Minimizing Cubic and Homogeneous Polynomials Over Integer Points in the Plane

Size: px
Start display at page:

Download "Minimizing Cubic and Homogeneous Polynomials Over Integer Points in the Plane"

Transcription

1 Minimizing Cubic and Homogeneous Polynomials Over Integer Points in the Plane Robert Hildebrand IFOR - ETH Zürich Joint work with Alberto Del Pia, Robert Weismantel and Kevin Zemmer Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

2 Introduction Consider the problem min{f(x) : x P Z n }, (1) where P is the rational polyhedron P = {x R n : Ax b} with A Z m n, b Z m, f Z[x] has degree d. Complexity: We want time-complexity when input is binary encoding of A, b and the coefficients of f. Fixed: Dimension n, degree d of f. Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

3 Hardness Results 1 NP-Hard in 2 variables degree 4, P bounded [DHKW, 2005]. min{(x 2 ay c) 2 : 1 x c 1, 1 a b y (c 1)2 a b } Implies AN1 problem - given three positive integers a, b, c, determine if there exist x Z such that x 2 a (mod b) with x < c. 2 NP-Hard in 3 variables degree 4, P bounded, f homogeneous. 3 "Intractable" in 2 variables, degree 4, P unbounded, f homogeneous. min{ ( x 2 Ny 2) 2 : (x, y) Z 2 1 }, N = 5 2k+1 (2) Optimal objective value is 1. Minimal size solution satisfies Negative Pell Equation x 2 Ny 2 = 1. Lagarias (1980) - minimal solution has binary encoding size Ω(5 k ). Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

4 Positive Results 1 FPTAS for non-negative maximization in fixed dimension (DeLoera, Hemmeke, Köppe, Weismantel 2011) 2 Quadratic polynomials in dimension 2 (Del-Pia and Weismantel 2013) Theorem (Del Pia, H., Weismantel, Zemmer) The problem min{f(x) : x P Z 2 } can be solved in polynomial time in the following cases 1 f is fixed degree, homogeneous, P is bounded, 2 f is cubic, P is bounded, 3 f is cubic, homogeneous, P is unbounded. Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

5 Positive Results 1 FPTAS for non-negative maximization in fixed dimension (DeLoera, Hemmeke, Köppe, Weismantel 2011) 2 Quadratic polynomials in dimension 2 (Del-Pia and Weismantel 2013) Theorem (Del Pia, H., Weismantel, Zemmer) The problem min{f(x) : x P Z 2 } can be solved in polynomial time in the following cases 1 f is fixed degree, homogeneous, P is bounded, 2 f is cubic, P is bounded*, 3 f is cubic, homogeneous, P is unbounded. *COMPLETES COMPLEXITY CLASSIFICATION FOR BOUNDED P IN DIMENSION 2! Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

6 Quadratic Case Del Pia and Weismantel showed that the quadratic case can be solved in polynomial time. f(x, y) x 2 + y 2 f(x, y) x 2 y 2 f(x, y) x 2 y 2 Convex: Apply Khachiyan-Porkolab 2010 test feasibility + binary search. Concave: implies solution on vertex of integer hull P I. Enumerate vertices using CKHM Divide problem into quasi-convex and quasi-concave regions. Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

7 Homogeneous Case Goal: Quasiconvex/Quasiconcave division Zeros occur on lines. Function no longer quasiconcave/quasiconvex in positive/negative regions. Domain can still be divided into quasiconcave/quasiconvex regions. Numerically approximate regions. (x + y)(x y)(x 2 + y 2 ) 4 Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

8 Homogeneous Case Goal: Quasiconvex/Quasiconcave division Zeros occur on lines. Function no longer quasiconcave/quasiconvex in positive/negative regions. Domain can still be divided into quasiconcave/quasiconvex regions. Numerically approximate regions. (x + y)(x y)(x 2 + y 2 ) 4 Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

9 Bordered Hessian, Homogeneous, Volume Argument 1 Bordered Hessian [ ] 0 h T D h = det h 2 h = d d 1 h(x) det( 2 h(x)) 2 D h < 0 quasiconvex while D h > 0 quasiconcave. 3 D h 0 h(x) = (c T x) d (Hemmer, 1995) 4 D h is a homogeneous polynomial zeros occur on lines. Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

10 Bordered Hessian, Homogeneous, Volume Argument 1 Bordered Hessian [ ] 0 h T D h = det h 2 h = d d 1 h(x) det( 2 h(x)) 2 D h < 0 quasiconvex while D h > 0 quasiconcave. 3 D h 0 h(x) = (c T x) d (Hemmer, 1995) 4 D h is a homogeneous polynomial zeros occur on lines. x 2 = R x 2 = R α 1 α 2 α 3 ** 0 ** β 1 β 2 β 3 1 Compute zeros of D h (x 1, ±R) to appropriate accuracy 2 Create boxes containing zero lines Lemma (BOWW 2013) If C R 2 is convex, vol(c) < 1/2, then dim(c Z 2 ) 1. Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

