The current density in a material is generally given by

Size: px
Start display at page:

Download "The current density in a material is generally given by"

Transcription

1 1 Sidsel Trætteberg, 1 Erling Ildstad, 2 Rolf Hegerberg 1 Norwegian University of Science and Technology (NTNU), Trondheim, Norway. 2 Sintef Energiforskning AS, Trondheim, Norway The use of extruded polymers for high voltage DC applications has so far been restricted by the problems of predicting and controlling the effect(s) of space charge trapping in the insulation. Space charge originates either from impurities in the material, usually resulting in ionic conduction mechanisms and/or from charge injection at the electrodes. The resulting conduction processes control the field distribution and hence the maximum stress in the insulation. In cable applications, the local current causes a temperature gradient to be set up across the insulation. Since the mobility of the trapped charges as well as the injection mechanisms are temperature dependent, this temperature gradient significantly modifies the DC conduction and the electric field within the insulation. The present paper describes measurements of the DC conductivity of extruded XLPE as a function of field and temperature and the space charge distribution in samples of the same materials resulting from applying both an electric field and a temperature gradient. The current density in a material is generally given by Ex j = σe + ε r ε ( ) (1) dt where E is the electrical field, σ the conductivity, εr the materials permittivity and ε0 is the permittivity in vacuum. When applying a DC-voltage the capacitive current given by the latter term will initially dominate. In steady state the current will be determined by the conductivity, the number of free charges and their mobility. The morphology of polyethylene consist both of amorphous and crystalline parts. This makes it rather complicated to theoretically predict the conduction by physical modelling. Instead it is common to express the conductivity by the empirical equation σ = σ 0 exp( αt + βe) (2) where the coefficients,α and β, denote the temperature and the electric field dependence, respectively. σ 0 is the conductivity at low stress and reference temperature (0 C), and the temperature given in C. When low stress is applied the electric field coefficient, β, is normally much smaller than the temperature coefficient, α. It is therefore usually considered a good approximation to determine the temperature coefficient by using ln( σ) = Const + αt (3) In large insulation systems which likely contain particles and other irregularities space charge may accumulate at their interfaces. This occurs where there is a local change in the ratio between the permittivity, εr, and the conductivity σ. Space charge is thus also generated when there is a temperature gradient in the insulation as the conductivity is

2 much more temperature dependent than the permittivity. The insulation resistance and subsequently the electric field stress will become largest in the cold region. Another process is the formation of homo- and hetero charge at the electrodes. This occurs when there is an imbalance between the ability of the electrodes to supply charge and the ability of the insulation to remove the charge by conduction. If the supply of charge is slower than the conduction process a charge layer of opposite polarity, hetero charge, is formed near the electrode. Homo charges will be formed if the supply of charge from the electrodes are faster than the conduction. Poisson equation εε(x)=ρ(x), together with equation (2) can be used to express the density of space charge ρ( x) = ε 0 ε r αge( x) (4) where g is the temperature gradient dt/dx. [4] The electrical field can then be expressed by the one dimensional solution: Ex ( ) αguexp( αgx) = ( 1 exp( αgd) ) where U is the applied voltage, d is the thickness of the object and x the distance from the electrode. [6] (5) All measurements were done using test objects made of XLPE LE4250, crosslinkable polyethylene. A material used as insulation in commercial HVDC cable production.[2] The pellets received was first extruded and then Rogowski shaped test objects were made. The cups were pressure moulded at 115 C and vulcanized at 175 C. Afterwards they were annealed for 2-3 minutes at 130 C and degassed at 90 C in 3 days, as previously described in [3]. Two types of test objects were made: One type had an insulation thickness of 0.9 mm with semiconducting (LE0500) electrodes of 0.5 mm on both sides. The second objects had an insulation thickness of 0.4 mm equipped with vacuum evaporated aluminium electrodes on both sides. The experimental set up for DC current measurements is schematically shown in figure 1. Spellman SL 150 oven object guard R Keithley 617 electrometer

3 Before the current measurement, the test objects were equipped with a guard electrode, using an aluminium tape at the lower section of the samples. A DC voltage was applied to the test object and the resulting DC current was measured by a Keithly 617 electrometer. The test objects were placed in an oven where the temperature was raised in steps of 10 C from C. The voltage was kept constant and the conductivity as a function of temperature was measured. The stable current values were recorded after 3 to 12 hours of voltage application, depending upon the temperature. The electric field dependence was measured by keeping the temperature constant and raising the voltage in steps of 5 kv, from 5 kv to 20 kv. The experimental set up for space charge measurement are shown in figure 2.. Object The space charge measurements were performed using the Electro Acoustic Pulse Wave method (PEA) [1]. The measurements were performed with a temperature gradient across the object, and with the voltage applied during measurements. Copper coils for heating and cooling were attached to the electrodes.warm oil and cold tap water were circulated through the coils to achive suitable temperatures. Thermoelements were used to measure the temperatures. The gradient was found measuring the temperature of the grounded electrode close to the object, and the temperature of the warm oil flowing into the coils wound around the HV electrode. Separate measurements of the thermal conductivities have shown that the thermal conductivity of the

4 semiconductor is 2.15 times that of the XLPE insulation, thus 68% of the gradient will be across the XLPE insulation. Space charge measurements were done on test objects with kv applied, and a temperature gradient of about 21 C. igure 3 and 4 shows the measured DC-conductivity as a function of temperature and applied DC-stress, respectively. The temperature coefficient, α, was calculated to be 0.07 and 0,1 in case of Al-electrode and SC-electrode respectively. Ã> \ LW W LY X G Q R & Ω P 1.E-13 1.E-14 1.E-15 1.E-16 α=0.10 α= HPSHUDWXUH>&@ obj. with Al-electrode 12.5kV/mm obj. with sc-electrode 19kV/mm. Ã> \ LW W LY X G Q R Ω P 1.E-14 T=70 C T=50 C β= E (OHWULÃ)LHOGÃ>N9PP@ C and 70 C This indicates that the electrodes and their injection properties may strongly affect the resulting conductivity.the different thickness of the test objects may also play an impor-

