Worster Defects and Dualities. Phil Saad With Eric Mintun and Joe Polchinski

Size: px
Start display at page:

Download "Worster Defects and Dualities. Phil Saad With Eric Mintun and Joe Polchinski"

Transcription

1 Worster 2014 Defects and Dualities Phil Saad With Eric Mintun and Joe Polchinski

2 Table of Contents Overview QFT Renormalization Dualities Application of Dualities

3 Quick Overview-What and Why

4 Quick Overview-What and Why We began by studying a class of systems with Electromagnetism interacting with a 1-dimensional defect

5 Quick Overview-What and Why What are we looking at?- Dualities and Renormalization Group behavior.

6 Quick Overview-What and Why What are we looking at?- Dualities and Renormalization Group behavior. A Duality is about finding two descriptions of the same system. These can make hard problems much easier.

7 Quick Overview-What and Why Renormalization Group behavior tells you about how the system behaves at different scales (energy/length).

8 Quick Overview-What and Why Why do we care about these defect systems?

9 Quick Overview-What and Why Why do we care about these defect systems? Simple, solvable models will hopefully give a deeper understanding of the principles behind dualities.

10 Quick Overview-What and Why Why do we care about these defect systems? Simple, solvable models will hopefully give a deeper understanding of the principles behind dualities. The simple dualities can hopefully be used to investigate more complicated ones

11 Table of Contents Overview QFT Renormalization Dualities Application of Dualities

12 Some Jargon Quantum Field Theory (QFT)

13 Some Jargon Quantum Field Theory (QFT) Particle number not conserved

14 Some Jargon Quantum Field Theory (QFT) Particle number not conserved Coupling Constant

15 Some Jargon Quantum Field Theory (QFT) Particle number not conserved Coupling Constant Strength of interaction (electric charge)

16 Some Jargon Quantum Field Theory (QFT) Particle number not conserved Coupling Constant Strength of interaction (electric charge) Can only calculate at small coupling constant

17 Table of Contents Overview QFT Renormalization Dualities Application of Dualities

18 More Jargon Renormalization Group

19 More Jargon Consider measuring the charge of an electron. Measure electric field near the electron

20 More Jargon Consider measuring the charge of an electron. Measure electric field near the electron Heisenberg Uncertainty Principle- Electron Positron pairs appear in the space around the electron

21 More Jargon Consider measuring the charge of an electron. Measure electric field near the electron Heisenberg Uncertainty Principle- Electron Positron pairs appear in the space around the electron These pairs block some of the electric field

22 More Jargon Electron-positron pairs screen the charge of the electron. Far from the electron, it looks like it has a much smaller charge.

23 More Jargon The measured charge depends on how close you get/how high energy you are

24 More Jargon Coupling Strength Energy

25 Renormalization and Us How does this apply to the problems we consider? We have photons (electromagnetism) interacting with particles on the defect, the interactions have a strength g

26 Renormalization and Us Instead of quantum effects, we have the defect causing scale dependence

27 Renormalization and Us Instead of quantum effects, we have the defect causing scale dependence When the defect lives in 3 dimensions, we found what we expected

28 Renormalization and Us When the defect lives in 2 dimensions, we expected a fixed point A fixed point is a point where the physics is drawn to constant coupling

29 Renormalization and Us Coupling Strength Energy

30 Renormalization and Us The usual methods of renormalization didn t see this

31 Renormalization and Us The usual methods of renormalization didn t see this Due to some simplifying properties of the defect models, we found the fixed point using more complicated methods

32 Renormalization and Us Coupling Strength Energy

33 Table of Contents Overview QFT Renormalization Dualities Application of Dualities

34 Jargon Part III-Dualities When doing quantum mechanics, we usually quantize a classical system

35 Jargon Part III-Dualities When doing quantum mechanics, we usually quantize a classical system Can you quantize different classical systems and get the same quantum system?

36 Jargon Part III-Dualities When doing quantum mechanics, we usually quantize a classical system Can you quantize different classical systems and get the same quantum system? Yes, and the classical systems are called Dual

37 Jargon Part III-Dualities These dualities can be very useful Imagine that system is physically interesting, but hard to solve quantum mechanically

38 Jargon Part III-Dualities These dualities can be very useful Imagine that system is physically interesting, but hard to solve quantum mechanically If there is an easy dual system, you can just translate the results

39 Jargon Part III-Dualities S-Duality - systems with a large coupling constant are dual to systems with a small coupling constant

40 Jargon Part III-Dualities S-Duality - systems with a large coupling constant are dual to systems with a small coupling constant Solve weakly coupling system, translate to solve strongly coupling system

41 Jargon Part III-Dualities What sort of dualities did we find?

42 Jargon Part III-Dualities The most interesting one is connected to a well known string theory duality.

43 Jargon Part III-Dualities The most interesting one is connected to a well known string theory duality. In string theory, you can have a string living on a sort of cylinder, with radius R R

