arxiv: v1 [physics.flu-dyn] 10 Dec 2018

Size: px
Start display at page:

Download "arxiv: v1 [physics.flu-dyn] 10 Dec 2018"

Transcription

1 Folding of he frozen-in-fluid di-voriciy field in wo-dimensional hydrodynamic urbulence arxiv: v1 [physics.flu-dyn] 10 Dec 2018 E.A. Kuznesov a,b,c and E.V. Sereshchenko c,d,e b P.N. Lebedev Physical Insiue, RAS, Moscow, Russia c L.D. Landau Insiue for Theoreical Physics, RAS, Moscow, Russia a Novosibirsk Sae Universiy, Novosibirsk, Russia d A.S. Khrisianovich Insiue of Theoreical and Applied Mechanics, SB RAS, Novosibirsk, Russia e Far-Easern Federal Universiy, Vladivosok, Russia The voriciy roor field B = ro ω (di-voriciy) for freely decaying wo-dimensional hydrodynamic urbulence due o a endency o breaking is concenraed in he viciniy of he lines corresponding o he posiion of he voriciy quasi-shocks. The maximum value of he di-voriciy a he sage of quasi-shocks formaion increases exponenially in ime, while he hickness l() of he maximum area in he ransverse direcion o he vecor B decreases in ime also exponenially. I is numerically shown ha () depends on he hickness according o he power law: () l α (), where he exponen α 2/3. This behavior indicaes in favor of folding for he divergence-free vecor field of he di-voriciy. PACS: Cv, a, Ra I. INTRODUCTION In he wo-dimensional developed hydrodynamic urbulence a high Reynolds numbers, Re 1, as i was found ou in [1 3], he Kraichnan direc cascade [4] wih a consan ensrophy flux is formed due o he appearance of he voriciy quasi - shocks (or jumps), because of he compressibiliy of coninuously disribued lines of he field of he voriciy roor, B = roω, ofen called he di-voriciy afer Kida [5]. This compressibiliy propery follows direcly from he equaion for B, B = ro[v B], divv = 0, (1) which has he form of a frozenness equaion. From his equaion we have ha B changes only by virue of he velociy componen v n normal o he di-voriciy vecor (in consequence of he vecor produc). The velociy componen v n due o frozenness B deermines he change in he posiion of he force lines of his field by means of he Lagrangian rajecories, which are defined from he equaions dr d = v n(r,) = 0, r =0 = a. In he general siuaion, divv n 0, and herefore he mapping r = r(a,) as he soluion of hese equaions is urned ou o be compressible. This fac also follows from he Liouville equaion for he mapping Jacobian J = (x,y)/ (a x,a y ) (as a measure of he infiniesimally small area variaion): dj d = divv n J. Thus, Jacobian J can ake arbirary values, including zero. This is he reason for he compressibiliy of coninuously disribued divoriciy lines and, accordingly, he endency o breaking, ha resuls in he formaion of voriciy quasi-shocks. In he case of freely decaying urbulence, his process is dominan, leading o a srong anisoropy of he urbulence specrum because of he presence of jes generaed by quasishocks [1, 2]. This process urns ou o be he fases, as a resul he urbulence specrum of he direc cascade a he iniial sage forms a power dependence on he wave numberk wih he Kraichnanype behaviorforhe specrum: E k k 3 (see he original paper by Kraichnan [4]), even in he presence of pumping, as shown by numerical experimens[8]. A he same ime, he formaion of he voriciy quasi-shocks is exponenial; in accordance wih his, he regions of he maximum of di-voriciy are decreased in he direcion perpendicular o he lines of he consan voriciy. As demonsraed in he numerical experimens[1 3]), for