11 Homogeneous Minimization Theorem - Quasiconvex/Quasiconcave division Let f be a homogeneous translatable polynomial of degree d 2 with integer coefficients. In polynomial time we can find a polynomial number of rational polyhedra P i, Q j and rational lines L k such that f is quasiconvex on P i, quasiconcave on Q j, and P Z 2 = l 1 i=1 P i l 2 j=1 Q j l 3 L k k=1 Z 2. (3) Theorem - Homogeneous, Bounded 1 In polynomial time, we can minimize a homogeneous translatable polynomial of fixed degree in 2 variables over the integer points of a bounded polyhedron. Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

12 Feasibility - Convex Set Operator Let C be a convex semi-algebraic set. In fixed dimension, we can determine in polynomial time if the following sets are non-empty: 1 (P C) Z n [KP, 2010] 2 (P \ C) Z n Enumerate vertices of P I [CKHM, 1993] Definition A division description of S f ω on P is a list of polyhedra P i, Q j and lines L k that cover P Z 2 such that 1 P i S f ω is convex 2 Q j S f >ω is convex Theorem Suppose P is bounded and that for every ω Z we can compute a division description of S f ω in polynomial time. Then, we can solve min{f(x) : x P Z n } in polynomial time. Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

13 Division Description for Quadratic-Cubic Consider the polynomial Then f(x, y) = 0 on curves f(x, y) = f 0 (x) + f 1 (x)y + f 2 (x)y 2 + f 3 (x)y 3 y ± = f 1 ± f 2 1 4f 0f 2 2f 0 1 Compute vertical asymptotes 2 Compute intersections of y + and y 3 Compute inflection points (changes in concavity) of y + and y Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

14 Division Description for Quadratic-Cubic Consider the polynomial Then f(x, y) = 0 on curves f(x, y) = f 0 (x) + f 1 (x)y + f 2 (x)y 2 + f 3 (x)y 3 y ± = f 1 ± f 2 1 4f 0f 2 2f 0 1 Compute vertical asymptotes 2 Compute intersections of y + and y 3 Compute inflection points (changes in concavity) of y + and y 4 Numerical approximations Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

15 Separating y + and y on intervals Lemma Any line can intersect a cubic level set at most 3 times. NP-hard Quartic Cubic Polynomials (x 2 ay + c) 2 Concave/Concave Concave/Convex Convex/Concave (Convex/Convex).... y + y y + y y + y. Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

16 Rotation of Cubic-cubic to Quadratic-cubic = x 3 + y u 2 v 3uv 2 + v = x 3 + δx 2 y + y u u 2 v 2.95uv 2 + v Lemma {(x, y) P Z 2 : f(x, y) 1/2} = {(x, y) P Z 2 : f ɛ (x, y) 1/2} Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

17 Rotation of Cubic-cubic to Quadratic-cubic = x 3 + y u 2 v 3uv 2 + v = x 3 + δx 2 y + y u u 2 v 2.95uv 2 + v Lemma {(x, y) P Z 2 : f(x, y) 1/2} = {(x, y) P Z 2 : f ɛ (x, y) 1/2} Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

18 Cubic Minimization (Bounded) Theorem - Cubic Division Description Let f be a cubic polynomial in 2 variables with integer coefficients and let ω Z In polynomial time, we can determine a division description of S f ω on P. Theorem - Cubic, Bounded 2 In polynomial time, we can minimize a cubic polynomial in 2 variables over the integer points of a bounded polyhedron. Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

19 Unbounded cubic-homogeneous Suppose h is a cubic homogeneous polynomial. (i) h(x, y) = 3 i=1 (a ix + b i y), (ii) h(x, y) = (a 1 x+b 1 y) 2 (a 2 x+b 2 y), (iii) h(x, y) = (a 1 x + b 1 y) 3, (iv) h(x, y) = (a 1 x + b 1 y) q(x, y) (i) (iii) (ii) (iv) Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

20 Unbounded cubic-homogeneous Suppose h is a cubic homogeneous polynomial. (i) h(x, y) = 3 i=1 (a ix + b i y), (ii) h(x, y) = (a 1 x+b 1 y) 2 (a 2 x+b 2 y), (iii) h(x, y) = (a 1 x + b 1 y) 3, (iv) h(x, y) = (a 1 x + b 1 y) q(x, y). Theorem - Cubic, Homogeneous, Unbounded 3 In polynomial time, we can solve (i) (iii) min{f(x) : x P Z 2 } with P possibly unbounded (ii) (iv) Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

21 Recap/Comments Theorem (Del Pia, H., Weismantel, Zemmer) The problem min{f(x) : x P Z 2 } can be solved in polynomial time in the following cases 1 f is fixed degree, homogeneous, P is bounded, 2 f is cubic, P is bounded*, 3 f is cubic, homogeneous, P is unbounded. Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