44 Jargon Part III-Dualities This string is dual to a string living on a cylinder of radius 1/R R 1/R

45 Jargon Part III-Dualities The equations describing the physics on the defect are very similar to the physics describing a string

46 Jargon Part III-Dualities The particular types of particles we consider make it similar to a string living on a cylinder, and so we can use the string duality Also changes the way it interacts with the electromagnetism

47 Jargon Part III-Dualities Duality has its roots in electromagnetism. Consider Maxwell s equations

48 Jargon Part III-Dualities Duality has its roots in electromagnetism. Consider Maxwell s equations

49 Jargon Part III-Dualities Adding magnetic charges makes it more symmetric

50 Jargon Part III-Dualities Adding magnetic charges makes it more symmetric

51 Jargon Part III-Dualities Switching electric and magnetic charges, as well as electric and magnetic fields, leaves equations unchanged

52 Jargon Part III-Dualities Switching electric and magnetic charges, as well as electric and magnetic fields, leaves equations unchanged

53 Jargon Part III-Dualities Green=Magnetic Orange=Electric

54 Jargon Part III-Dualities Quantum mechanically, electric and magnetic charges are inversely proportional

55 Jargon Part III-Dualities Quantum mechanically, electric and magnetic charges are inversely proportional Electric magnetic duality inverts all of the charges- this is S-duality!

56 Table of Contents Overview QFT Renormalization Dualities Application of Dualities

57 Applications of Dualities The original motivation for this project was to investigate S-duality in string theory

58 Applications of Dualities The original motivation for this project was to investigate S-duality in string theory Before I can discuss our results here, I have to talk a bit about string theory

59 Applications of Dualities The original motivation for this project was to investigate S-duality in string theory Before I can discuss our results here, I have to talk a bit about string theory IIB string theory-one of five string theories

60 Applications of Dualities Strings- Open or Closed. Indivisible, infinitely thin

61 Applications of Dualities The different ways a string can vibrate corresponds to different types of particles

62 Applications of Dualities String theory has one coupling constant, g

63 Applications of Dualities String theory has one coupling constant, g Like QFT, it s hard to calculate at large g. Much of large g string theory is mysterious, may not even involve strings!

64 Applications of Dualities String theory contains Branes (membranes), extended objects

65 Applications of Dualities String theory contains Branes (membranes), extended objects IIB string theory only has odd dimensional branes (1,3,5,etc)

66 Applications of Dualities String theory contains Branes (membranes), extended objects IIB string theory only has odd dimensional branes (1,3,5,etc) Open strings must end on branes

67 Applications of Dualities

68 Applications of Dualities Ends of strings look like electric charges Unless strings are stretched, don t see net charge

69 Applications of Dualities Ends of strings look like electric charges Unless strings are stretched, don t see net charge

70 Applications of Dualities One dimensional branes are a lot like strings

71 Applications of Dualities One dimensional branes are a lot like strings Their endpoints look like magnetic charges

72 Applications of Dualities At small g, strings are wiggly and branes are stiff At large g, the opposite

73 Applications of Dualities Switching strings and one branes looks like electromagnetic and S- duality- switches charges and coupling

74 Applications of Dualities This tells us that large g IIB string theory is not mysterious- it s the same as small g!

75 Applications of Dualities Can we see this more explicitly in the equations of string theory?

76 Applications of Dualities For the most part, the equations of string theory aren t known IIB string theory is an exception, but there s a problem

77 Applications of Dualities QFT approximation to string theory At low energies/long distances, strings look like particles-can use QFT

78 Applications of Dualities QFT approximation to string theory At low energies/long distances, strings look like particles-can use QFT Much of what we know about string theory is from this approximation

79 Applications of Dualities QFT for closed strings, no open strings or branes, S-duality obvious

80 Applications of Dualities QFT for closed strings, no open strings or branes, S-duality obvious Hard to see in QFTs for systems of branes

81 Applications of Dualities Consider parallel three-dimensional branes

82 Applications of Dualities Strings and one branes stretch between branes and end on branes

83 Applications of Dualities QFT that describes this is well known

84 Applications of Dualities QFT that describes this is well known Predicted that it has S-duality in 70s, even before string theory

85 Applications of Dualities QFT that describes this is well known Predicted that it has S-duality in 70s, even before string theory Can the exact equations of IIB string theory shed some light on this?

86 Applications of Dualities QFT that describes this is well known Predicted that it has S-duality in 70s, even before string theory Can the exact equations of IIB string theory shed some light on this? These equations are a limit of this same exact QFT!

87 Applications of Dualities Consider three branes intersecting with a one dimensional intersection

88 Applications of Dualities Strings with one end on each brane, or both ends on a single brane

89 Applications of Dualities Eric Mintun and Joe Polchinski found the QFT that describes this The defect models are simpler versions of this, with the defect corresponding to the intersection

90 Applications of Dualities Eric Mintun and Joe Polchinski found the QFT that describes this The defect models are simpler versions of this, with the defect corresponding to the intersection Can we use what we learned from the defect models to show S-duality for this system?