5 tant role, resulting in larger electrode effects in case of the thinnest objects. rom the result presented in igure 4 the field coefficient, β, was found to be Comparing the results to similar measurements on LDPE results, presented in ref [7], showed higher (α=0.15 and β=0.09,) temperature and field dependencies. This indicate that the examined HVDC modified XLPE has a better conduction characteristic than LDPE. igure 5 shows the measured space charge distribution in two different objects, both energised E=-22,5 kv/mm.the full curve presents measured space charge distribution after 24 hours of voltage application at 25 C. The dotted curve shows similar results from a test at a temperature of T=38 C. No charge in space charge distribution was observed due to longer period of voltage application. The spacial resolution of the PEA equipment is limited to about +/-0.15 mm, which means that only the average space charge concentration will be measured for spacial resolutions smaller than this. The graphs presented clearly show that the effect of increasing the temperature by 13 C was to increase the amount of homo charge injected at the electrodes by a factor of 2.2.., 4 2 T=25 C T=38 C nc/mm anode 0.4 mm 0.8 cathode. igure 6 shows the time development of the measured space charge distribution of a test object exposed to a temperature gradient of 21 C and -25kV/mm across the XLPE insulation. The graphs show that space charge is gradually building up within the insulation. Compared to the results presented in figure 5 it is clearly demonstrated that a temperature gradient strongly affects the distribution of space charge within the insulation. The gradient leads to an increased amount of homo charge close to the warm cathode.

6 2 t=0h t=5h t=26h nc/mm anode cold side cathode warm side mm igure 6 igure 7 shows the electric field calculated from the measured space charge distribution.starting with E=-25 kv/mm the field stress at the cold anode was found to increase while the field at the cathode reduced due to the injected homocharge. This is in accordance with the theoretical predictions. At a distance of 0.2 mm away from the electrodes, the electric field stress was measured to be 3.4 times higher near the cold than the warm electrode T=0 t=0h T=21 t=5h T=21 r=26h kv/mm anode cold side cathode warm side mm igure 8 shows the maximum field of three objects starting with an average applied electric field stress of E=-22,5 kv/mm. The experimental results presented in figure 8a show to distinct features: i) In the examined temperature range from about 20 to 60 C stable electric field distribution were formed relatively quickly. At the highest temperatures 80% saturation was reached within less than 40 minutes. ii) It also shows that the effect of in-

7 creasing the temperature gradient by a factor of 2 was to double the maximum electric stress. Results presented in figure 8 show that the higher temperature also lead to a higher electric field under isothermal conditions, an effect which can be explained by homocharge formation at the electrodes, causing increased but homogeneous electric stress within the insulation. 70 P P 60 9 >N OG 50 LH Ã) L 40 WU OH 30 ( WLPHÃ>K@ DÃ:LWKÃWHPSHUDWXUHÃJUDGLHQW Tmax=47 C Tmax=57 C P70 T=25 C P 960 T=38 C Ã>N OG 50 LH Ã) 40 L WU 30 O H ( WLPHÃ>K@ E,VRWKHUPDOÃRQGLWLRQ Τ=21 Τ=31 0 Electric ield [kv/mm] Thickness [mm] T igure 9 shows a comparison between measured and calculated electric field distribution in case of a temperature gradient of 21 C. The dotted theoretical curve was calculated by inserting measured values of α and g into equation (5). The theoretical and measured values correspond quiet well. The difference could possibly be caused by the homo charge formation at the electrodes which were not included in the theoretical deduction. In addition the theoretical deduction was made using the assumption that the electric field dependence of the conductivity could be neglected. The results presented in figure 4 show that this is not valid. The effect of increasing the electric field stress from 20 to 50 kv/mm

8 is to increase the conductivity by a factor of 2.5. This increased conductivity in high stress regions will reduce the resulting stress near the cold electrode. Thus the theoretical deduction need to be modified. During isothermal condition homocharge will be found at the interface between XLPE and semiconducting electrodes. The amount of charge will increase with increasing temperature. The DC conductivity of the XLPE insulation increase with increasing temperature and electric stress. Thus in case of a temperature gradient space charge will be formed within the bulk of the insulation to establish an electric field distribution according to the variation of the DC resistance of the insulation. [1] Joseph Barry Bernstein,Electrical Characterization of Polymeric Insulation by Electrically Stimulated Acoustic Wave Measurement,Massachusettes Institute of Technology, 1990,l [2] J.O.Bostrom, A.Campus,R.N.Hampton, U.H.Nilsson, Evaluation of the material for polymeric direct current cables, Cigre , 2002 [3] Hallvard aremo,the EI Test Method- Wet Ageing of High Voltage Material, EI TR A4172, 1994 [4].H.Kreuger:Industrial High DC Voltage,Delft University Press, 1995 [5] Y.Li: Space Charge Measurement in lossy solid dielectric materials by pulsed electroacoustic method,ph.d-thesis, Musashi Inst. of Tech., 1994 [6] E.Ildstad,.Mauseth and G.Balog, Space charge and electric field distribution in current loaded polyethylene insulated HVDC cables, ISH-2003 [7] E.Ilstad and.oldervoll, DC current characteristics of polyethylene with and without antioxidant after thermal aging, NORD-IS 01, 2001

Simultaneous Space Charge and Conduction Current Measurements in Solid Dielectrics under High DC Electric Field

Simultaneous Space Charge and Conduction Current Measurements in Solid Dielectrics under High DC Electric Field Simultaneous Space Charge and Conduction Current Measurements in Solid Dielectrics under High DC Electric Field W S Lau and G Chen School of Electronics and Computer Science, University of Southampton,

More information

Interfaces roughness effects on charge generation and storage

Interfaces roughness effects on charge generation and storage s roughness effects on charge generation and storage F. Rogti Laboratoire de matériaux diélectrique,département de Génie Electrique, Université Amar Tlidji, Laghouat, Route de Gardaia BP 7, Algeria. Email

