Fast Methods for Spatially Correlated Multilevel Functional Data

Size: px
Start display at page:

Download "Fast Methods for Spatially Correlated Multilevel Functional Data"

Transcription

1 Fast Methods for Spatially Correlated Multilevel Functional Data Ana-Maria Staicu, Department of Statistics, North Carolina State University, 23 Stinson Drive Raleigh, NC , USA Ciprian M. Crainiceanu, Department of Biostatistics, Johns Hopkins University, 65 N. Wolfe St. Baltimore, MD 2205, USA. and Raymond J. Carroll, Department of Statistics, Texas A&M University, College Station, TX , USA. Appendix A: Computational Complements A. Matrix inversion Let Σ dr denote the variance of the M dr i= N dri vector Y dr. Similarly, let ǫ dr be the M dr i= N dri vector of regression errors. Define dr = ( dr,,..., dr,k ) T and define ζ dr = (ζ dr,,..., ζ dr,k2, ζ dr2,,..., ζ drmdr,k 2 ) T Define Σ = cov( dr ) = diag(λ (),..., λ () K ), Σ β = diag(λ (2),..., λ (2) K 2 ) and Σ ζ = cov(ζ dr ) = I Σ β. Let B T dr = (Φ()T dr,...,φ()t drm dr ) be the M dr i= N dri K matrix with elements {φ () (t),..., φ() K (t)}, where the arguments for t match those of the corresponding row of Y dr and let B dr = diag(φ (2) dr,...,φ(2) drm dr ) be the M dr i= N dri K 2 M dr matrix of φ (2) l (t) s. Let dri be the N dri vector of ones, and E dr = diag( dr,..., drmdr ). Finally let U dr be the M dr vector of {U( dri ) : i =,...M dr }

2 and Σ U,dr be the M dr M dr variance covariance matrix of U dr. Then our model is Y dr = µ dr +B dr dr + B dr ζ dr + E dr U dr +ǫ dr, where µ dr is the vector obtained by stacking µ d (t drip ) over p s and i s. Clearly, Σ dr = cov(y dr ) = σ 2 ǫ I + B drσ B T dr + B drσ ζ B T dr + E drσ U,dr E T dr. (S.) Here we show how using matrix and determinant equalities used in (Harville, 977) can simplify both the inversion of and the determinant calculation of Σ dr. For simplicity of notation only, since there will be no confusion, we drop the indices and write M dr = M and N dri = N, etc. Thus, we denote Φ () dr = Φ() and Φ (2) dri = Φ(2), E = E dr, B dr = B and B dr = B. To invert Σ dr, we repeatedly use the formula (A + CB C T ) = A AC(C T AC + B) C T A. (S.2) Define S = (σ 2 ǫ I + BΣ B T + BΣ ζ B T ). Then Σ dr = (S + EΣ U,dr E T ) = S SE(E T SE + Σ U,dr ) E T S. Note that E T SE+Σ U,dr is M M. To compute S without taking a large matrix inverse, denote by J = (σ 2 ǫ I+BΣ ζb T ). Then S = (J +BΣ B T ) = J JB(B T JB+Σ ) B T J. The matrix B T JB +Σ is K K, however, still J is the inverse of a MN MN matrix. Fortunately, note that σ 2 ǫ I+BΣ ζb T = diag(σ 2 ǫ I N +Φ (2) Σ β Φ (2)T,...,σ 2 ǫ I N +Φ (2) Σ β Φ (2)T ), where I N is the N N dimensional matrix. Hence, J = diag { (σ 2 ǫ I N + Φ (2) Σ β Φ (2)T ),...,(σ 2 ǫ I N + Φ (2) Σ β Φ (2)T ) }. Using (S.2) once again, we write (σ 2 ǫi N + Φ (2) Σ β Φ (2)T ) = σ 2 ǫ I N σ 2 ǫ Φ (2) (Φ (2)T Φ (2) + σ 2 ǫσ β ) Φ (2)T. Hence: () we can compute J with nothing more than K 2 K 2 inversion, (2) we can compute S with nothing more than K K and K 2 K 2 inversion and (3) we can compute Σ dr more than K K, K 2 K 2 and M M inversion. with nothing A.2 Matrix determinant Here is use the formula A + CBC T = A I + C T A CB. (S.3) 2