91 Applications of Dualities We have gotten the main part of the process down, and seen the g to 1/g flip, along with the electric and magnetic charge flip

92 Applications of Dualities We have gotten the main part of the process down, and seen the g to 1/g flip, along with the electric and magnetic charge flip There are a couple subtleties left to deal with

93 Applications of Dualities We have gotten the main part of the process down, and seen the g to 1/g flip, along with the electric and magnetic charge flip There are a couple subtleties left to deal with I ll explain the process a bit because it is really neat

94 Applications of Dualities The physics on the intersection looks like the physics of a string living on a strange space Strange Space

95 Applications of Dualities This space has centers spaced equally on a line Strange Space

96 Applications of Dualities This space has a circular dimension that the string can wrap around Strange Space Strange Space

97 Applications of Dualities We can use the duality for strings on a circle, but it is more complicated Strange Space Strange Space

98 Applications of Dualities The new space has the centers periodically arranged around the circles Dual Strange Space

99 Applications of Dualities The spacing along the circle, X, is different from the spacing on the line, Y. The ratio X/Y is g^2 X Y Dual Strange Space

100 Applications of Dualities Another duality switches the spacing ratio, so X/Y=1/g^2. It also switches the position of the electric and magnetic charges X Y Dual Strange Space

101 Applications of Dualities We use the circle duality to bring us back to the original space, but with g switched to 1/g, and charges flipped Strange Space

102 What Next? The next step for us is to get all the details down with this process

103 What Next? The next step for us is to get all the details down with this process There were a couple of very interesting questions raised, and the solutions to these questions should be pretty neat

104 What Next? The next step for us is to get all the details down with this process There were a couple of very interesting questions raised, and the solutions to these questions should be pretty neat Understanding this case might help in showing S-Duality for the parallel brane case, which is very important

105 Thanks! I d like to thank- The Worster family for funding this research Eric Mintun and Joe Polchinski, my mentor and advisor My audience for being patient though these (probably over) twenty minutes of ramblings about strings and defects

Gauss Law. In this chapter, we return to the problem of finding the electric field for various distributions of charge.

Gauss Law. In this chapter, we return to the problem of finding the electric field for various distributions of charge. Gauss Law In this chapter, we return to the problem of finding the electric field for various distributions of charge. Question: A really important field is that of a uniformly charged sphere, or a charged

More information

Knots, Coloring and Applications

Knots, Coloring and Applications Knots, Coloring and Applications Ben Webster University of Virginia March 10, 2015 Ben Webster (UVA) Knots, Coloring and Applications March 10, 2015 1 / 14 This talk is online at http://people.virginia.edu/~btw4e/knots.pdf

More information

Topological insulator part II: Berry Phase and Topological index

Topological insulator part II: Berry Phase and Topological index Phys60.nb 11 3 Topological insulator part II: Berry Phase and Topological index 3.1. Last chapter Topological insulator: an insulator in the bulk and a metal near the boundary (surface or edge) Quantum

More information

Figure 1: Doing work on a block by pushing it across the floor.

Figure 1: Doing work on a block by pushing it across the floor. Work Let s imagine I have a block which I m pushing across the floor, shown in Figure 1. If I m moving the block at constant velocity, then I know that I have to apply a force to compensate the effects

More information

Magnetic Fields Part 2: Sources of Magnetic Fields

Magnetic Fields Part 2: Sources of Magnetic Fields Magnetic Fields Part 2: Sources of Magnetic Fields Last modified: 08/01/2018 Contents Links What Causes a Magnetic Field? Moving Charges Right Hand Grip Rule Permanent Magnets Biot-Savart Law Magnetic

More information

Definition: A "system" of equations is a set or collection of equations that you deal with all together at once.

Definition: A system of equations is a set or collection of equations that you deal with all together at once. System of Equations Definition: A "system" of equations is a set or collection of equations that you deal with all together at once. There is both an x and y value that needs to be solved for Systems

More information

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am Sparks CH301 Quantum Mechanics Waves? Particles? What and where are the electrons!? UNIT 2 Day 3 LM 14, 15 & 16 + HW due Friday, 8:45 am What are we going to learn today? The Simplest Atom - Hydrogen Relate

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

Lesson 3: Using Linear Combinations to Solve a System of Equations

Lesson 3: Using Linear Combinations to Solve a System of Equations Lesson 3: Using Linear Combinations to Solve a System of Equations Steps for Using Linear Combinations to Solve a System of Equations 1. 2. 3. 4. 5. Example 1 Solve the following system using the linear

More information

Chapter 7. Atomic Structure

Chapter 7. Atomic Structure Chapter 7 Atomic Structure Light Made up of electromagnetic radiation. Waves of electric and magnetic fields at right angles to each other. Parts of a wave Wavelength Frequency = number of cycles in one