More information

EFFECT OF ELECTRODES ON SPACE CHARGE IN CROSS-LINKED POLYETHYLENE UNDER DC FIELD

EFFECT OF ELECTRODES ON SPACE CHARGE IN CROSS-LINKED POLYETHYLENE UNDER DC FIELD EFFECT OF ELECTRODES ON SPACE CHARGE IN CROSS-LINKED POLYETHYLENE UNDER DC FIELD Fatiha ROGTI Laboratoire de matériaux diélectrique, Département de Génie Electrique, Université Amar Tlidji, Laghouat Route

More information

A METHODOLOGY FOR THE ASSESSMENT OF HVDC-XLPE CABLE INSULATION

A METHODOLOGY FOR THE ASSESSMENT OF HVDC-XLPE CABLE INSULATION A METHODOLOGY FOR THE ASSESSMENT OF HVDC-XLPE CABLE INSULATION Bertrand VISSOUVANADIN, Gilbert TEYSSEDRE, Séverine LE ROY, Christian LAURENT, Université de Toulouse; Laboratoire Plasma et Conversion d'energie,

More information

Investigation of space charge in low-density polyethylene using a field probe technique

Investigation of space charge in low-density polyethylene using a field probe technique Downloaded from orbit.dtu.dk on: Nov 05, 2018 Investigation of space charge in low-density polyethylene using a field probe technique Khalil, M. Salah; Hansen, Bo Svarrer Published in: IEEE Transactions

More information

Space Charge Formation in LDPE/MgO Nano-composite Film under Ultra-high DC Electric Stress

Space Charge Formation in LDPE/MgO Nano-composite Film under Ultra-high DC Electric Stress Extended Summary 本文は pp.184-189 Space Charge Formation in LDPE/MgO Nano-composite Film under Ultra-high DC Electric Stress Yuji Hayase Student Member (Musashi Institute of Technology) Hiroyuki Aoyama Non-member

More information

Study by simulation the influence of temperature on the formation of space charge in the dielectric multilayer Under DC Electric stress

Study by simulation the influence of temperature on the formation of space charge in the dielectric multilayer Under DC Electric stress Downloaded from ijeee.iust.ac.ir at 9:19 IRDT on Friday June 8th 18 [ DOI: 1.68/IJEEE.13..135 ] Study by simulation the influence of temperature on the formation of space charge in the dielectric multilayer

More information

ELECTRIC FIELD CALCULATIONS FOR AC AND DC APPLICATIONS OF WATER CONTROLLED CABLE TERMINATION

ELECTRIC FIELD CALCULATIONS FOR AC AND DC APPLICATIONS OF WATER CONTROLLED CABLE TERMINATION ELECTRIC FIELD CALCULATIONS FOR AC AND DC APPLICATIONS OF WATER CONTROLLED CABLE TERMINATION Tanumay Karmokar HIGHVOLT Prüftechnik Dresden GmbH, Germany Cable Termination Operating Principle Linear electric

More information

Surface Charge Dynamics on Polymeric Insulating Materials for High Voltage Applications

Surface Charge Dynamics on Polymeric Insulating Materials for High Voltage Applications THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING Surface Charge Dynamics on Polymeric Insulating Materials for High Voltage Applications Shahid Alam High Voltage Engineering Department of Material and

More information

Understanding Charge Dynamics in Elastomers Adopting Pulsed Electro Acoustic (PEA) Technique

Understanding Charge Dynamics in Elastomers Adopting Pulsed Electro Acoustic (PEA) Technique Understanding Charge Dynamics in Elastomers Adopting Pulsed Electro Acoustic (PEA) Technique R. Sarathi, M. G. Danikas, Y. Chen, and T. Tanaka Abstract In the present work, Pulsed Electro Acoustic (PEA)

More information

Temperature and Field Dependence of Field Grading Tubes for Medium Voltage XLPE Cable Joints

Temperature and Field Dependence of Field Grading Tubes for Medium Voltage XLPE Cable Joints 24 th Nordic Insulation Symposium on Materials, Components and Diagnostics 138 Temperature and Field Dependence of Field Grading Tubes for Medium Voltage XLPE Cable Joints Frank Mauseth Norwegian Univ.

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

Conductivity measurement of plaque samples obtained from the insulation of high voltage extruded cables

Conductivity measurement of plaque samples obtained from the insulation of high voltage extruded cables 24 th Nordic Insulation Symposium on Materials, Components and Diagnostics 48 Conductivity measurement of plaque samples obtained from the insulation of high voltage extruded cables Hossein Ghorbani Senior

More information

UPDATE ON ACCELERATED AGEING OF MV XLPE

UPDATE ON ACCELERATED AGEING OF MV XLPE UPDATE ON ACCELERATED AGEING OF MV XLPE Author: Presenter: A Falconer Pr Eng B Sc MSAIEE, Manager, Technology Development, Aberdare Cables G Whyte Pr Eng B Sc MSAIEE, General Manager, Aberdare Network

More information

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING UNIT 1: BREAKDOWN IN SOLIDS 1.) Introduction: The solid dielectric materials are used in all kinds of electrical apparatus and devices to insulate current carrying part from another when they operate at

More information

Physical and Numerical Modelling for Bipolar Charge Transport in Disorder Polyethylene Under High DC Voltage

Physical and Numerical Modelling for Bipolar Charge Transport in Disorder Polyethylene Under High DC Voltage International Journal on Electrical Engineering and Informatics - Volume 2, Number 4, 21 Physical and Numerical Modelling for Bipolar Charge Transport in Disorder Polyethylene Under High DC Voltage I.