3 Of course, Σ dr = S + EΣ U,dr E T = S I + Σ /2 U,dr ET SEΣ /2 U,dr, where I + Σ/2 U,dr ET SEΣ /2 U,dr is M M. However, S = J I +Σ /2 B T JBΣ /2, where I +Σ /2 B T JBΣ /2 is K K. Finally, remember that J = σ 2 ǫ I + BΣ γb T = diag(σ 2 ǫ I N + Φ (2) Σ β Φ (2)T,...,σ 2 ǫ I N + Φ (2) Σ β Φ (2)T ). Hence J = det{σ 2 ǫi N + Φ (2) Σ β Φ (2)T } M, which involves the determinant of a N N matrix. It follows, that we can compute Σ dr without large matrix inversions or the need to take determinants of large matrices. References Harville, D.A. (977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association 72, Appendix B: Additional Tables and Figures subjects subjects unit location (µm) unit location (µm) Figure S.: Simulation study: the spatial location of the units used in the uniform design (left panel) and in the colon carcinogenesis study design (right panel) for 2 subjects. 3

4 Figure S.2: Simulation study: the mean of the estimated covariance functions along with their pointwise 90% confidence interval in the case of the uniform design (top panel) and the CCS design (bottom panel) of the units location. The true covariance functions (blue line) are ν = σ 2 U ρ (left), ν 2 = σ 2 U ρ 2 (middle) and ν 3 = σ 2 U ρ 3 (right); the estimates are obtained using k-nearest neighbor with positive semi-definite adjustment (solid lines). 4

5 σ 2 U σ 2 U σ 2 U Figure S.3: Simulation study: boxplots of the estimated variance of the spatial process U dr for the three correlation functions ρ (left panel), ρ 2 (middle panel) and ρ 3 (right panel) in the case of uniform and CCS spatial design. 5

6 λ () σ ǫ 0 0 σ ǫ 0 0 σ ǫ λ () () (2) (3) correlation type () (2) (3) correlation type () (2) (3) correlation type Figure S.4: Simulation study: boxplots of the estimated eigenvalues at each hierarchical level. The top panel corresponds to the correlation function ρ ( ) under the uniform design (left) and CCS design (right) for two magnitudes of measurement error σ ǫ = 0 and σ ǫ =. The bottom panel corresponds to correlation functions ρ in (), ρ 2 in (2) and ρ 3 in (3), under CCS design and σ ǫ =. 6

7 σ 2 ǫ σ 2 ǫ σ 2 ǫ Figure S.5: Simulation study: boxplots of the estimated variance of the measurement error, σ 2 ǫ, for the correlation functions ρ (left), ρ 2 (middle) and ρ 3 (right), and the two designs for the crypt locations. mean log p27 per diet co+b co b fo+b fo b mean log p27 per diet co+b co b fo+b fo b mean log p27 per diet co+b co b fo+b fo b relative cell position relative cell position relative cell position Figure S.6: The estimated mean functions for the 4 diet groups by: (left panel) penalized spline smoothing under a working independence assumption, (middle panel) ordinary least squares quadratic estimation along with the independence assumption and (right panel) weighted least squares quadratic estimation, accounting for the dependence considered by the model. 7

Fast Methods for Spatially Correlated Multilevel Functional Data

Fast Methods for Spatially Correlated Multilevel Functional Data Biostatistics (2007), 8, 1, pp. 1 29 doi:10.1093/biostatistics/kxl000 Advance Access publication on May 15, 2006 Fast Methods for Spatially Correlated Multilevel Functional Data ANA-MARIA STAICU Department

More information

Supplemental materials to Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data

Supplemental materials to Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data Supplemental materials to Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data Lan Zhou, Jianhua Z. Huang, Josue G. Martinez, Arnab Maity, Veerabhadran Baladandayuthapani

More information

Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis. Abstract

Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis. Abstract Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis Veerabhadran Baladandayuthapani 1, Bani K. Mallick 2, Mee Young Hong 3 4, Joanne R. Lupton 4,

More information

Professors Lin and Ying are to be congratulated for an interesting paper on a challenging topic and for introducing survival analysis techniques to th

Professors Lin and Ying are to be congratulated for an interesting paper on a challenging topic and for introducing survival analysis techniques to th DISCUSSION OF THE PAPER BY LIN AND YING Xihong Lin and Raymond J. Carroll Λ July 21, 2000 Λ Xihong Lin (xlin@sph.umich.edu) is Associate Professor, Department ofbiostatistics, University of Michigan, Ann

More information

Supplementary Material to General Functional Concurrent Model

Supplementary Material to General Functional Concurrent Model Supplementary Material to General Functional Concurrent Model Janet S. Kim Arnab Maity Ana-Maria Staicu June 17, 2016 This Supplementary Material contains six sections. Appendix A discusses modifications