2 2 ypical iniial condiions an increase of he divoriciy modulus consiss orders of magniude, and he ransverse size of he maximal area B decreases significanly. The explanaion of his growh is relaed o he possibiliy of parial inegraion of he equaion (1) in erms of mapping r = r(a,) [1]: B(r,) = (B 0(a) a )r(a,), (2) J whereb 0 (a)isheiniialb, whichhasameaning of he Cauchy invarian analogue. A similar formula for he hree-dimensional Euler equaions is basic in he so-called vorex line represenaion [9]. The key poin here for undersanding is he compressibiliy of he divoriciy field and he possibiliy of J o vanish. As is known, breaking in he gas dynamics occurs due o he compressibiliy of he gas. The formaion of quasi-wo-dimensional causics occurs when approaching he breaking poin(see, e.g. [10]). The formaion of he voriciy quasi-shocks happens similarly. I is necessary o menion ha probably firs ime appearance of he voriciy quasi-shocks was observed in he numerical simulaions by Lilly in 1971 [6]. I was one of he main moivaion for Saffman o sugges he specrum E(k) k 4 [7] differen from ha suggesed by Kraichnan [4]. The firs explanaion of hese facs was given in he papers [1] based on he represenaion (2) in In his paper, we invesigae how he maximum value of he di-voriciy varies depending on he hickness of he maximum area in order o find ou wheher his process can be considered as a fold formaion (wha is a fold - see, for example, [11]). As a resul of numerical simulaion on he grid 16384x16384, we found ha beween he maximum value of and he hickness of l, a he sage of exponenial growh, here is a power law dependence: l α, where he exponen α is close o 2/3. I should be noed ha such a dependence was found while formaion of he pancake-ype vorex srucures arising for inviscid hree-dimensional flows [12]. This resul indicaes ha he formaion of quasi-shocks can be considered as a process of folding for a divergen-free vecor field - he di-voriciy field. If for he hree-dimensional Euler equaion, he appearance of a power dependence beween he maximum voriciy ω max and he pancake hickness l of he form ω max l 2/3 could be aribued o he Kolmogorov ype relaion, hen he dependence l 2/3 indicaes ha in he wo-dimensional Euler hydrodynamics we are dealing wih folding ha is no relaed o he Kolmogorov behavior.the frozenness of boh he voriciy field in he hree-dimensional Euler equaion and he divoriciy field combines boh of hese cases - he formaion of hree-dimensional vorex srucures of pancake ype and quasi-shocks of voriciy for wo-dimensional flows. Despie he incompressibiliy of he velociy field, boh fields - hree dimensional voriciy field and divoriciy are compressible (see [12]). Apparenly, due o his propery of frozen-in-fluid fields, we can expec ha he 2/3 law is universal for any fields of his ype. II. NUMERICAL RESULTS In his paper for he numerical inegraion of he wo-dimensional Euler equaions wrien in erms of voriciy (Helmholz equaion), ω +(v )ω = 0, (3) we use algorihm described in deail in our previous papers [2, 3, 8]. The inegraion domain for he equaion (3) was a square box wih sizes 2π 2π, he boundary condiions were periodic a boh coordinaes. Velociy v and voriciy ω were found hrough he sream funcion ψ using he sandard formulas. For a given value of ω he sream funcion was found by reversing he Laplace operaor wih he help of he fas Fourier ransform and hen Bmax FIG. 1: Disribuion of di-voriciy B a = 12. Bmax