More information

Higher-Order Equations: Extending First-Order Concepts

Higher-Order Equations: Extending First-Order Concepts 11 Higher-Order Equations: Extending First-Order Concepts Let us switch our attention from first-order differential equations to differential equations of order two or higher. Our main interest will be

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 02: String theory

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy The Interaction of Light with Matter Electric fields apply forces to charges, according to F = qe In an electric field, a positive charge will experience a force, but a negative charge

More information

Chemical Applications of Symmetry and Group Theory Prof. Manabendra Chandra Department of Chemistry Indian Institute of Technology, Kanpur

Chemical Applications of Symmetry and Group Theory Prof. Manabendra Chandra Department of Chemistry Indian Institute of Technology, Kanpur Chemical Applications of Symmetry and Group Theory Prof. Manabendra Chandra Department of Chemistry Indian Institute of Technology, Kanpur Lecture - 09 Hello, welcome to the day 4 of our second week of

More information

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

III. Particle Physics and Isospin

III. Particle Physics and Isospin . Particle Physics and sospin Up to now we have concentrated exclusively on actual, physical rotations, either of coordinates or of spin states, or both. n this chapter we will be concentrating on internal

More information

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions make up matter, and bosons mediate the forces by particle exchange. Lots of particles, lots of

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18 20.1 Introduction Definition 20.1.1 We say that an algorithm runs in polynomial time if its running

More information

Chapter 6. Electronic Structure of Atoms

Chapter 6. Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 6.1 The Wave Nature of Light Made up of electromagnetic radiation. Waves of electric and magnetic fields at right angles to each other. Parts of a wave Wavelength

More information

Extra Dimensions in Physics? Shamit Kachru Stanford University

Extra Dimensions in Physics? Shamit Kachru Stanford University Extra Dimensions in Physics? Shamit Kachru Stanford University One of the few bits of fundamental physics that becomes obvious to most of us in childhood: our playing field consists of three spatial dimensions,

More information

Ch24 Page 1. Chapter 24 Magnetic Fields and Forces Thursday, March 11, :26 PM

Ch24 Page 1. Chapter 24 Magnetic Fields and Forces Thursday, March 11, :26 PM Ch24 Page 1 Chapter 24 Magnetic Fields and Forces Thursday, March 11, 2010 8:26 PM Ch24 Page 2 It seems that microscopic electric currents are the ultimate cause of magnetism. For example, each neutron

More information

Analog Computing: a different way to think about building a (quantum) computer

Analog Computing: a different way to think about building a (quantum) computer Analog Computing: a different way to think about building a (quantum) computer November 24, 2016 1 What is an analog computer? Most of the computers we have around us today, such as desktops, laptops,

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Lecture 4: Constructing the Integers, Rationals and Reals

Lecture 4: Constructing the Integers, Rationals and Reals Math/CS 20: Intro. to Math Professor: Padraic Bartlett Lecture 4: Constructing the Integers, Rationals and Reals Week 5 UCSB 204 The Integers Normally, using the natural numbers, you can easily define

More information

Quantum Entanglement. Chapter Introduction. 8.2 Entangled Two-Particle States

Quantum Entanglement. Chapter Introduction. 8.2 Entangled Two-Particle States Chapter 8 Quantum Entanglement 8.1 Introduction In our final chapter on quantum mechanics we introduce the concept of entanglement. This is a feature of two-particle states (or multi-particle states) in

More information

2. FUNCTIONS AND ALGEBRA

2. FUNCTIONS AND ALGEBRA 2. FUNCTIONS AND ALGEBRA You might think of this chapter as an icebreaker. Functions are the primary participants in the game of calculus, so before we play the game we ought to get to know a few functions.

More information

MITOCW ocw-18_02-f07-lec02_220k

MITOCW ocw-18_02-f07-lec02_220k MITOCW ocw-18_02-f07-lec02_220k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

What ideas/theories are physicists exploring today?

What ideas/theories are physicists exploring today? Where are we Headed? What questions are driving developments in fundamental physics? What ideas/theories are physicists exploring today? Quantum Gravity, Stephen Hawking & Black Hole Thermodynamics A Few

More information

The Wave Nature of Light Made up of. Waves of fields at right angles to each other. Wavelength = Frequency =, measured in

The Wave Nature of Light Made up of. Waves of fields at right angles to each other. Wavelength = Frequency =, measured in Chapter 6 Electronic Structure of Atoms The Wave Nature of Light Made up of. Waves of fields at right angles to each other. Wavelength = Frequency =, measured in Kinds of EM Waves There are many different

More information

Experiment 1 Make a Magnet

Experiment 1 Make a Magnet Magnets Here s a riddle. I stick to some things but not to others. I stick but I m not sticky. I attract some things but push other things away and, if allowed to move, I will always point the same way.

