat equation PDEs, Homework #3 Solutions. Use Hölder s inequality to show that the solution of the heat equation u t = ku xx, u(x, = φ(x (HE goes to zero as t, if φ is continuous and bounded with φ L p for some p.

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

2.2 Separable Equations

2.2 Separable Equations 2.2 Separable Equations Definition A first-order differential equation that can be written in the form Is said to be separable. Note: the variables of a separable equation can be written as Examples Solve

More information

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e.,

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e., Abstract Hilbert Space Results We have learned a little about the Hilbert spaces L U and and we have at least defined H 1 U and the scale of Hilbert spaces H p U. Now we are going to develop additional

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Partial Derivatives Philippe B Laval KSU March 21, 2012 Philippe B Laval (KSU) Functions of Several Variables March 21, 2012 1 / 19 Introduction In this section we extend

More information

MATH 220 solution to homework 5

MATH 220 solution to homework 5 MATH 220 solution to homework 5 Problem. (i Define E(t = k(t + p(t = then E (t = 2 = 2 = 2 u t u tt + u x u xt dx u 2 t + u 2 x dx, u t u xx + u x u xt dx x [u tu x ] dx. Because f and g are compactly

More information

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition The Dirichlet boundary problems for second order parabolic operators satisfying a Martin Dindos Sukjung Hwang University of Edinburgh Satellite Conference in Harmonic Analysis Chosun University, Gwangju,

More information

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f . Holomorphic Harmonic Functions Basic notation. Considering C as R, with coordinates x y, z = x + iy denotes the stard complex coordinate, in the usual way. Definition.1. Let f : U C be a complex valued

More information

SINC PACK, and Separation of Variables

SINC PACK, and Separation of Variables SINC PACK, and Separation of Variables Frank Stenger Abstract This talk consists of a proof of part of Stenger s SINC-PACK computer package (an approx. 400-page tutorial + about 250 Matlab programs) that

More information

Sobolev Spaces. Chapter 10

Sobolev Spaces. Chapter 10 Chapter 1 Sobolev Spaces We now define spaces H 1,p (R n ), known as Sobolev spaces. For u to belong to H 1,p (R n ), we require that u L p (R n ) and that u have weak derivatives of first order in L p

More information

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math EECE

Leplace s Equations. Analyzing the Analyticity of Analytic Analysis DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING. Engineering Math EECE Leplace s Analyzing the Analyticity of Analytic Analysis Engineering Math EECE 3640 1 The Laplace equations are built on the Cauchy- Riemann equations. They are used in many branches of physics such as

More information

6 Non-homogeneous Heat Problems

6 Non-homogeneous Heat Problems 6 Non-homogeneous Heat Problems Up to this point all the problems we have considered for the heat or wave equation we what we call homogeneous problems. This means that for an interval < x < l the problems

More information

The Liapunov Method for Determining Stability (DRAFT)

The Liapunov Method for Determining Stability (DRAFT) 44 The Liapunov Method for Determining Stability (DRAFT) 44.1 The Liapunov Method, Naively Developed In the last chapter, we discussed describing trajectories of a 2 2 autonomous system x = F(x) as level

More information

Lecture 5 : Projections

Lecture 5 : Projections Lecture 5 : Projections EE227C. Lecturer: Professor Martin Wainwright. Scribe: Alvin Wan Up until now, we have seen convergence rates of unconstrained gradient descent. Now, we consider a constrained minimization

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

Method of Homogenization for the Study of the Propagation of Electromagnetic Waves in a Composite Part 2: Homogenization

Method of Homogenization for the Study of the Propagation of Electromagnetic Waves in a Composite Part 2: Homogenization , July 5-7, 2017, London, U.K. Method of Homogenization for the Study of the Propagation of Electromagnetic Waves in a Composite Part 2: Homogenization Helene Canot, Emmanuel Frenod Abstract In this paper