More information

Space Charge Formation and its Modified Electric Field under Applied Voltage Reversal and Temperature Gradient in XLPE Cable

Space Charge Formation and its Modified Electric Field under Applied Voltage Reversal and Temperature Gradient in XLPE Cable IEEE Transactions on Dielectrics and Electrical Insulation Vol. 5, No. 3; June 8 85 Space Charge Formation and its Modified Electric Field under Applied Voltage Reversal and Temperature Gradient in XLPE

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Research Online City, University of London Institutional Repository Citation: Fu, M., Dissado, L. A., Chen, G. & Fothergill, J. (8). Space charge formation and its modified electric field under applied

More information

Space Charge Measurement system for Dielectric Materials under Irradiation

Space Charge Measurement system for Dielectric Materials under Irradiation 1 Space Charge Measurement system for Dielectric Materials under Irradiation A. Adjerad 1), H. Salah 1) 1) Centre de Recherche Nucléaire d Alger, Alger, Algerie Email contact of main author: a.adjerad@comena-dz.org

More information

Partial discharge risk under space charges generation and transport effects

Partial discharge risk under space charges generation and transport effects Comsol Conference, Lausanne Oct. 22-24, 2018 Partial discharge risk under space charges generation and transport effects M. E. BANDA *, D. MALEC, J-P. CAMBRONNE banda@laplace.univ-tlse.fr LAPLACE, Toulouse

More information

The Influence of Electrodes and Conditioning on Space Charge Accumulation in XLPE

The Influence of Electrodes and Conditioning on Space Charge Accumulation in XLPE Downloaded from orbit.dtu.dk on: Jun 08, 2018 The Influence of Electrodes and Conditioning on Space Charge Accumulation in XLPE Fleming, R. J.; Henriksen, Mogens; Holbøll, Joachim Published in: I E E E

More information

Hybrid Resistive-Capacitive and Ion Drift Model for Solid Gas Dielectrics

Hybrid Resistive-Capacitive and Ion Drift Model for Solid Gas Dielectrics Hybrid Resistive-Capacitive and Ion Drift Model for Solid Gas Dielectrics N. Lavesson *1 and C. B. Doiron 2 1 ABB Corporate Research, Västerås, Sweden, 2 ABB Corporate Research, Dättwil, Switzerland *Corresponding

More information

Introduction to electrets: Principles, equations, experimental techniques

Introduction to electrets: Principles, equations, experimental techniques Introduction to electrets: Principles, equations, experimental techniques Gerhard M. Sessler Darmstadt University of Technology Institute for Telecommunications Merckstrasse 25, 64283 Darmstadt, Germany

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Short-Term Dielectric Performance Assessment of BOPP Capacitor Films: A Baseline Study

Short-Term Dielectric Performance Assessment of BOPP Capacitor Films: A Baseline Study Short-Term Dielectric Performance Assessment of BOPP Capacitor Films: A Baseline Study Dr. Ilkka Rytöluoto, Mikael Ritamäki & Kari Lahti Tampere University of Technology (TUT) Laboratory of Electrical

More information

Dielectric Properties and Space Charge Dynamics of Polymeric High Voltage DC Insulating Materials

Dielectric Properties and Space Charge Dynamics of Polymeric High Voltage DC Insulating Materials Dielectric Properties and Space Charge Dynamics of Polymeric High Voltage DC Insulating Materials Dielectric Properties and Space Charge Dynamics of Polymeric High Voltage DC Insulating Materials Proefschrift

More information

Experimental Study of Space Charge Characteristics in Thin Films of Polyvinyl Chloride Nanocomposites

Experimental Study of Space Charge Characteristics in Thin Films of Polyvinyl Chloride Nanocomposites International Journal on Electrical Engineering and Informatics - Volume 7, Number 1, March 2015 Experimental Study of Space Charge Characteristics in Thin Films of Polyvinyl Chloride Nanocomposites Ahmed

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17653 Supplementary Methods Electronic transport mechanism in H-SNO In pristine RNO, pronounced electron-phonon interaction results in polaron formation that dominates the electronic

More information

ECE 340 Lecture 39 : MOS Capacitor II

ECE 340 Lecture 39 : MOS Capacitor II ECE 340 Lecture 39 : MOS Capacitor II Class Outline: Effects of Real Surfaces Threshold Voltage MOS Capacitance-Voltage Analysis Things you should know when you leave Key Questions What are the effects

More information

Santhosh Kumar BVMP ABB GISL Chennai, India

Santhosh Kumar BVMP ABB GISL Chennai, India Fredrik Fälth ABB High Voltage Cables Karlskrona, Sweden fredrik.falth@se.abb.com Santhosh Kumar BVMP ABB GISL Chennai, India santhosh.bvmp@in.abb.com Hossein Ghorbani ABB High Voltage Cables Karlskrona,

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 4: Organic Photovoltaic Devices Lecture 4.1: Overview of Organic Photovoltaic Devices Bryan W. Boudouris Chemical Engineering Purdue University 1 Lecture Overview and Learning

More information

Transistors - a primer

Transistors - a primer ransistors - a primer What is a transistor? Solid-state triode - three-terminal device, with voltage (or current) at third terminal used to control current between other two terminals. wo types: bipolar

More information

JWG A2/D1.41 HVDC transformer insulation: Oil conductivity 1

JWG A2/D1.41 HVDC transformer insulation: Oil conductivity 1 01.03.2016 JWG A2/D1.41 HVDC transformer insulation: Oil conductivity 1 Members of JWG A2/D1.41 HVDC transformer insulation: Oil conductivity A. Küchler, Convenor (DE) U. Piovan, Secretary (IT) M. Berglund

More information

Condition Assessment of Medium Voltage Cable Joints

Condition Assessment of Medium Voltage Cable Joints Condition Assessment of Medium Voltage Cable Joints Dielectric Spectroscopy of Field Grading Materials Biran Abil Wind Energy Submission date: June 2017 Supervisor: Frank Mauseth, IEL Co-supervisor: Armando

More information

INCREASING INFORMATIVITY OF THE THERMALLY STIMULATED DEPOLARIZATION METHOD

INCREASING INFORMATIVITY OF THE THERMALLY STIMULATED DEPOLARIZATION METHOD INCREASING INFORMATIVITY OF THE THERMALLY STIMULATED DEPOLARIZATION METHOD S. N. Fedosov, A. E. Sergeeva and T. A. Revenyuk Department of Physics, Odessa National Academy of Food Technologies, Odessa,