22 Recap/Comments Theorem (Del Pia, H., Weismantel, Zemmer) The problem min{f(x) : x P Z 2 } can be solved in polynomial time in the following cases 1 f is fixed degree, homogeneous, P is bounded, 2 f is cubic, P is bounded*, 3 f is cubic, homogeneous, P is unbounded. *Complete Complexity classification in dimension 2 for P bounded Homogeneous Result complexity not-necessarily dependent on the degree Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

23 Open Questions P Unbounded for general degree 3 in 2 variables Quadratic integer minimization in fixed dimension Classify all polynomials in dimension 2 where the optimization problem is solvable in polynomial time. Conjecture: All polynomials of fixed degree, dimension 2, whose gradient vanishes on a finite union of affine spaces, can be minimized over the integer points in a bounded polyhedron in polynomial time. Robert Hildebrand (ETH) Polynomial IP MINLP June 4, / 17

24 Thank you for listening!

Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane

Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane Alberto Del Pia Department of Industrial and Systems Engineering & Wisconsin Institutes for Discovery, University of Wisconsin-Madison

More information

P=NP via Integer factorization and Optimization

P=NP via Integer factorization and Optimization P=NP via Integer factorization and Optimization Yuly Shipilevsky Toronto, Ontario, Canada E-mail address: yulysh2000@yahoo.ca Abstract A polynomial-time algorithm for integer factorization, wherein integer

More information

Final results on P vs NP via Integer Factorization and Optimization

Final results on P vs NP via Integer Factorization and Optimization Final results on P vs NP via Integer Factorization and Optimization Abstract Yuly Shipilevsky Toronto, Ontario, Canada E-mail address: yulysh2000@yahoo.ca We reduce integer factorization problem to the

More information

Integer Quadratic Programming is in NP

Integer Quadratic Programming is in NP Alberto Del Pia 1 Santanu S. Dey 2 Marco Molinaro 2 1 IBM T. J. Watson Research Center, Yorktown Heights. 2 School of Industrial and Systems Engineering, Atlanta Outline 1 4 Program: Definition Definition

More information

P=NP via Integer Factorization and Optimization

P=NP via Integer Factorization and Optimization P=NP via Integer Factorization and Optimization Abstract Yuly Shipilevsky Toronto, Ontario, Canada E-mail address: yulysh2000@yahoo.ca We reduce integer factorization problem to the equivalent problem

More information

Algebraic and Geometric ideas in the theory of Discrete Optimization

Algebraic and Geometric ideas in the theory of Discrete Optimization Algebraic and Geometric ideas in the theory of Discrete Optimization Jesús A. De Loera, UC Davis Three Lectures based on the book: Algebraic & Geometric Ideas in the Theory of Discrete Optimization (SIAM-MOS

More information

Integer factorization is in P

Integer factorization is in P Integer factorization is in P Yuly Shipilevsky Toronto, Ontario, Canada E-mail address: yulysh2000@yahoo.ca Abstract A polynomial-time algorithm for integer factorization, wherein integer factorization

More information

Nonlinear Programming Models

Nonlinear Programming Models Nonlinear Programming Models Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Nonlinear Programming Models p. Introduction Nonlinear Programming Models p. NLP problems minf(x) x S R n Standard form:

More information

Subset selection with sparse matrices

Subset selection with sparse matrices Subset selection with sparse matrices Alberto Del Pia, University of Wisconsin-Madison Santanu S. Dey, Georgia Tech Robert Weismantel, ETH Zürich February 1, 018 Schloss Dagstuhl Subset selection for regression

More information

Mathematical Economics. Lecture Notes (in extracts)

Mathematical Economics. Lecture Notes (in extracts) Prof. Dr. Frank Werner Faculty of Mathematics Institute of Mathematical Optimization (IMO) http://math.uni-magdeburg.de/ werner/math-ec-new.html Mathematical Economics Lecture Notes (in extracts) Winter

More information

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints.

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints. 1 Optimization Mathematical programming refers to the basic mathematical problem of finding a maximum to a function, f, subject to some constraints. 1 In other words, the objective is to find a point,

More information

2-4 Zeros of Polynomial Functions

2-4 Zeros of Polynomial Functions Write a polynomial function of least degree with real coefficients in standard form that has the given zeros. 33. 2, 4, 3, 5 Using the Linear Factorization Theorem and the zeros 2, 4, 3, and 5, write f

More information

Section 0.2 & 0.3 Worksheet. Types of Functions

Section 0.2 & 0.3 Worksheet. Types of Functions MATH 1142 NAME Section 0.2 & 0.3 Worksheet Types of Functions Now that we have discussed what functions are and some of their characteristics, we will explore different types of functions. Section 0.2

More information

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2 LONDON SCHOOL OF ECONOMICS Professor Leonardo Felli Department of Economics S.478; x7525 EC400 2010/11 Math for Microeconomics September Course, Part II Problem Set 1 with Solutions 1. Show that the general