3 3 7,0 1 6,0 5,0 4,0 3,0 2,0 y=1.65exp(0.16x) y=1.65exp(0.16x) 1,0 1,0 FIG. 2: The dependence of he maximum di-voriciy on ime (on he lef is he usual scale, on he righ is he logarihmic). The poins correspond o he numerical resuls, and he line o exponenial fiing. 0,30 1,000 0,25 0,20 y=0.67exp(-0.25x) y=0.67exp(-0.25x) 0,15 0,100 0, FIG. 3: Dependence of hickness on ime (on he lef is he usual scale, on he righ is he logarihmic). The poins correspond o he numerical resuls, and he line o exponenial fiing. he velociy was deermined. As in he our previous works, wo ses of Gaussian vorices wih posiive and negaive voriciy wih zero oal voriciy were used as iniial condiions. The size of each pair was random in he range of , he locaion of vorices was also random. Unlike previous works [2, 3], we limied he number of vorices o 8 (4 posiive and 4 negaive) o more accuraely deermine he required dependences - he B field and is geomeric characerisics: maximum posiions, longiudinal and ransverse quasi-shock sizes, ec. A firs, he spaioemporal dependences of voriciy were numerically found and hen he emporal evoluion of he field of di-voriciy was deermined. Analysis of he disribuion of he di-voriciy field showed ha is main mass is concenraed in he small viciniy of he lines wih a maximum value of B in he form of narrowing wo-dimensional ribbons ha form a complex ne and a large imes becomes urbulen. Fig. 1 shows he srucure of B a = 12. Zoom shows ha beween he maximum lines of di-voriciy values of B is significanly less han he maximum. For voriciy his corresponds o a errace wih seps of variable heigh. Each of hese seps is a voriciy quasi-shock. As already noed, he maximum ampliude of he di-voriciy a he iniial sage increases exponenially and hen afer reaching is maximum performs small oscillaions near his maximum. Fig. 2 shows he dependence of on ime a he iniial sage. As can be seen from hese figure, exponenial growh is observed a imes from = 4 o = 12 wih he growh rae To find he ransverse size in he viciniy of he maximum, he Hessian marix i j B was calculaed a he maximum poin and hen by is eigenvalues he ransverse (relaive o he ribbon) size ( l) and longiudinal l 2 were defined as l i = (2 λ i / ) 1/2, where λ i are he eigenvalues of he i j B marix. Fig. 3 shows he dependence of he hickness on ime: a firs pracically does no change and hen saring wih = 4 here is an exponenial decrease o = 14 wih he nega-

4 4 0,7 0,6 l 2 1,000 l 2 0,5 0,4 y=0.27exp(0.06x) y=0.27exp(0.06x) 0,3 0,2 0,1 0,100 FIG. 4: Dependence of he longiudinal size l 2 on ime (on he lef is he usual scale, on he righ is he logarihmic). The poins correspond o he numerical resuls, and he line o exponenial fiing. ive growh rae A = 14 he number of grid poins on he hickness of maximal divoriciy line was abou 20. For longer imes, his number decreases. So a = 20 he hickness reaches a value of , which is comparable o he grid size 2π/16384 = , i.e. he furher analysis becomes already incorrec. I should be noed ha for > 14 exponenialgrowhofb max sopsand sauraion akes place accompanying by small oscillaions (see ref. [1, 2]). As for he longiudinal scale l 2, i grows exponenially up o = 14 wih he growh rae 0.06 (see Fig. 4). A large imes l 2 growh sops, and hen here is even an exponenial fall, which in our opinion is associaed wih he discreeness of he compuaion grid and herefore is incorrec. I is imporan o noe ha up o = 14 he oal value ofhe growh raes(for boh and l 2 ) urns ou o be negaive: = y=1.27x ,10 0,15 0,20 0,25 FIG. 5: The dependence of he maximum divoriciy on he hickness l. The poins correspond o numerical resuls, and he line corresponds o he power dependence l 2/ , which indicaes he compressibiliy of he region of he maximal value. Similar behavior is observed in hree-dimensional hydrodynamics when forming pancake-ype vorex srucures [13]. The obained dependences for and hickness l show ha a he exponenial sage beween hese values here is a power dependence = Cl α wih α = 0.16/( 0.25) = /3, C is a consan (see Fig. 5). I is worh noing ha his dependence of on l in he form of he 2/3 law was also verified for anoher iniial condiions (recall ha he posiions of vorices and heir sizes were random). This allows ones o believe ha his relaion can be considered as universal. III. CONCLUSION The main conclusion of his work is ha he formaion of he power dependence of on he hickness l - he 2/3 law - can be considered as folding, we emphasize, for he divergence-free vecor field of he di-voriciy. As already noed in he inroducion, he same scaling was found for he formaion of he pancake-ype vorex srucures for hreedimensional Euler hydrodynamics [12, 13]. In his case, he scaling 2/3 was se beween he maximal voriciy and he pancake hickness: ω max l 2/3. Boh hese phenomena are unied by he frozenness propery of he voriciy field for he hree-dimensional flows and he di-voriciy for wo-dimensional hydrodynamics. Is his law universal for any frozenin-fluid fields for incompressible flows? This quesion remains sill open; especially i is in-