More information

Article Maxwell Wagner Effect in Multi-Layered Dielectrics: Interfacial Charge Measurement and Modelling

Article Maxwell Wagner Effect in Multi-Layered Dielectrics: Interfacial Charge Measurement and Modelling Article Maxwell Wagner Effect in Multi-Layered Dielectrics: Interfacial Charge Measurement and Modelling Thi Thu Nga Vu 1,2, Gilbert Teyssedre 2, *, Séverine Le Roy 2 and Christian Laurent 2 1 Electrical

More information

Chapter 2: Capacitor And Dielectrics

Chapter 2: Capacitor And Dielectrics hapter 2: apacitor And Dielectrics In this chapter, we are going to discuss the different ways that a capacitor could be arranged in a circuit and how its capacitance could be increased. Overview apacitor

More information

EFFICIENCY OF DUAL WIRE-CYLINDER ELECTRODES USED IN ELECTROSTATIC SEPARATORS

EFFICIENCY OF DUAL WIRE-CYLINDER ELECTRODES USED IN ELECTROSTATIC SEPARATORS EFFICIENCY OF DUAL WIRE-CYLINDER ELECTRODES USED IN ELECTROSTATIC SEPARATORS LAURENŢIU MARIUS DUMITRAN 1, LAURENŢIU VIOREL BADICU 1, MARIUS CRISTIAN PLOPEANU 1,2, LUCIAN DĂSCĂLESCU 2 Key words: Electrostatic

More information

TRANSMISSION LINES. All aluminum alloy conductor (AAAC) Aluminum conductor alloy reinforced (ACAR)

TRANSMISSION LINES. All aluminum alloy conductor (AAAC) Aluminum conductor alloy reinforced (ACAR) TRANSMISSION LINES. Transmission Structures An overhead transmission line consists of conductor, insulators, support structures and in most cases shield wires. Overhead power transmission lines are classified

More information

Dependence of Resistivity in Low-Density Polyethylene on Space Environment Parameters

Dependence of Resistivity in Low-Density Polyethylene on Space Environment Parameters Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 2007 Dependence of Resistivity in Low-Density Polyethylene on Space Environment Parameters JR Dennison Utah State Univerisity

More information

Space charge behaviour in an epoxy resin: the influence of fillers, temperature and electrode material

Space charge behaviour in an epoxy resin: the influence of fillers, temperature and electrode material Space charge behaviour in an epoxy resin: the influence of fillers, temperature and electrode material Olivier Gallot-Lavallée, G. Teyssedre, C. Laurent, S. Rowe To cite this version: Olivier Gallot-Lavallée,

More information

Theory of Electrical Characterization of Semiconductors

Theory of Electrical Characterization of Semiconductors Theory of Electrical Characterization of Semiconductors P. Stallinga Universidade do Algarve U.C.E.H. A.D.E.E.C. OptoElectronics SELOA Summer School May 2000, Bologna (It) Overview Devices: bulk Schottky

More information

MOS CAPACITOR AND MOSFET

MOS CAPACITOR AND MOSFET EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure

More information

By: Jin Huifei Supervisor: Dr.hab. ir.e Gulski (prof. of PUT) Lukasz Chmura, MSc

By: Jin Huifei Supervisor: Dr.hab. ir.e Gulski (prof. of PUT) Lukasz Chmura, MSc Application of dielectric loss measurements for life consumption and future life estimation modeling of oil-impregnated paper insulation in HV power cables By: Jin Huifei Supervisor: Dr.hab. ir.e Gulski

More information

Effect of High Voltage Impulses on Surface Discharge Characteristics of Polyethylene

Effect of High Voltage Impulses on Surface Discharge Characteristics of Polyethylene 9 th Nordic Insulation Symposium on Materials, Components and Diagnostics Effect of High Voltage s on Surface Discharge Characteristics of Polyethylene Roya Nikjoo, Nathaniel Taylor, Hans Edin School of

More information

Chap. 7. Dielectric Materials and Insulation

Chap. 7. Dielectric Materials and Insulation Chap. 7. Dielectric Materials and Insulation - The parallel plate capacitor with free space as an insulator: - The electric dipole moment for a pair of opposite changes +Q and -Q separated by a finite

More information

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer Proceedings of the 9th International Conference on Properties and Applications of Dielectric Materials July 19-23, 29, Harbin, China L-7 Enhancing the Performance of Organic Thin-Film Transistor using

More information

Electric Fields in HVDC Paper-Insulated Cables

Electric Fields in HVDC Paper-Insulated Cables EEE Transactions on Dielectrics and Electrical nsulation Vol. 5 No. 2, April 1998 225 Electric Fields in HVDC Paper-nsulated Cables M. J. P. Jeroense and P. H. F. Morshuis High Voltage Laboratory, Delft

More information

A New Model of Investigating the Electric Field in Dielectric Liquid for Streamer Initiation

A New Model of Investigating the Electric Field in Dielectric Liquid for Streamer Initiation A New Model of Investigating the Electric Field in Dielectric Liquid for Streamer Initiation E A. El-Zein and M. Talaat Electrical Power & Machines Department, Faculty of Engineering, Zagazig University,

More information

Lecture 10 Charge Carrier Mobility

Lecture 10 Charge Carrier Mobility Lecture 10 Charge Carrier Mobility Schroder: Chapter 8 1/64 Announcements Homework 2/6: Is online now. Due Today. I will return it next monday (7 th May). Midterm Exam: Friday May 4 th at 10:00am in STAG113

More information

Electrical Breakdown Properties of Oil-paper Insulation under Pulsating Voltage Influenced by Temperature

Electrical Breakdown Properties of Oil-paper Insulation under Pulsating Voltage Influenced by Temperature J Electr Eng Technol.2016; 11(6): 1735-1743 http://dx.doi.org/10.5370/jeet.2016.11.6.1735 ISSN(Print) 1975-0102 ISSN(Online) 2093-7423 Electrical Breakdown Properties of Oil-paper Insulation under Pulsating