More information

Polynomial and Rational Functions. Chapter 3

Polynomial and Rational Functions. Chapter 3 Polynomial and Rational Functions Chapter 3 Quadratic Functions and Models Section 3.1 Quadratic Functions Quadratic function: Function of the form f(x) = ax 2 + bx + c (a, b and c real numbers, a 0) -30

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

Robust Integer Programming

Robust Integer Programming Robust Integer Programming Technion Israel Institute of Technology Outline. Overview our theory of Graver bases for integer programming (with Berstein, De Loera, Hemmecke, Lee, Romanchuk, Rothblum, Weismantel)

More information

ALGEBRAIC GEOMETRY HOMEWORK 3

ALGEBRAIC GEOMETRY HOMEWORK 3 ALGEBRAIC GEOMETRY HOMEWORK 3 (1) Consider the curve Y 2 = X 2 (X + 1). (a) Sketch the curve. (b) Determine the singular point P on C. (c) For all lines through P, determine the intersection multiplicity

More information

The Triangle Closure is a Polyhedron

The Triangle Closure is a Polyhedron The Triangle Closure is a Polyhedron Amitabh Basu Robert Hildebrand Matthias Köppe November 7, 21 Abstract Recently, cutting planes derived from maximal lattice-free convex sets have been studied intensively

More information

1 Strict local optimality in unconstrained optimization

1 Strict local optimality in unconstrained optimization ORF 53 Lecture 14 Spring 016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, April 14, 016 When in doubt on the accuracy of these notes, please cross check with the instructor s

More information

CO 250 Final Exam Guide

CO 250 Final Exam Guide Spring 2017 CO 250 Final Exam Guide TABLE OF CONTENTS richardwu.ca CO 250 Final Exam Guide Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4,

More information

Convex optimization. Javier Peña Carnegie Mellon University. Universidad de los Andes Bogotá, Colombia September 2014

Convex optimization. Javier Peña Carnegie Mellon University. Universidad de los Andes Bogotá, Colombia September 2014 Convex optimization Javier Peña Carnegie Mellon University Universidad de los Andes Bogotá, Colombia September 2014 1 / 41 Convex optimization Problem of the form where Q R n convex set: min x f(x) x Q,

More information

Ellipsoidal Mixed-Integer Representability

Ellipsoidal Mixed-Integer Representability Ellipsoidal Mixed-Integer Representability Alberto Del Pia Jeff Poskin September 15, 2017 Abstract Representability results for mixed-integer linear systems play a fundamental role in optimization since

More information

Math 203A - Solution Set 1

Math 203A - Solution Set 1 Math 203A - Solution Set 1 Problem 1. Show that the Zariski topology on A 2 is not the product of the Zariski topologies on A 1 A 1. Answer: Clearly, the diagonal Z = {(x, y) : x y = 0} A 2 is closed in

More information

Static Problem Set 2 Solutions

Static Problem Set 2 Solutions Static Problem Set Solutions Jonathan Kreamer July, 0 Question (i) Let g, h be two concave functions. Is f = g + h a concave function? Prove it. Yes. Proof: Consider any two points x, x and α [0, ]. Let

More information

Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note

Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note Math 001 - Term 171 Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note x A x belongs to A,x is in A Between an element and a set. A B A is a subset of B Between two sets. φ

More information

The Strength of Multi-row Aggregation Cuts for Sign-pattern Integer Programs

The Strength of Multi-row Aggregation Cuts for Sign-pattern Integer Programs The Strength of Multi-row Aggregation Cuts for Sign-pattern Integer Programs Santanu S. Dey 1, Andres Iroume 1, and Guanyi Wang 1 1 School of Industrial and Systems Engineering, Georgia Institute of Technology

More information

Polynomials. Henry Liu, 25 November 2004

Polynomials. Henry Liu, 25 November 2004 Introduction Polynomials Henry Liu, 25 November 2004 henryliu@memphis.edu This brief set of notes contains some basic ideas and the most well-known theorems about polynomials. I have not gone into deep

More information

EC /11. Math for Microeconomics September Course, Part II Lecture Notes. Course Outline

EC /11. Math for Microeconomics September Course, Part II Lecture Notes. Course Outline LONDON SCHOOL OF ECONOMICS Professor Leonardo Felli Department of Economics S.478; x7525 EC400 20010/11 Math for Microeconomics September Course, Part II Lecture Notes Course Outline Lecture 1: Tools for

More information

Convex optimization COMS 4771

Convex optimization COMS 4771 Convex optimization COMS 4771 1. Recap: learning via optimization Soft-margin SVMs Soft-margin SVM optimization problem defined by training data: w R d λ 2 w 2 2 + 1 n n [ ] 1 y ix T i w. + 1 / 15 Soft-margin

More information

IBM Research Report. Nonlinear Integer Programming. Otto-von-Guericke-Universität Magdeburg FMA/IMO Universitätsplatz Magdeburg Germany