5 5 eresing for magneic hydrodynamics where, in he non-dissipaive limi, he magneic field is also frozen. This work was carried ou wih he suppor of he Russian Foundaion of Basic Research (gran no ). [1] E.A. Kuznesov, V. Naulin, A.H. Nielsen, and J.J. Rasmussen, Phys. Fluids 19, (2007); Theor. Compu. Fluid Dyn. 24, (2010). [2] A.N. Kudryavsev, E.A. Kuznesov, E.V. Sereshchenko, JETP Leers, 96, (2013). [3] E.A. Kuznesov, E.V. Sereshchenko, JETP Leers 102, (2015) [4] R. Kraichnan, Phys. Fluids, 11, 1417 (1967). [5] S. Kida, J. Phys. Soc. Jpn. 54, 2840 (1985). [6] D.K. Lilly, J. Fluid Mech. 45, 395 (1971). [7] P.G. Saffman, Sud. Appl. Mah. 50, 377 (1971). [8] E.A. Kuznesov, E.V. Sereshchenko, JETP Leer 105, 83-88, (2017). [9] E.A. Kuznesov, V.P. Ruban, JETP Leers, 67, (1998); E.A. Kuznesov, V.P. Ruban, Phys. Rev. E, 61, 831 (2000). [10] S.F. Shandarin, Ya.B. Zeldovich, Rev. Mod. Phys. 61, 185 (1989). [11] V.I. Arnold, Caasrophe Theory (3rd ed.), Berlin: Springer-Verlag, [12] D.S. Agafonsev, E.A. Kuznesov and A.A. Mailybaev, Phys. Fluids 30, (2018). [13] D.S. Agafonsev, E.A. Kuznesov and A.A. Mailybaev, Phys. Fluids 27, (2015).

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Non-uniform circular motion *

Non-uniform circular motion * OpenSax-CNX module: m14020 1 Non-uniform circular moion * Sunil Kumar Singh This work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License 2.0 Wha do we mean by non-uniform

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

4.1 - Logarithms and Their Properties

4.1 - Logarithms and Their Properties Chaper 4 Logarihmic Funcions 4.1 - Logarihms and Their Properies Wha is a Logarihm? We define he common logarihm funcion, simply he log funcion, wrien log 10 x log x, as follows: If x is a posiive number,

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Version April 30, 2004.Submied o CTU Repors. EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Per Krysl Universiy of California, San Diego La Jolla, California 92093-0085,

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. = " M z T 1. (1" e "t /T 1 ) M z. (t) = M 0

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. =  M z T 1. (1 e t /T 1 ) M z. (t) = M 0 Relaxaion Bioengineering 28A Principles of Biomedical Imaging Fall Quarer 21 MRI Lecure 2 An exciaion pulse roaes he magneiaion vecor away from is equilibrium sae (purely longiudinal). The resuling vecor

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

At the end of this lesson, the students should be able to understand

At the end of this lesson, the students should be able to understand Insrucional Objecives A he end of his lesson, he sudens should be able o undersand Sress concenraion and he facors responsible. Deerminaion of sress concenraion facor; experimenal and heoreical mehods.

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

4. Electric field lines with respect to equipotential surfaces are

4. Electric field lines with respect to equipotential surfaces are Pre-es Quasi-saic elecromagneism. The field produced by primary charge Q and by an uncharged conducing plane disanced from Q by disance d is equal o he field produced wihou conducing plane by wo following

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiion-ime graphs, elociy-ime graphs, and heir

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

PHYSICS 149: Lecture 9

PHYSICS 149: Lecture 9 PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

More information

arxiv: v1 [math.na] 23 Feb 2016

arxiv: v1 [math.na] 23 Feb 2016 EPJ Web of Conferences will be se by he publisher DOI: will be se by he publisher c Owned by he auhors, published by EDP Sciences, 16 arxiv:163.67v1 [mah.na] 3 Feb 16 Numerical Soluion of a Nonlinear Inegro-Differenial

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

Robotics I. April 11, The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1.