More information

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2 Final Review Sheet The final will cover Sections Chapters 1,2,3 and 4, as well as sections 5.1-5.4, 6.1-6.2 and 7.1-7.3 from chapters 5,6 and 7. This is essentially all material covered this term. Watch

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 9, February 8, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 9, February 8, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 9, February 8, 2006 The Harmonic Oscillator Consider a diatomic molecule. Such a molecule

More information

II. Unit Speed Curves

II. Unit Speed Curves The Geometry of Curves, Part I Rob Donnelly From Murray State University s Calculus III, Fall 2001 note: This material supplements Sections 13.3 and 13.4 of the text Calculus with Early Transcendentals,

More information

HOW ARE EARTHQUAKES LOCATED?

HOW ARE EARTHQUAKES LOCATED? HOW ARE EARTHQUAKES LOCATED? 175 Practice Problem 1 Add 4 hours:15 minutes:35 seconds to 10 hours:50 minutes:35 seconds. Practice Problem 2 Subtract 5 hours:30 minutes:45 seconds from 10 hours:25 minutes:40

More information

Practical Algebra. A Step-by-step Approach. Brought to you by Softmath, producers of Algebrator Software

Practical Algebra. A Step-by-step Approach. Brought to you by Softmath, producers of Algebrator Software Practical Algebra A Step-by-step Approach Brought to you by Softmath, producers of Algebrator Software 2 Algebra e-book Table of Contents Chapter 1 Algebraic expressions 5 1 Collecting... like terms 5

More information

Instantons in string theory via F-theory

Instantons in string theory via F-theory Instantons in string theory via F-theory Andrés Collinucci ASC, LMU, Munich Padova, May 12, 2010 arxiv:1002.1894 in collaboration with R. Blumenhagen and B. Jurke Outline 1. Intro: From string theory to

More information

Emergent Spacetime. XXIII rd Solvay Conference in Physics December, Nathan Seiberg

Emergent Spacetime. XXIII rd Solvay Conference in Physics December, Nathan Seiberg Emergent Spacetime XXIII rd Solvay Conference in Physics December, 2005 Nathan Seiberg Legal disclaimers I ll outline my points of confusion. There will be many elementary and well known points. There

More information

Solving with Absolute Value

Solving with Absolute Value Solving with Absolute Value Who knew two little lines could cause so much trouble? Ask someone to solve the equation 3x 2 = 7 and they ll say No problem! Add just two little lines, and ask them to solve

More information

The following diagram summarizes the history of unification in Theoretical Physics:

The following diagram summarizes the history of unification in Theoretical Physics: Summary of Theoretical Physics L. David Roper, roperld@vt.edu Written for the Book Group of Blacksburg VA For the discussion of The Elegant Universe by Brian Greene, 10 October 004 This file is available

More information

Superposition - World of Color and Hardness

Superposition - World of Color and Hardness Superposition - World of Color and Hardness We start our formal discussion of quantum mechanics with a story about something that can happen to various particles in the microworld, which we generically

More information

Chapter 8: E & M (Electricity & Magnetism or Electromagnetism)

Chapter 8: E & M (Electricity & Magnetism or Electromagnetism) Chapter 8: E & M (Electricity & Magnetism or Electromagnetism) Electric charge & electric force Coulomb s Law Electrons & basic facts about atoms (mainly review) Charge conservation Electric current &

More information

PH5211: High Energy Physics. Prafulla Kumar Behera Room: HSB-304B

PH5211: High Energy Physics. Prafulla Kumar Behera Room: HSB-304B PH5211: High Energy Physics Prafulla Kumar Behera E-mail:behera@iitm.ac.in Room: HSB-304B Information Class timing: Wed. 11am, Thur. 9am, Fri. 8am The course will be graded as follows: 1 st quiz (20 marks)

More information

Slope Fields: Graphing Solutions Without the Solutions

Slope Fields: Graphing Solutions Without the Solutions 8 Slope Fields: Graphing Solutions Without the Solutions Up to now, our efforts have been directed mainly towards finding formulas or equations describing solutions to given differential equations. Then,

More information

3. Quantum Mechanics in 3D

3. Quantum Mechanics in 3D 3. Quantum Mechanics in 3D 3.1 Introduction Last time, we derived the time dependent Schrödinger equation, starting from three basic postulates: 1) The time evolution of a state can be expressed as a unitary

More information

First, we need a rapid look at the fundamental structure of superfluid 3 He. and then see how similar it is to the structure of the Universe.