More information

Exact Likelihood Ratio Tests for Penalized Splines

Exact Likelihood Ratio Tests for Penalized Splines Exact Likelihood Ratio Tests for Penalized Splines By CIPRIAN CRAINICEANU, DAVID RUPPERT, GERDA CLAESKENS, M.P. WAND Department of Biostatistics, Johns Hopkins University, 615 N. Wolfe Street, Baltimore,

More information

Multilevel Cross-dependent Binary Longitudinal Data

Multilevel Cross-dependent Binary Longitudinal Data Multilevel Cross-dependent Binary Longitudinal Data Nicoleta Serban 1 H. Milton Stewart School of Industrial Systems and Engineering Georgia Institute of Technology nserban@isye.gatech.edu Ana-Maria Staicu

More information

. a m1 a mn. a 1 a 2 a = a n

. a m1 a mn. a 1 a 2 a = a n Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by

More information

Hypothesis Testing for Var-Cov Components

Hypothesis Testing for Var-Cov Components Hypothesis Testing for Var-Cov Components When the specification of coefficients as fixed, random or non-randomly varying is considered, a null hypothesis of the form is considered, where Additional output

More information

Restricted Likelihood Ratio Tests in Nonparametric Longitudinal Models

Restricted Likelihood Ratio Tests in Nonparametric Longitudinal Models Restricted Likelihood Ratio Tests in Nonparametric Longitudinal Models Short title: Restricted LR Tests in Longitudinal Models Ciprian M. Crainiceanu David Ruppert May 5, 2004 Abstract We assume that repeated

More information

Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis

Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis Ana-Maria Staicu Yingxing Li Ciprian M. Crainiceanu David Ruppert October 13, 2013 Abstract The

More information

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D.

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Ruppert A. EMPIRICAL ESTIMATE OF THE KERNEL MIXTURE Here we

More information

Functional Latent Feature Models. With Single-Index Interaction

Functional Latent Feature Models. With Single-Index Interaction Generalized With Single-Index Interaction Department of Statistics Center for Statistical Bioinformatics Institute for Applied Mathematics and Computational Science Texas A&M University Naisyin Wang and

More information

A Multivariate Two-Sample Mean Test for Small Sample Size and Missing Data

A Multivariate Two-Sample Mean Test for Small Sample Size and Missing Data A Multivariate Two-Sample Mean Test for Small Sample Size and Missing Data Yujun Wu, Marc G. Genton, 1 and Leonard A. Stefanski 2 Department of Biostatistics, School of Public Health, University of Medicine

More information

Multivariate Regression Generalized Likelihood Ratio Tests for FMRI Activation

Multivariate Regression Generalized Likelihood Ratio Tests for FMRI Activation Multivariate Regression Generalized Likelihood Ratio Tests for FMRI Activation Daniel B Rowe Division of Biostatistics Medical College of Wisconsin Technical Report 40 November 00 Division of Biostatistics

More information

An R # Statistic for Fixed Effects in the Linear Mixed Model and Extension to the GLMM

An R # Statistic for Fixed Effects in the Linear Mixed Model and Extension to the GLMM An R Statistic for Fixed Effects in the Linear Mixed Model and Extension to the GLMM Lloyd J. Edwards, Ph.D. UNC-CH Department of Biostatistics email: Lloyd_Edwards@unc.edu Presented to the Department

More information

STAT 350: Geometry of Least Squares

STAT 350: Geometry of Least Squares The Geometry of Least Squares Mathematical Basics Inner / dot product: a and b column vectors a b = a T b = a i b i a b a T b = 0 Matrix Product: A is r s B is s t (AB) rt = s A rs B st Partitioned Matrices

More information

Gaussian Quiz. Preamble to The Humble Gaussian Distribution. David MacKay 1

Gaussian Quiz. Preamble to The Humble Gaussian Distribution. David MacKay 1 Preamble to The Humble Gaussian Distribution. David MacKay Gaussian Quiz H y y y 3. Assuming that the variables y, y, y 3 in this belief network have a joint Gaussian distribution, which of the following

More information

Least Squares Based Self-Tuning Control Systems: Supplementary Notes

Least Squares Based Self-Tuning Control Systems: Supplementary Notes Least Squares Based Self-Tuning Control Systems: Supplementary Notes S. Garatti Dip. di Elettronica ed Informazione Politecnico di Milano, piazza L. da Vinci 32, 2133, Milan, Italy. Email: simone.garatti@polimi.it

More information

SUPPLEMENTAL NOTES FOR ROBUST REGULARIZED SINGULAR VALUE DECOMPOSITION WITH APPLICATION TO MORTALITY DATA

SUPPLEMENTAL NOTES FOR ROBUST REGULARIZED SINGULAR VALUE DECOMPOSITION WITH APPLICATION TO MORTALITY DATA SUPPLEMENTAL NOTES FOR ROBUST REGULARIZED SINGULAR VALUE DECOMPOSITION WITH APPLICATION TO MORTALITY DATA By Lingsong Zhang, Haipeng Shen and Jianhua Z. Huang Purdue University, University of North Carolina,