IBM Research Report. Nonlinear Integer Programming. Otto-von-Guericke-Universität Magdeburg FMA/IMO Universitätsplatz Magdeburg Germany RC24820 (W0812-035) December 4, 2008 Mathematics IBM Research Report Nonlinear Integer Programming Raymond Hemmecke 1, Matthias Köppe 2, Jon Lee 3, Robert Weismantel 1 1 Otto-von-Guericke-Universität Magdeburg

More information

Unit 2 Rational Functionals Exercises MHF 4UI Page 1

Unit 2 Rational Functionals Exercises MHF 4UI Page 1 Unit 2 Rational Functionals Exercises MHF 4UI Page Exercises 2.: Division of Polynomials. Divide, assuming the divisor is not equal to zero. a) x 3 + 2x 2 7x + 4 ) x + ) b) 3x 4 4x 2 2x + 3 ) x 4) 7. *)

More information

CMPT307: Complexity Classes: P and N P Week 13-1

CMPT307: Complexity Classes: P and N P Week 13-1 CMPT307: Complexity Classes: P and N P Week 13-1 Xian Qiu Simon Fraser University xianq@sfu.ca Strings and Languages an alphabet Σ is a finite set of symbols {0, 1}, {T, F}, {a, b,..., z}, N a string x

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 1 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

Tropical Polynomials

Tropical Polynomials 1 Tropical Arithmetic Tropical Polynomials Los Angeles Math Circle, May 15, 2016 Bryant Mathews, Azusa Pacific University In tropical arithmetic, we define new addition and multiplication operations on

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

MEMORIAL UNIVERSITY OF NEWFOUNDLAND MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS Section 5. Math 090 Fall 009 SOLUTIONS. a) Using long division of polynomials, we have x + x x x + ) x 4 4x + x + 0x x 4 6x

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE ABOUT VARIETIES AND REGULAR FUNCTIONS.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE ABOUT VARIETIES AND REGULAR FUNCTIONS. ALGERAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE AOUT VARIETIES AND REGULAR FUNCTIONS. ANDREW SALCH. More about some claims from the last lecture. Perhaps you have noticed by now that the Zariski topology

More information

The Triangle Closure is a Polyhedron

The Triangle Closure is a Polyhedron The Triangle Closure is a Polyhedron Amitabh Basu Robert Hildebrand Matthias Köppe January 8, 23 Abstract Recently, cutting planes derived from maximal lattice-free convex sets have been studied intensively

More information

On Approximation Algorithms for Concave Mixed-Integer Quadratic Programming

On Approximation Algorithms for Concave Mixed-Integer Quadratic Programming On Approximation Algorithms for Concave Mixed-Integer Quadratic Programming Alberto Del Pia July 20, 2017 Abstract Concave Mixed-Integer Quadratic Programming is the problem of minimizing a concave quadratic

More information

LP Relaxations of Mixed Integer Programs

LP Relaxations of Mixed Integer Programs LP Relaxations of Mixed Integer Programs John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA February 2015 Mitchell LP Relaxations 1 / 29 LP Relaxations LP relaxations We want

More information

Math 203A - Solution Set 1

Math 203A - Solution Set 1 Math 203A - Solution Set 1 Problem 1. Show that the Zariski topology on A 2 is not the product of the Zariski topologies on A 1 A 1. Answer: Clearly, the diagonal Z = {(x, y) : x y = 0} A 2 is closed in

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 18 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 31, 2012 Andre Tkacenko

More information

HMMT February 2018 February 10, 2018

HMMT February 2018 February 10, 2018 HMMT February 018 February 10, 018 Algebra and Number Theory 1. For some real number c, the graphs of the equation y = x 0 + x + 18 and the line y = x + c intersect at exactly one point. What is c? 18

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Introduction This dissertation is a reading of chapter 4 in part I of the book : Integer and Combinatorial Optimization by George L. Nemhauser & Laurence A. Wolsey. The chapter elaborates links between

More information

arxiv: v1 [math.oc] 5 Oct 2018

arxiv: v1 [math.oc] 5 Oct 2018 Subdeterminants and Concave Integer Quadratic Programming arxiv:1810.02763v1 [math.oc] 5 Oct 2018 Alberto Del Pia October 8, 2018 Abstract We consider the NP-hard problem of minimizing a separable concave

More information

Math 203A - Solution Set 3

Math 203A - Solution Set 3 Math 03A - Solution Set 3 Problem 1 Which of the following algebraic sets are isomorphic: (i) A 1 (ii) Z(xy) A (iii) Z(x + y ) A (iv) Z(x y 5 ) A (v) Z(y x, z x 3 ) A Answer: We claim that (i) and (v)

More information

Theorem 6.1 The addition defined above makes the points of E into an abelian group with O as the identity element. Proof. Let s assume that K is

Theorem 6.1 The addition defined above makes the points of E into an abelian group with O as the identity element. Proof. Let s assume that K is 6 Elliptic curves Elliptic curves are not ellipses. The name comes from the elliptic functions arising from the integrals used to calculate the arc length of ellipses. Elliptic curves can be parametrised

More information

Ideals: Definitions & Examples

Ideals: Definitions & Examples Ideals: Definitions & Examples Defn: An ideal I of a commutative ring R is a subset of R such that for a, b I and r R we have a + b, a b, ra I Examples: All ideals of Z have form nz = (n) = {..., n, 0,

More information

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line?