First, we need a rapid look at the fundamental structure of superfluid 3 He. and then see how similar it is to the structure of the Universe. Outline of my talk: First, we need a rapid look at the fundamental structure of superfluid 3 He and then see how similar it is to the structure of the Universe. Then we will look at our latest ideas on

More information

Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material. From last time

Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material. From last time Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions

More information

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and

More information

Grades 7 & 8, Math Circles 10/11/12 October, Series & Polygonal Numbers

Grades 7 & 8, Math Circles 10/11/12 October, Series & Polygonal Numbers Faculty of Mathematics Waterloo, Ontario N2L G Centre for Education in Mathematics and Computing Introduction Grades 7 & 8, Math Circles 0//2 October, 207 Series & Polygonal Numbers Mathematicians are

More information

The Hydrogen Atom According to Bohr

The Hydrogen Atom According to Bohr The Hydrogen Atom According to Bohr The atom We ve already talked about how tiny systems behave in strange ways. Now let s s talk about how a more complicated system behaves. The atom! Physics 9 4 Early

More information

Introduction to Special Relativity

Introduction to Special Relativity 1 Introduction to Special Relativity PHYS 1301 F99 Prof. T.E. Coan version: 20 Oct 98 Introduction This lab introduces you to special relativity and, hopefully, gives you some intuitive understanding of

More information

LESSON EII.C EQUATIONS AND INEQUALITIES

LESSON EII.C EQUATIONS AND INEQUALITIES LESSON EII.C EQUATIONS AND INEQUALITIES LESSON EII.C EQUATIONS AND INEQUALITIES 7 OVERVIEW Here s what you ll learn in this lesson: Linear a. Solving linear equations b. Solving linear inequalities Once

More information

- a value calculated or derived from the data.

- a value calculated or derived from the data. Descriptive statistics: Note: I'm assuming you know some basics. If you don't, please read chapter 1 on your own. It's pretty easy material, and it gives you a good background as to why we need statistics.

More information

Uncertainty. Michael Peters December 27, 2013

Uncertainty. Michael Peters December 27, 2013 Uncertainty Michael Peters December 27, 20 Lotteries In many problems in economics, people are forced to make decisions without knowing exactly what the consequences will be. For example, when you buy

More information

Guide to Proofs on Sets

Guide to Proofs on Sets CS103 Winter 2019 Guide to Proofs on Sets Cynthia Lee Keith Schwarz I would argue that if you have a single guiding principle for how to mathematically reason about sets, it would be this one: All sets

More information

Helicity conservation in Born-Infeld theory

Helicity conservation in Born-Infeld theory Helicity conservation in Born-Infeld theory A.A.Rosly and K.G.Selivanov ITEP, Moscow, 117218, B.Cheryomushkinskaya 25 Abstract We prove that the helicity is preserved in the scattering of photons in the

More information

Electromagnetic Field Waves

Electromagnetic Field Waves Electromagnetic Field Waves John Linus O'Sullivan Independent Research Connecticut, USA. E-Mail: massandtime@gmail.com Abstract: Space is from two kinds of energy in standing waves; (1) energy with mass

More information

Orientation: what is physical chemistry about?

Orientation: what is physical chemistry about? 1 Orientation: what is physical chemistry about? Chemistry is traditionally divided into a small number of subfields, namely organic, inorganic, analytical and physical chemistry. It s fairly easy to say

More information

Week 2: Defining Computation

Week 2: Defining Computation Computational Complexity Theory Summer HSSP 2018 Week 2: Defining Computation Dylan Hendrickson MIT Educational Studies Program 2.1 Turing Machines Turing machines provide a simple, clearly defined way

More information

Energy Resources and Technology Prof. S. Banerjee Department of Electrical Engineering Indian Institute of Technology - Kharagpur

Energy Resources and Technology Prof. S. Banerjee Department of Electrical Engineering Indian Institute of Technology - Kharagpur Energy Resources and Technology Prof. S. Banerjee Department of Electrical Engineering Indian Institute of Technology - Kharagpur Lecture - 39 Magnetohydrodynamic Power Generation (Contd.) Let us start

More information

Summary statistics, distributions of sums and means

Summary statistics, distributions of sums and means Summary statistics, distributions of sums and means Joe Felsenstein Summary statistics, distributions of sums and means p.1/17 Quantiles In both empirical distributions and in the underlying distribution,

More information

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity.

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. http://preposterousuniverse.com/grnotes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been framed

More information

A BRIEF TOUR OF STRING THEORY

A BRIEF TOUR OF STRING THEORY A BRIEF TOUR OF STRING THEORY Gautam Mandal VSRP talk May 26, 2011 TIFR. In the beginning... The 20th century revolutions: Special relativity (1905) General Relativity (1915) Quantum Mechanics (1926) metamorphosed

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction A typical Modern Geometry course will focus on some variation of a set of axioms for Euclidean geometry due to Hilbert. At the end of such a course, non-euclidean geometries (always

More information

base 2 4 The EXPONENT tells you how many times to write the base as a factor. Evaluate the following expressions in standard notation.

base 2 4 The EXPONENT tells you how many times to write the base as a factor. Evaluate the following expressions in standard notation. EXPONENTIALS Exponential is a number written with an exponent. The rules for exponents make computing with very large or very small numbers easier. Students will come across exponentials in geometric sequences

More information

Talk Science Professional Development

Talk Science Professional Development Talk Science Professional Development Transcript for Grade 5 Scientist Case: The Water to Ice Investigations 1. The Water to Ice Investigations Through the Eyes of a Scientist We met Dr. Hugh Gallagher

More information

Russell s logicism. Jeff Speaks. September 26, 2007

Russell s logicism. Jeff Speaks. September 26, 2007 Russell s logicism Jeff Speaks September 26, 2007 1 Russell s definition of number............................ 2 2 The idea of reducing one theory to another.................... 4 2.1 Axioms and theories.............................