Robotics I. April 11, The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1. Roboics I April 11, 017 Exercise 1 he kinemaics of a 3R spaial robo is specified by he Denavi-Harenberg parameers in ab 1 i α i d i a i θ i 1 π/ L 1 0 1 0 0 L 3 0 0 L 3 3 able 1: able of DH parameers of

More information

Practicing Problem Solving and Graphing

Practicing Problem Solving and Graphing Pracicing Problem Solving and Graphing Tes 1: Jan 30, 7pm, Ming Hsieh G20 The Bes Ways To Pracice for Tes Bes If need more, ry suggesed problems from each new opic: Suden Response Examples A pas opic ha

More information

Failure of the work-hamiltonian connection for free energy calculations. Abstract

Failure of the work-hamiltonian connection for free energy calculations. Abstract Failure of he work-hamilonian connecion for free energy calculaions Jose M. G. Vilar 1 and J. Miguel Rubi 1 Compuaional Biology Program, Memorial Sloan-Keering Cancer Cener, 175 York Avenue, New York,

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Chapter 5: Control Volume Approach and Continuity Principle Dr Ali Jawarneh

Chapter 5: Control Volume Approach and Continuity Principle Dr Ali Jawarneh Chaper 5: Conrol Volume Approach and Coninuiy Principle By Dr Ali Jawarneh Deparmen of Mechanical Engineering Hashemie Universiy 1 Ouline Rae of Flow Conrol volume approach. Conservaion of mass he coninuiy

More information

Sub Module 2.6. Measurement of transient temperature

Sub Module 2.6. Measurement of transient temperature Mechanical Measuremens Prof. S.P.Venkaeshan Sub Module 2.6 Measuremen of ransien emperaure Many processes of engineering relevance involve variaions wih respec o ime. The sysem properies like emperaure,

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

Numerical Dispersion

Numerical Dispersion eview of Linear Numerical Sabiliy Numerical Dispersion n he previous lecure, we considered he linear numerical sabiliy of boh advecion and diffusion erms when approimaed wih several spaial and emporal

More information

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e PHYS67 Class 3 ourier Transforms In he limi T, he ourier series becomes an inegral ( nt f in T ce f n f f e d, has been replaced by ) where i f e d is he ourier ransform of f() which is he inverse ourier

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Damped mechanical oscillator: Experiment and detailed energy analysis

Damped mechanical oscillator: Experiment and detailed energy analysis 1 Damped mechanical oscillaor: Experimen and deailed energy analysis Tommaso Corridoni, DFA, Locarno, Swizerland Michele D Anna, Liceo canonale, Locarno, Swizerland Hans Fuchs, Zurich Universiy of Applied

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

A Shooting Method for A Node Generation Algorithm

A Shooting Method for A Node Generation Algorithm A Shooing Mehod for A Node Generaion Algorihm Hiroaki Nishikawa W.M.Keck Foundaion Laboraory for Compuaional Fluid Dynamics Deparmen of Aerospace Engineering, Universiy of Michigan, Ann Arbor, Michigan

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations Concourse Mah 80 Spring 0 Worked Examples: Marix Mehods for Solving Sysems of s Order Linear Differenial Equaions The Main Idea: Given a sysem of s order linear differenial equaions d x d Ax wih iniial

More information

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature On Measuring Pro-Poor Growh 1. On Various Ways of Measuring Pro-Poor Growh: A Shor eview of he Lieraure During he pas en years or so here have been various suggesions concerning he way one should check

More information

k B 2 Radiofrequency pulses and hardware

k B 2 Radiofrequency pulses and hardware 1 Exra MR Problems DC Medical Imaging course April, 214 he problems below are harder, more ime-consuming, and inended for hose wih a more mahemaical background. hey are enirely opional, bu hopefully will