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line? 1 How many natural numbers are between 1.5 and 4.5 on the number line? 2 How many composite numbers are between 7 and 13 on the number line? 3 How many prime numbers are between 7 and 20 on the number

More information

Linear, Quadratic, and Cubic Forms over the Binary Field

Linear, Quadratic, and Cubic Forms over the Binary Field Linear, Quadratic, and Cubic Forms over the Binary Field Akihiro Munemasa 1 1 Graduate School of Information Sciences Tohoku University October 28, 2009 POSTECH Linear, Quadratic, and Cubic Forms over

More information

MSRI Summer Graduate Workshop: Algebraic, Geometric, and Combinatorial Methods for Optimization. Part IV

MSRI Summer Graduate Workshop: Algebraic, Geometric, and Combinatorial Methods for Optimization. Part IV MSRI Summer Graduate Workshop: Algebraic, Geometric, and Combinatorial Methods for Optimization Part IV Geometry of Numbers and Rational Generating Function Techniques for Integer Programming Matthias

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Convex Optimization Fourth lecture, 05.05.2010 Jun.-Prof. Matthias Hein Reminder from last time Convex functions: first-order condition: f(y) f(x) + f x,y x, second-order

More information

Homework 8 Solutions to Selected Problems

Homework 8 Solutions to Selected Problems Homework 8 Solutions to Selected Problems June 7, 01 1 Chapter 17, Problem Let f(x D[x] and suppose f(x is reducible in D[x]. That is, there exist polynomials g(x and h(x in D[x] such that g(x and h(x

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Notes by Bernd Sturmfels for the lecture on June 26, 208, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra The transition from linear algebra to nonlinear algebra has

More information

Section September 6, If n = 3, 4, 5,..., the polynomial is called a cubic, quartic, quintic, etc.

Section September 6, If n = 3, 4, 5,..., the polynomial is called a cubic, quartic, quintic, etc. Section 2.1-2.2 September 6, 2017 1 Polynomials Definition. A polynomial is an expression of the form a n x n + a n 1 x n 1 + + a 1 x + a 0 where each a 0, a 1,, a n are real numbers, a n 0, and n is a

More information

PACKING POLYNOMIALS ON SECTORS OF R 2. Caitlin Stanton Department of Mathematics, Stanford University, California

PACKING POLYNOMIALS ON SECTORS OF R 2. Caitlin Stanton Department of Mathematics, Stanford University, California #A67 INTEGERS 14 (014) PACKING POLYNOMIALS ON SECTORS OF R Caitlin Stanton Department of Mathematics, Stanford University, California ckstanton@stanford.edu Received: 10/7/13, Revised: 6/5/14, Accepted:

More information

Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16: Linear programming. Optimization Problems

Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16: Linear programming. Optimization Problems Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16:38 2001 Linear programming Optimization Problems General optimization problem max{z(x) f j (x) 0,x D} or min{z(x) f j (x) 0,x D}

More information

Multiway Tables and Integer Programming are Fixed-Parameter Tractable

Multiway Tables and Integer Programming are Fixed-Parameter Tractable Multiway Tables and Integer Programming are Fixed-Parameter Tractable Technion Israel Institute of Technology Outline 1. Overview our theory of Graver bases for integer programming (with Berstein, De Loera,

More information

10725/36725 Optimization Homework 2 Solutions

10725/36725 Optimization Homework 2 Solutions 10725/36725 Optimization Homework 2 Solutions 1 Convexity (Kevin) 1.1 Sets Let A R n be a closed set with non-empty interior that has a supporting hyperplane at every point on its boundary. (a) Show that

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy.

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy. April 15, 2009 CHAPTER 4: HIGHER ORDER DERIVATIVES In this chapter D denotes an open subset of R n. 1. Introduction Definition 1.1. Given a function f : D R we define the second partial derivatives as

More information

Prime Numbers and Irrational Numbers

Prime Numbers and Irrational Numbers Chapter 4 Prime Numbers and Irrational Numbers Abstract The question of the existence of prime numbers in intervals is treated using the approximation of cardinal of the primes π(x) given by Lagrange.