More information

What is Quantum Mechanics?

What is Quantum Mechanics? Quantum Worlds, session 1 1 What is Quantum Mechanics? Quantum mechanics is the theory, or picture of the world, that physicists use to describe and predict the behavior of the smallest elements of matter.

More information

Electromagnetic Field Waves

Electromagnetic Field Waves Electromagnetic Field Waves John Linus O'Sullivan Independent Research Connecticut, USA. E-Mail: massandtime@gmail.com Abstract: Space is from two kinds of energy in standing waves; (1) energy with mass

More information

4.2 The Mysterious Electron

4.2 The Mysterious Electron 2 Chapter 4 Modern Atomic Theory 4.2 The Mysterious Electron Where there is an open mind, there will always be a frontier. Charles F. Kettering (876-958) American engineer and inventor Scientists have

More information

Please bring the task to your first physics lesson and hand it to the teacher.

Please bring the task to your first physics lesson and hand it to the teacher. Pre-enrolment task for 2014 entry Physics Why do I need to complete a pre-enrolment task? This bridging pack serves a number of purposes. It gives you practice in some of the important skills you will

More information

Math 101: Course Summary

Math 101: Course Summary Math 101: Course Summary Rich Schwartz August 22, 2009 General Information: Math 101 is a first course in real analysis. The main purpose of this class is to introduce real analysis, and a secondary purpose

More information

Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 4. Matrix products

Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 4. Matrix products Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 4 Matrix products What you need to know already: The dot product of vectors Basic matrix operations. Special types of matrices What you

More information

Origin of Matter and Time

Origin of Matter and Time Origin of Matter and Time John Linus O'Sullivan Independent Research Connecticut, USA. E-Mail: massandtime@gmail.com Abstract: Space is from two kinds of energy in standing waves; (1) energy with mass

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lecture 4 Continuous Systems and Fields (Chapter 13) What We Did Last Time Built Lagrangian formalism for continuous system Lagrangian L Lagrange s equation = L dxdydz Derived simple

More information

We call these coupled differential equations, because as you can see the derivative of θ1 involves θ2 and the derivative of the θ2 involves θ1.

We call these coupled differential equations, because as you can see the derivative of θ1 involves θ2 and the derivative of the θ2 involves θ1. Torsion Waves In Monday s class we saw waves on the above device. By the end of today s class, I hope you will have some idea of how those waves arise from the equations you already know. The above device

More information

MITOCW ocw-18_02-f07-lec17_220k

MITOCW ocw-18_02-f07-lec17_220k MITOCW ocw-18_02-f07-lec17_220k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

Modern Physics notes Spring 2007 Paul Fendley Lecture 27

Modern Physics notes Spring 2007 Paul Fendley Lecture 27 Modern Physics notes Spring 2007 Paul Fendley fendley@virginia.edu Lecture 27 Angular momentum and positronium decay The EPR paradox Feynman, 8.3,.4 Blanton, http://math.ucr.edu/home/baez/physics/quantum/bells

More information

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS COLLEGE PHYSICS Chapter 30 ATOMIC PHYSICS Matter Waves: The de Broglie Hypothesis The momentum of a photon is given by: The de Broglie hypothesis is that particles also have wavelengths, given by: Matter

More information

The Unit Electrical Matter Substructures of Standard Model Particles. James Rees version

The Unit Electrical Matter Substructures of Standard Model Particles. James Rees version The Unit Electrical Matter Substructures of Standard Model Particles version 11-7-07 0 Introduction This presentation is a very brief summary of the steps required to deduce the unit electrical matter

More information

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay

Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Special Theory of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Lecture - 24 Current Density Four Vector and Maxwell Equation Hello, so we have now come to

More information

Introduction to Vectors

Introduction to Vectors Introduction to Vectors K. Behrend January 31, 008 Abstract An introduction to vectors in R and R 3. Lines and planes in R 3. Linear dependence. 1 Contents Introduction 3 1 Vectors 4 1.1 Plane vectors...............................