More information

Forces and movement of small water droplets in oil due to applied electric field

Forces and movement of small water droplets in oil due to applied electric field Nordic Insulation Symposium Tampere, June 3, 23 Forces and movement of small water droplets in oil due to applied electric field A. Pedersen E. Ildstad A. Nysveen Norwegian University of Norwegian University

More information

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS CHAPTER-6 6.1 Introduction The suitability and potentiality of a material for device applications can be determined from the frequency and temperature response

More information

Surface corona discharge along an insulating flat plate in air applied to electrohydrodynamically airflow control : electrical properties

Surface corona discharge along an insulating flat plate in air applied to electrohydrodynamically airflow control : electrical properties Surface corona discharge along an insulating flat plate in air applied to electrohydrodynamically airflow control : electrical properties E Moreau (1), G Artana (2), G Touchard (1) (1) Laboratoire d Etudes

More information

Filler-content Dependence of Dielectric Properties of Low-Density Polyethylene/MgO Nanocomposites

Filler-content Dependence of Dielectric Properties of Low-Density Polyethylene/MgO Nanocomposites Extended Summary 本文は pp.17-177 Filler-content Dependence of Dielectric Properties of Low-Density Polyethylene/MgO Nanocomposites Toshiaki Kikuma Student Member (Waseda University, g1b559@ruri.waseda.jp)

More information

DIELECTRIC AND AC CONDUCTION STUDIES OF LEAD PHTHALOCYANINE THIN FILM

DIELECTRIC AND AC CONDUCTION STUDIES OF LEAD PHTHALOCYANINE THIN FILM Chalcogenide Letters Vol. 6, No. 9, September 2009, p. 469 476 DIELECTRIC AND AC CONDUCTION STUDIES OF LEAD PHTHALOCYANINE THIN FILM P. KALUGASALAM a*, DR.S. GANESAN b a Department of Physics, Tamil Nadu

More information

The Low Temperature Physics of Thin Films Superconducting Tin and Monolayer Graphene

The Low Temperature Physics of Thin Films Superconducting Tin and Monolayer Graphene The Low Temperature Physics of Thin Films Superconducting Tin and Monolayer Graphene Abstract: The aim of this project was to investigate how the electrical resistance of a conductor changes if it is deposited

More information

Evaluation of Capacitance in Motor Circuit Analysis Findings. Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN

Evaluation of Capacitance in Motor Circuit Analysis Findings. Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN Evaluation of Capacitance in Motor Circuit Analysis Findings Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN Introduction The question related to the ability of low voltage testing to detect

More information

EFFECT OF SURFACE CHARGING ON DC FLASHOVER CHARACTERISTICS OF POLYMERIC INSULATORS

EFFECT OF SURFACE CHARGING ON DC FLASHOVER CHARACTERISTICS OF POLYMERIC INSULATORS EFFECT OF SURFACE CHARGING ON DC FLASHOVER CHARACTERISTICS OF POLYMERIC INSULATORS By IMTIAZ RIFANUL HOQUE SHAHID ALAM Diploma Work No. 73/211 Department of Materials and Manufacturing Technology CHALMERS

More information

HIGH ENERGY DENSITY CAPACITOR CHARACTERIZATION

HIGH ENERGY DENSITY CAPACITOR CHARACTERIZATION GENERAL ATOMICS ENERGY PRODUCTS Engineering Bulletin HIGH ENERGY DENSITY CAPACITOR CHARACTERIZATION Joel Ennis, Xiao Hui Yang, Fred MacDougall, Ken Seal General Atomics Energy Products General Atomics

More information

ELECTRICAL CONDUCTIVITY OF PRESSBOARD AND THE INFLUENCE OF MOISTURE CONTENT

ELECTRICAL CONDUCTIVITY OF PRESSBOARD AND THE INFLUENCE OF MOISTURE CONTENT Journal of Energy VOLUME 61 2012 journal homepage: http://journalofenergy.com/ T. Judendorfer, R. Woschitz, M.Muhr W. Exner, S. Jaufer Graz University of Technology WEIDMANN Electrical Technology AG Inffeldgasse

More information

Modeling of Degradation Mechanism at the Oil-Pressboard Interface due to Surface Discharge

Modeling of Degradation Mechanism at the Oil-Pressboard Interface due to Surface Discharge Modeling of Degradation Mechanism at the Oil-Pressboard Interface due to Surface Discharge H. Zainuddin *1 and P. L. Lewin 2 1 Research Laboratory of High Voltage Engineering, Faculty of Electrical Engineering,

More information

Thermo-Mechanical Analysis of a Multi-Layer MEMS Membrane

Thermo-Mechanical Analysis of a Multi-Layer MEMS Membrane Thermo-Mechanical Analysis of a Multi-Layer MEMS Membrane Heiko Fettig, PhD James Wylde, PhD Nortel Networks - Optical Components Ottawa ON K2H 8E9 Canada Abstract This paper examines the modelling of

More information

DSO Signal Processing Backing material Amplifier Piezo-electric material Lower Electrode Charge Density (z) (d) [C/m 3 3 ] ] p(t) PEA Fig.1 P

DSO Signal Processing Backing material Amplifier Piezo-electric material Lower Electrode Charge Density (z) (d) [C/m 3 3 ] ] p(t) PEA Fig.1 P * Charging Characteristics in Polyimide Film Irradiated by Ryo Uchiyama, Seiya Numata, Hiroaki Miyake, Yasuhiro Tanaka, Tatsuo Takada (Tokyo City University), ABSTRACT Spacecraft sometimes have a serious

More information

Space-Charge Measurement Technologies and Their Potential Applications

Space-Charge Measurement Technologies and Their Potential Applications Sensors and Materials, Vol. 29, No. 8 (217) 189 198 MYU Tokyo 189 S & M 142 Space-Charge Measurement Technologies and Their Potential Applications Rongsheng Liu, * Christer Törnkvist, and Marc Jeroense

More information

Solution for High Voltage Engineering

Solution for High Voltage Engineering Solution for High Voltage Engineering December 2015 Index Q.1) a).2 b).3 c).4-6 d).7 e). 8-9 Q.2) a). 10-11 b). 12-17 Q.3) a). 17-21 b).22-25 Q.4) a). 26-29 b). N.A Q.5) a).30 b).31-32 Q.6) a).33-36 b).