More information

Numerical Optimization. Review: Unconstrained Optimization

Numerical Optimization. Review: Unconstrained Optimization Numerical Optimization Finding the best feasible solution Edward P. Gatzke Department of Chemical Engineering University of South Carolina Ed Gatzke (USC CHE ) Numerical Optimization ECHE 589, Spring 2011

More information

Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point

Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point Gérard Cornuéjols 1 and Yanjun Li 2 1 Tepper School of Business, Carnegie Mellon

More information

Second-Order Cone Program (SOCP) Detection and Transformation Algorithms for Optimization Software

Second-Order Cone Program (SOCP) Detection and Transformation Algorithms for Optimization Software and Second-Order Cone Program () and Algorithms for Optimization Software Jared Erickson JaredErickson2012@u.northwestern.edu Robert 4er@northwestern.edu Northwestern University INFORMS Annual Meeting,

More information

Math 273a: Optimization Basic concepts

Math 273a: Optimization Basic concepts Math 273a: Optimization Basic concepts Instructor: Wotao Yin Department of Mathematics, UCLA Spring 2015 slides based on Chong-Zak, 4th Ed. Goals of this lecture The general form of optimization: minimize

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions Chapter 2 Polynomial and Rational Functions Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Quadratic Functions Polynomial Functions of Higher Degree Real Zeros of Polynomial Functions

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

THE REAL NUMBERS Chapter #4

THE REAL NUMBERS Chapter #4 FOUNDATIONS OF ANALYSIS FALL 2008 TRUE/FALSE QUESTIONS THE REAL NUMBERS Chapter #4 (1) Every element in a field has a multiplicative inverse. (2) In a field the additive inverse of 1 is 0. (3) In a field

More information

On convergence in mixed integer programming

On convergence in mixed integer programming IFOR Dept. Mathematics ETH Zürich Januar 10, 2011 Integer programming - Gomor cuts An inequalit cx γ is a Gomor cut for a polhedron P if c Z m and if cx γ is valid for P. The Chvátal closure P of P is

More information

SCORE BOOSTER JAMB PREPARATION SERIES II

SCORE BOOSTER JAMB PREPARATION SERIES II BOOST YOUR JAMB SCORE WITH PAST Polynomials QUESTIONS Part II ALGEBRA by H. O. Aliu J. K. Adewole, PhD (Editor) 1) If 9x 2 + 6xy + 4y 2 is a factor of 27x 3 8y 3, find the other factor. (UTME 2014) 3x

More information

Chapter 1 Preliminaries

Chapter 1 Preliminaries Chapter 1 Preliminaries 1.1 Conventions and Notations Throughout the book we use the following notations for standard sets of numbers: N the set {1, 2,...} of natural numbers Z the set of integers Q the

More information

Modern Algebra Lecture Notes: Rings and fields set 6, revision 2

Modern Algebra Lecture Notes: Rings and fields set 6, revision 2 Modern Algebra Lecture Notes: Rings and fields set 6, revision 2 Kevin Broughan University of Waikato, Hamilton, New Zealand May 20, 2010 Solving quadratic equations: traditional The procedure Work in

More information

Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows

Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows Shaowei Lin 9 Dec 2010 Abstract Recently, Helton and Nie [3] showed that a compact convex semialgebraic set S is a spectrahedral shadow if the

More information

Semidefinite Programming

Semidefinite Programming Chapter 2 Semidefinite Programming 2.0.1 Semi-definite programming (SDP) Given C M n, A i M n, i = 1, 2,..., m, and b R m, the semi-definite programming problem is to find a matrix X M n for the optimization

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 02: Optimization (Convex and Otherwise) What is Optimization? An Optimization Problem has 3 parts. x F f(x) :

More information

ARCS IN FINITE PROJECTIVE SPACES. Basic objects and definitions

ARCS IN FINITE PROJECTIVE SPACES. Basic objects and definitions ARCS IN FINITE PROJECTIVE SPACES SIMEON BALL Abstract. These notes are an outline of a course on arcs given at the Finite Geometry Summer School, University of Sussex, June 26-30, 2017. Let K denote an

More information

9. Geometric problems

9. Geometric problems 9. Geometric problems EE/AA 578, Univ of Washington, Fall 2016 projection on a set extremal volume ellipsoids centering classification 9 1 Projection on convex set projection of point x on set C defined

More information

Section 4.1: Polynomial Functions and Models

Section 4.1: Polynomial Functions and Models Section 4.1: Polynomial Functions and Models Learning Objectives: 1. Identify Polynomial Functions and Their Degree 2. Graph Polynomial Functions Using Transformations 3. Identify the Real Zeros of a Polynomial

More information

Algebra 2-DRAFT Curriculum Map Based on the 2011 MA Mathematics Frameworks

Algebra 2-DRAFT Curriculum Map Based on the 2011 MA Mathematics Frameworks Unit 1: Functions, Operations on Functions and Transformations (with review of systems) Essential Questions: How do you most clearly represent the combination of two functions? What makes the graph of

More information

Dilated Floor Functions and Their Commutators

Dilated Floor Functions and Their Commutators Dilated Floor Functions and Their Commutators Jeff Lagarias, University of Michigan Ann Arbor, MI, USA (December 15, 2016) Einstein Workshop on Lattice Polytopes 2016 Einstein Workshop on Lattice Polytopes

More information

Polynomials. Math 4800/6080 Project Course

Polynomials. Math 4800/6080 Project Course Polynomials. Math 4800/6080 Project Course 2. Algebraic Curves. Everyone knows what a curve is, until he has studied enough mathematics to become confused through the countless number of possible exceptions.