More information

COMPLETION OF A METRIC SPACE

COMPLETION OF A METRIC SPACE COMPLETION OF A METRIC SPACE HOW ANY INCOMPLETE METRIC SPACE CAN BE COMPLETED REBECCA AND TRACE Given any incomplete metric space (X,d), ( X, d X) a completion, with (X,d) ( X, d X) where X complete, and

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

Multiscale Computation for Incompressible Flow and Transport Problems

Multiscale Computation for Incompressible Flow and Transport Problems Multiscale Computation for Incompressible Flow and Transport Problems Thomas Y. Hou Applied Mathematics, Caltech Collaborators: Y. Efenidev (TAMU), V. Ginting (Colorado), T. Strinopolous (Caltech), Danping

More information

and finally, any second order divergence form elliptic operator

and finally, any second order divergence form elliptic operator Supporting Information: Mathematical proofs Preliminaries Let be an arbitrary bounded open set in R n and let L be any elliptic differential operator associated to a symmetric positive bilinear form B

More information

MATH 2250 Final Exam Solutions

MATH 2250 Final Exam Solutions MATH 225 Final Exam Solutions Tuesday, April 29, 28, 6: 8:PM Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the exam

More information

Math 250B Final Exam Review Session Spring 2015 SOLUTIONS

Math 250B Final Exam Review Session Spring 2015 SOLUTIONS Math 5B Final Exam Review Session Spring 5 SOLUTIONS Problem Solve x x + y + 54te 3t and y x + 4y + 9e 3t λ SOLUTION: We have det(a λi) if and only if if and 4 λ only if λ 3λ This means that the eigenvalues

More information

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1. Sep. 1 9 Intuitively, the solution u to the Poisson equation S chauder Theory u = f 1 should have better regularity than the right hand side f. In particular one expects u to be twice more differentiable

More information

Multivariable Calculus

Multivariable Calculus 2 Multivariable Calculus 2.1 Limits and Continuity Problem 2.1.1 (Fa94) Let the function f : R n R n satisfy the following two conditions: (i) f (K ) is compact whenever K is a compact subset of R n. (ii)

More information

Numerical Analysis of Differential Equations Numerical Solution of Elliptic Boundary Value

Numerical Analysis of Differential Equations Numerical Solution of Elliptic Boundary Value Numerical Analysis of Differential Equations 188 5 Numerical Solution of Elliptic Boundary Value Problems 5 Numerical Solution of Elliptic Boundary Value Problems TU Bergakademie Freiberg, SS 2012 Numerical

More information

Exercises - Chapter 1 - Chapter 2 (Correction)

Exercises - Chapter 1 - Chapter 2 (Correction) Université de Nice Sophia-Antipolis Master MathMods - Finite Elements - 28/29 Exercises - Chapter 1 - Chapter 2 Correction) Exercise 1. a) Let I =], l[, l R. Show that Cl) >, u C Ī) Cl) u H 1 I), u DĪ).

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

arxiv:math/ v2 [math.ap] 3 Oct 2006

arxiv:math/ v2 [math.ap] 3 Oct 2006 THE TAYLOR SERIES OF THE GAUSSIAN KERNEL arxiv:math/0606035v2 [math.ap] 3 Oct 2006 L. ESCAURIAZA From some people one can learn more than mathematics Abstract. We describe a formula for the Taylor series

More information

y 2y = 4 x, Name Form Solution method

y 2y = 4 x, Name Form Solution method An Introduction to Higher-Order Differential Equations Up to this point in the class, we have only specifically studied solution techniques for first-order differential equations, i.e. equations whose

More information

THE STOKES SYSTEM R.E. SHOWALTER

THE STOKES SYSTEM R.E. SHOWALTER THE STOKES SYSTEM R.E. SHOWALTER Contents 1. Stokes System 1 Stokes System 2 2. The Weak Solution of the Stokes System 3 3. The Strong Solution 4 4. The Normal Trace 6 5. The Mixed Problem 7 6. The Navier-Stokes

More information