More information

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide.

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. 41 1 Earlier Lecture In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. Silicon diodes have negligible i 2 R losses. Cernox RTDs offer high response

More information

Properties of Materials

Properties of Materials Tao Deng, dengtao@sjtu.edu.cn 1 1896 1920 1987 2006 Properties of Materials Chapter 3 Electrical Properties of Materials Tao Deng 3.1.4.4 The superconducting tunneling effect (Josephson effect) Tao Deng,

More information

The development of a Roebel cable based 1 MVA HTS transformer

The development of a Roebel cable based 1 MVA HTS transformer The development of a Roebel cable based 1 MVA HTS transformer Neil Glasson 11 October 2011 Mike Staines 1, Mohinder Pannu 2, N. J. Long 1, Rod Badcock 1, Nathan Allpress 1, Logan Ward 1 1 Industrial Research

More information

arxiv: v3 [cond-mat.mtrl-sci] 11 May 2010

arxiv: v3 [cond-mat.mtrl-sci] 11 May 2010 Identification of dipolar relaxations in dielectric spectra of arxiv:1003.1677v3 [cond-mat.mtrl-sci] 11 May 2010 mid voltage cross linked polyethylene cables J. Òrrit, J.C. Cañadas, J. Sellarès and J.

More information

CIRCUIT ELEMENT: CAPACITOR

CIRCUIT ELEMENT: CAPACITOR CIRCUIT ELEMENT: CAPACITOR PROF. SIRIPONG POTISUK ELEC 308 Types of Circuit Elements Two broad types of circuit elements Ati Active elements -capable of generating electric energy from nonelectric energy

More information

B7.6 9 th International Conference on Insulated Power Cables B7.6

B7.6 9 th International Conference on Insulated Power Cables B7.6 B76 9 th International onference on Insulated Power ables B76 Development of a LPE insulating with low peroxide by-products Jean-hristophe GARD, Isabelle DENIZET, Mohamed MAMMERI General able, Montereau,

More information

Classical Resistivity Method in Atmosphere and Vacuum

Classical Resistivity Method in Atmosphere and Vacuum Utah State University DigitalCommons@USU Senior Theses and Projects Materials Physics 2-21-2005 Classical Resistivity Method in Atmosphere and Vacuum Shigeyuki Takahashi Follow this and additional works

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

Site Characterization & Hydrogeophysics

Site Characterization & Hydrogeophysics Site Characterization & Hydrogeophysics (Source: Matthew Becker, California State University) Site Characterization Definition: quantitative description of the hydraulic, geologic, and chemical properties

More information

Electrical Treeing in Insulation Materials for High Voltage AC Subsea Connectors under High Hydrostatic Pressures

Electrical Treeing in Insulation Materials for High Voltage AC Subsea Connectors under High Hydrostatic Pressures Electrical Treeing in Insulation Materials for High Voltage AC Subsea Connectors under High Hydrostatic Pressures Miguel Soto Martinez Wind Energy Submission date: July 2017 Supervisor: Frank Mauseth,

More information

Modeling Electric Fields in High Voltage Submersible Changeover Switch

Modeling Electric Fields in High Voltage Submersible Changeover Switch Excerpt from the Proceedings of the COMSOL Conference 2010 Paris Modeling Electric Fields in High Voltage Submersible Changeover Switch K. Follesø, Cand. scient in Experimental Particle Physics from University

More information

Life Science Journal 2013;10(4)

Life Science Journal 2013;10(4) Study on Effect of Size and Location of Void on Electric Field and Potential Distributions in Stator Bar Insulation with finite-element-model Hadi Nabipour-Afrouzi, Zulkurnain Abdul-Malek, Saeed Vahabi-Mashak

More information

Introduction to Thermoelectric Materials and Devices

Introduction to Thermoelectric Materials and Devices Introduction to Thermoelectric Materials and Devices 4th Semester of 2012 2012.03.29, Thursday Department of Energy Science Sungkyunkwan University Radioisotope Thermoelectric Generator (PbTe) Space probe

More information

Diagnosis of Electrical Performance and Aging Behavior of Transformer Dielectrics

Diagnosis of Electrical Performance and Aging Behavior of Transformer Dielectrics Diagnosis of Electrical Performance and Aging Behavior of Transformer Dielectrics Supatra A. Bhumiwat Independent HV Diagnostics Consultant www.kea-consultant.com CIGRE Thailand 29 th November 2013, Bangkok

More information

Capacitors. Typical electrical characteristics of metallized polyester capacitors KEU. Type KEU Metallized polyester capacitors

Capacitors. Typical electrical characteristics of metallized polyester capacitors KEU. Type KEU Metallized polyester capacitors Capacitors Type KEU Metallized polyester capacitors As a dielectric high quality polyester film with good electrical properties is used. Electrodes of capacitor are vacuum metallized aluminium. The thickness

More information

Thermal and Mechanical Properties of EPR Cable Compound. Steven Boggs ICC Educational Session 7 November 2005 Phoenix, Arizona

Thermal and Mechanical Properties of EPR Cable Compound. Steven Boggs ICC Educational Session 7 November 2005 Phoenix, Arizona Thermal and Mechanical Properties of EPR Cable Compound Steven Boggs ICC Educational Session 7 November 2005 Phoenix, Arizona Source of Data All data were measured during 2005 at the Institute of Materials

More information

Compounding, Structure and Dielectric Properties of Silica-BOPP Nanocomposite Films

Compounding, Structure and Dielectric Properties of Silica-BOPP Nanocomposite Films Tampere University of Technology Compounding, Structure and Dielectric Properties of Silica-BOPP Nanocomposite Films Citation Rytöluoto, I., Ritamäki, M., Lahti, K., Paajanen, M., Karttunen, M., Montanari,