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

Local properties of plane algebraic curves

Local properties of plane algebraic curves Chapter 7 Local properties of plane algebraic curves Throughout this chapter let K be an algebraically closed field of characteristic zero, and as usual let A (K) be embedded into P (K) by identifying

More information

Mathematical Preliminaries

Mathematical Preliminaries Chapter 33 Mathematical Preliminaries In this appendix, we provide essential definitions and key results which are used at various points in the book. We also provide a list of sources where more details

More information

Lesson 2.1: Quadratic Functions

Lesson 2.1: Quadratic Functions Quadratic Functions: Lesson 2.1: Quadratic Functions Standard form (vertex form) of a quadratic function: Vertex: (h, k) Algebraically: *Use completing the square to convert a quadratic equation into standard

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Advanced Algebra II 1 st Semester Exam Review

Advanced Algebra II 1 st Semester Exam Review dname Advanced Algebra II 1 st Semester Exam Review Chapter 1A: Number Sets & Solving Equations Name the sets of numbers to which each number belongs. 1. 34 2. 525 3. 0.875 4. Solve each equation. Check

More information

Lecture 4: Convex Functions, Part I February 1

Lecture 4: Convex Functions, Part I February 1 IE 521: Convex Optimization Instructor: Niao He Lecture 4: Convex Functions, Part I February 1 Spring 2017, UIUC Scribe: Shuanglong Wang Courtesy warning: These notes do not necessarily cover everything

More information

6A The language of polynomials. A Polynomial function follows the rule. Degree of a polynomial is the highest power of x with a non-zero coefficient.

6A The language of polynomials. A Polynomial function follows the rule. Degree of a polynomial is the highest power of x with a non-zero coefficient. Unit Mathematical Methods Chapter 6: Polynomials Objectives To add, subtract and multiply polynomials. To divide polynomials. To use the remainder theorem, factor theorem and rational-root theorem to identify

More information

Solving x 2 Dy 2 = N in integers, where D > 0 is not a perfect square. Keith Matthews

Solving x 2 Dy 2 = N in integers, where D > 0 is not a perfect square. Keith Matthews Solving x 2 Dy 2 = N in integers, where D > 0 is not a perfect square. Keith Matthews Abstract We describe a neglected algorithm, based on simple continued fractions, due to Lagrange, for deciding the

More information

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents MATHEMATICAL ECONOMICS: OPTIMIZATION JOÃO LOPES DIAS Contents 1. Introduction 2 1.1. Preliminaries 2 1.2. Optimal points and values 2 1.3. The optimization problems 3 1.4. Existence of optimal points 4

More information

On the Sequence A and Its Combinatorial Interpretations

On the Sequence A and Its Combinatorial Interpretations 1 2 47 6 2 11 Journal of Integer Sequences, Vol. 9 (2006), Article 06..1 On the Sequence A079500 and Its Combinatorial Interpretations A. Frosini and S. Rinaldi Università di Siena Dipartimento di Scienze

More information

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. xx xxxx 2017 xx:xx xx.

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. xx xxxx 2017 xx:xx xx. Two hours To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER CONVEX OPTIMIZATION - SOLUTIONS xx xxxx 27 xx:xx xx.xx Answer THREE of the FOUR questions. If

More information

Cumulative Review. Name. 13) 2x = -4 13) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Cumulative Review. Name. 13) 2x = -4 13) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Cumulative Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Evaluate the algebraic expression for the given value or values of the variable(s).

More information

Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016

Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 Lecture 1: Entropy, convexity, and matrix scaling CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 1 Entropy Since this course is about entropy maximization,

More information

Mathematical Economics: Lecture 3

Mathematical Economics: Lecture 3 Mathematical Economics: Lecture 3 Yu Ren WISE, Xiamen University October 7, 2012 Outline 1 Example of Graphing Example 3.1 Consider the cubic function f (x) = x 3 3x. Try to graph this function Example

More information

A POSITIVE PROPORTION OF THUE EQUATIONS FAIL THE INTEGRAL HASSE PRINCIPLE

A POSITIVE PROPORTION OF THUE EQUATIONS FAIL THE INTEGRAL HASSE PRINCIPLE A POSITIVE PROPORTION OF THUE EQUATIONS FAIL THE INTEGRAL HASSE PRINCIPLE SHABNAM AKHTARI AND MANJUL BHARGAVA Abstract. For any nonzero h Z, we prove that a positive proportion of integral binary cubic

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

Convex Optimization and SVM

Convex Optimization and SVM Convex Optimization and SVM Problem 0. Cf lecture notes pages 12 to 18. Problem 1. (i) A slab is an intersection of two half spaces, hence convex. (ii) A wedge is an intersection of two half spaces, hence

More information