More information

Chemistry- Unit 3. Section II - Chapter 7 ( , 7.11) Quantum Mechanics

Chemistry- Unit 3. Section II - Chapter 7 ( , 7.11) Quantum Mechanics Chemistry- Unit 3 Section II - Chapter 7 (7.6-7.8, 7.11) Quantum Mechanics Atomic Review What subatomic particles do you get to play with? Protons Neutrons Electrons NO! It would change the element Don

More information

Chapter 1. Linear Equations

Chapter 1. Linear Equations Chapter 1. Linear Equations We ll start our study of linear algebra with linear equations. Lost of parts of mathematics rose out of trying to understand the solutions of different types of equations. Linear

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

The Electron and Quarks: A "Double Solution" for 1/2 Spin Particles By Charles A. Laster

The Electron and Quarks: A Double Solution for 1/2 Spin Particles By Charles A. Laster The Electron and Quarks: A "Double Solution" for 1/2 Spin Particles By Charles A. Laster Abstract There are a number of electron and quark models to choose from. All have their strength and weakness which

More information

ABE Math Review Package

ABE Math Review Package P a g e ABE Math Review Package This material is intended as a review of skills you once learned and wish to review before your assessment. Before studying Algebra, you should be familiar with all of the

More information

Implicit Differentiation Applying Implicit Differentiation Applying Implicit Differentiation Page [1 of 5]

Implicit Differentiation Applying Implicit Differentiation Applying Implicit Differentiation Page [1 of 5] Page [1 of 5] The final frontier. This is it. This is our last chance to work together on doing some of these implicit differentiation questions. So, really this is the opportunity to really try these

More information

1.2 The Role of Variables

1.2 The Role of Variables 1.2 The Role of Variables variables sentences come in several flavors true false conditional In this section, a name is given to mathematical sentences that are sometimes true, sometimes false they are

More information

Math 138: Introduction to solving systems of equations with matrices. The Concept of Balance for Systems of Equations

Math 138: Introduction to solving systems of equations with matrices. The Concept of Balance for Systems of Equations Math 138: Introduction to solving systems of equations with matrices. Pedagogy focus: Concept of equation balance, integer arithmetic, quadratic equations. The Concept of Balance for Systems of Equations

More information

1 Introduction. 1.1 Stuff we associate with quantum mechanics Schrödinger s Equation

1 Introduction. 1.1 Stuff we associate with quantum mechanics Schrödinger s Equation 1 Introduction Quantum Theory and quantum mechanics belong to the greatest success stories of science. In a number of ways. First, quantum theories are among the most successful in terms of predicting

More information

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce

More information

CARLETON UNIVERSITY. Deparment of Electronics ELEC 2607 Switching Circuits January 19, Overview;

CARLETON UNIVERSITY. Deparment of Electronics ELEC 2607 Switching Circuits January 19, Overview; CARLETON UNIVERSITY Deparment of Electronics ELEC 267 Switching Circuits January 9, 24 Laboratory. Overview; A 4-Bit Binary Comparator Take a 4-bit binary number X, for example. This number is made of

More information

Lecture 9 - Rotational Dynamics

Lecture 9 - Rotational Dynamics Lecture 9 - Rotational Dynamics A Puzzle... Angular momentum is a 3D vector, and changing its direction produces a torque τ = dl. An important application in our daily lives is that bicycles don t fall

More information

Sources of Magnetic Field II

Sources of Magnetic Field II Sources of Magnetic Field II Physics 2415 Lecture 18 Michael Fowler, UVa Today s Topics More about solenoids Biot-Savart law Magnetic materials Ampère s Law: General Case Ampère s Law states that for any

More information

from Euclid to Einstein

from Euclid to Einstein WorkBook 2. Space from Euclid to Einstein Roy McWeeny Professore Emerito di Chimica Teorica, Università di Pisa, Pisa (Italy) A Pari New Learning Publication Book 2 in the Series WorkBooks in Science (Last

More information

MATH 310, REVIEW SHEET 2

MATH 310, REVIEW SHEET 2 MATH 310, REVIEW SHEET 2 These notes are a very short summary of the key topics in the book (and follow the book pretty closely). You should be familiar with everything on here, but it s not comprehensive,

More information

COLLEGE ALGEBRA. Paul Dawkins

COLLEGE ALGEBRA. Paul Dawkins COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... 7 Introduction... 7 Integer Exponents... 8 Rational Exponents...5 Radicals... Polynomials...30 Factoring Polynomials...36

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 017/018 DR. ANTHONY BROWN. Lines and Their Equations.1. Slope of a Line and its y-intercept. In Euclidean geometry (where

More information

Descriptive Statistics (And a little bit on rounding and significant digits)

Descriptive Statistics (And a little bit on rounding and significant digits) Descriptive Statistics (And a little bit on rounding and significant digits) Now that we know what our data look like, we d like to be able to describe it numerically. In other words, how can we represent

More information

Lecture 2: Change of Basis

Lecture 2: Change of Basis Math 108 Lecture 2: Change of asis Professor: Padraic artlett Week 2 UCS 2014 On Friday of last week, we asked the following question: given the matrix A, 1 0 is there a quick way to calculate large powers

More information