More information

INSTITUTE OF AERONAUTICAL ENGINERING DUNDIGAL ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINERING DUNDIGAL ELECTRICAL AND ELECTRONICS ENGINEERING INSTITUTE OF AERONAUTICAL ENGINERING DUNDIGAL ELECTRICAL AND ELECTRONICS ENGINEERING Course code : 067(07-08) Course title : High voltage engineering Course structure Lectures Tutorials Practical credits

More information

INORGANIC NANOFILLER EFFECTS ON RESISTIVITY AND ABSORPTION CURRENTS IN LOW DENSITY POLYETHYLENE NANOCOMPOSITES

INORGANIC NANOFILLER EFFECTS ON RESISTIVITY AND ABSORPTION CURRENTS IN LOW DENSITY POLYETHYLENE NANOCOMPOSITES INORGANIC NANOFILLER EFFECTS ON RESISTIVITY AND ABSORPTION CURRENTS IN LOW DENSITY POLYETHYLENE NANOCOMPOSITES ILONA PLESA 1, FLORIN CIUPRINA 1, PETRU V. NOTINGHER 1, DENIS PANAITESCU 2 The study of the

More information

Feasibility of HTS DC Cables on Board a Ship

Feasibility of HTS DC Cables on Board a Ship Feasibility of HTS DC Cables on Board a Ship K. Allweins, E. Marzahn Nexans Deutschland GmbH 10 th EPRI Superconductivity Conference Feasibility of HTS DC Cables on Board a Ship 1. Can superconducting

More information

Multi-mode revisited

Multi-mode revisited Multi-mode revisited Testing the application of shift factors S.J.M Hellenbrand 515217 MT 7.29 Coaches: Ir. L.C.A. van Breemen Dr. Ir. L.E. Govaert 2-7- 7 Contents Contents 1 Introduction 2 I Polymers

More information

Semiconductor thermogenerator

Semiconductor thermogenerator Semiconductor thermogenerator LEP 4.1.07 Related topics Seebeck effect (thermoelectric effect), thermoelectric e.m.f., efficiency, Peltier coefficient, Thomson coefficient, Seebeck coefficient, direct

More information

Thermal and Electrical Breakdown Versus Reliability of Ta2O5 under Both Bipolar Biasing Conditions

Thermal and Electrical Breakdown Versus Reliability of Ta2O5 under Both Bipolar Biasing Conditions Thermal and Electrical Breakdown Versus Reliability of Ta2O5 under Both Bipolar Biasing Conditions P. Vašina, T. Zedníček, Z. Sita AVX Czech Republic s.r.o., Dvorakova 328, 563 1 Lanskroun, Czech Republic

More information

Dielectric constant measurement of P3HT, polystyrene, and polyethylene

Dielectric constant measurement of P3HT, polystyrene, and polyethylene Dielectric constant measurement of P3HT, polystyrene, and polyethylene Supervisor: prof. dr. J.C. Hummelen Daily supervisor: Jenny Douvogianni Name: Si Chen (s2660482) 1. Introduction Dielectric constant

More information

MCT151: Introduction to Mechatronics Lecture 10: Sensors & Transduction Mechanisms

MCT151: Introduction to Mechatronics Lecture 10: Sensors & Transduction Mechanisms Faculty of Engineering MCT151: Introduction to Mechatronics Lecture 10: Sensors & Transduction Mechanisms Slides are borrowed from Dr. Mohamed Elshiekh lectures Types of sensors Sensors are considered

More information

EFFECT OF ATMOSPHERIC CONDITIONS ON CABLE TERMINATION TO SWITCHGEAR

EFFECT OF ATMOSPHERIC CONDITIONS ON CABLE TERMINATION TO SWITCHGEAR PK ISSN 0022-2941; CODEN JNSMAC Vol. 46, No.1 & 2 (April & October 2006) PP 53-60 EFFECT OF ATMOSPHERIC CONDITIONS ON CABLE TERMINATION TO SWITCHGEAR Abdur Rashid, Asmatullah Khan and S.F Shaukat Department

More information

The first three categories are considered a bottom-up approach while lithography is a topdown

The first three categories are considered a bottom-up approach while lithography is a topdown Nanowires and Nanorods One-dimensional structures have been called in different ways: nanowires, nanorod, fibers of fibrils, whiskers, etc. The common characteristic of these structures is that all they

More information

Measurement of Conductivity and Charge Storage in Insulators Related to SpacecraftCharging

Measurement of Conductivity and Charge Storage in Insulators Related to SpacecraftCharging Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 2003 Measurement of Conductivity and Charge Storage in Insulators Related to SpacecraftCharging A. R. Fredrickson JR Dennison

More information

Semiconductor Junctions

Semiconductor Junctions 8 Semiconductor Junctions Almost all solar cells contain junctions between different materials of different doping. Since these junctions are crucial to the operation of the solar cell, we will discuss

More information

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner Supplementary Materials for: High-Performance Semiconducting Polythiophenes for Organic Thin Film Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner 1. Materials and Instruments. All

More information

Surface potential dynamics on insulating polymers for HVDC applications

Surface potential dynamics on insulating polymers for HVDC applications THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Surface potential dynamics on insulating polymers for HVDC applications Shahid Alam High Voltage Engineering Department of Material and Manufacturing Technology

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Graphene transfer method 1 : Monolayer graphene was pre-deposited on both

More information

The influence of thermal properties on power transmission characteristics of HVDC cables a factor analysis

The influence of thermal properties on power transmission characteristics of HVDC cables a factor analysis The influence of thermal properties on power transmission characteristics of HVDC cables a factor analysis Björn Sonerud, Wendy Loyens Borealis B bstract Power transmission capacity of HVDC cable links

More information

Time-dependent Monte Carlo Simulation

Time-dependent Monte Carlo Simulation Computational Electronics Group University of Illinois Time-dependent Monte Carlo Simulation Umberto Ravaioli Beckman Institute and Department of Electrical and Computer Engineering University of Illinois

More information