More information

5.2. The Natural Logarithm. Solution

5.2. The Natural Logarithm. Solution 5.2 The Naural Logarihm The number e is an irraional number, similar in naure o π. Is non-erminaing, non-repeaing value is e 2.718 281 828 59. Like π, e also occurs frequenly in naural phenomena. In fac,

More information

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II Module 3: The Damped Oscillaor-II Lecure 3: The Damped Oscillaor-II 3. Over-damped Oscillaions. This refers o he siuaion where β > ω (3.) The wo roos are and α = β + α 2 = β β 2 ω 2 = (3.2) β 2 ω 2 = 2

More information

Optimizing heat exchangers

Optimizing heat exchangers Opimizing hea echangers Jean-Luc Thiffeaul Deparmen of Mahemaics, Universiy of Wisconsin Madison, 48 Lincoln Dr., Madison, WI 5376, USA wih: Florence Marcoe, Charles R. Doering, William R. Young (Daed:

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

( ) = b n ( t) n " (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2.

( ) = b n ( t) n  (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2. Andrei Tokmakoff, MIT Deparmen of Chemisry, 3/14/007-6.4 PERTURBATION THEORY Given a Hamilonian H = H 0 + V where we know he eigenkes for H 0 : H 0 n = E n n, we can calculae he evoluion of he wavefuncion

More information

Object tracking: Using HMMs to estimate the geographical location of fish

Object tracking: Using HMMs to estimate the geographical location of fish Objec racking: Using HMMs o esimae he geographical locaion of fish 02433 - Hidden Markov Models Marin Wæver Pedersen, Henrik Madsen Course week 13 MWP, compiled June 8, 2011 Objecive: Locae fish from agging

More information

Numerical investigation of Ranque-Hilsch energy separation effect A.S. Noskov 1,a, V.N. Alekhin 1,b, A.V. Khait 1,a

Numerical investigation of Ranque-Hilsch energy separation effect A.S. Noskov 1,a, V.N. Alekhin 1,b, A.V. Khait 1,a Applied Mechanics and Maerials Online: 2013-01-11 ISSN: 1662-7482, Vol. 281, pp 355-358 doi:10.4028/www.scienific.ne/amm.281.355 2013 Trans Tech Publicaions, Swizerland Numerical invesigaion of Ranque-Hilsch

More information

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, Series A, OF HE ROMANIAN ACADEMY Volume, Number 4/200, pp 287 293 SUFFICIEN CONDIIONS FOR EXISENCE SOLUION OF LINEAR WO-POIN BOUNDARY PROBLEM IN

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Short Introduction to Fractional Calculus

Short Introduction to Fractional Calculus . Shor Inroducion o Fracional Calculus Mauro Bologna Deparameno de Física, Faculad de Ciencias Universidad de Tarapacá, Arica, Chile email: mbologna@ua.cl Absrac In he pas few years fracional calculus

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

18 Biological models with discrete time

18 Biological models with discrete time 8 Biological models wih discree ime The mos imporan applicaions, however, may be pedagogical. The elegan body of mahemaical heory peraining o linear sysems (Fourier analysis, orhogonal funcions, and so

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9: EE65R: Reliabiliy Physics of anoelecronic Devices Lecure 9: Feaures of Time-Dependen BTI Degradaion Dae: Sep. 9, 6 Classnoe Lufe Siddique Review Animesh Daa 9. Background/Review: BTI is observed when he

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

di Bernardo, M. (1995). A purely adaptive controller to synchronize and control chaotic systems.

di Bernardo, M. (1995). A purely adaptive controller to synchronize and control chaotic systems. di ernardo, M. (995). A purely adapive conroller o synchronize and conrol chaoic sysems. hps://doi.org/.6/375-96(96)8-x Early version, also known as pre-prin Link o published version (if available):.6/375-96(96)8-x

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

Math Final Exam Solutions

Math Final Exam Solutions Mah 246 - Final Exam Soluions Friday, July h, 204 () Find explici soluions and give he inerval of definiion o he following iniial value problems (a) ( + 2 )y + 2y = e, y(0) = 0 Soluion: In normal form,

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information