More information

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions Spatial inference I will start with a simple model, using species diversity data Strong spatial dependence, Î = 0.79 what is the mean diversity? How precise is our estimate? Sampling discussion: The 64

More information

1 Arabidopsis growth curves

1 Arabidopsis growth curves 1 Arabidopsis growth curves 1.1 Data description The file PlantGrowth.dat contains the heights in mm. of 70 Arabidopsis plants measured every four days from day 29 to day 69 following the planting of seeds.

More information

Likelihood ratio testing for zero variance components in linear mixed models

Likelihood ratio testing for zero variance components in linear mixed models Likelihood ratio testing for zero variance components in linear mixed models Sonja Greven 1,3, Ciprian Crainiceanu 2, Annette Peters 3 and Helmut Küchenhoff 1 1 Department of Statistics, LMU Munich University,

More information

The Simulation Extrapolation Method for Fitting Generalized Linear Models with Additive Measurement Error

The Simulation Extrapolation Method for Fitting Generalized Linear Models with Additive Measurement Error The Stata Journal (), Number, pp. 1 12 The Simulation Extrapolation Method for Fitting Generalized Linear Models with Additive Measurement Error James W. Hardin Norman J. Arnold School of Public Health

More information

Likelihood and p-value functions in the composite likelihood context

Likelihood and p-value functions in the composite likelihood context Likelihood and p-value functions in the composite likelihood context D.A.S. Fraser and N. Reid Department of Statistical Sciences University of Toronto November 19, 2016 Abstract The need for combining

More information

Basics of Point-Referenced Data Models

Basics of Point-Referenced Data Models Basics of Point-Referenced Data Models Basic tool is a spatial process, {Y (s), s D}, where D R r Chapter 2: Basics of Point-Referenced Data Models p. 1/45 Basics of Point-Referenced Data Models Basic

More information

Some properties of Likelihood Ratio Tests in Linear Mixed Models

Some properties of Likelihood Ratio Tests in Linear Mixed Models Some properties of Likelihood Ratio Tests in Linear Mixed Models Ciprian M. Crainiceanu David Ruppert Timothy J. Vogelsang September 19, 2003 Abstract We calculate the finite sample probability mass-at-zero

More information

Estimation in Generalized Linear Models with Heterogeneous Random Effects. Woncheol Jang Johan Lim. May 19, 2004

Estimation in Generalized Linear Models with Heterogeneous Random Effects. Woncheol Jang Johan Lim. May 19, 2004 Estimation in Generalized Linear Models with Heterogeneous Random Effects Woncheol Jang Johan Lim May 19, 2004 Abstract The penalized quasi-likelihood (PQL) approach is the most common estimation procedure

More information

Total Least Squares Approach in Regression Methods

Total Least Squares Approach in Regression Methods WDS'08 Proceedings of Contributed Papers, Part I, 88 93, 2008. ISBN 978-80-7378-065-4 MATFYZPRESS Total Least Squares Approach in Regression Methods M. Pešta Charles University, Faculty of Mathematics

More information

Economics 620, Lecture 5: exp

Economics 620, Lecture 5: exp 1 Economics 620, Lecture 5: The K-Variable Linear Model II Third assumption (Normality): y; q(x; 2 I N ) 1 ) p(y) = (2 2 ) exp (N=2) 1 2 2(y X)0 (y X) where N is the sample size. The log likelihood function

More information

Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis

Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis Jeffrey S. Morris University of Texas, MD Anderson Cancer Center Joint wor with Marina Vannucci, Philip J. Brown,

More information

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science 1 Likelihood Ratio Tests that Certain Variance Components Are Zero Ciprian M. Crainiceanu Department of Statistical Science www.people.cornell.edu/pages/cmc59 Work done jointly with David Ruppert, School

More information

Next is material on matrix rank. Please see the handout

Next is material on matrix rank. Please see the handout B90.330 / C.005 NOTES for Wednesday 0.APR.7 Suppose that the model is β + ε, but ε does not have the desired variance matrix. Say that ε is normal, but Var(ε) σ W. The form of W is W w 0 0 0 0 0 0 w 0

More information

Jianhua Z. Huang, Haipeng Shen, Andreas Buja

Jianhua Z. Huang, Haipeng Shen, Andreas Buja Several Flawed Approaches to Penalized SVDs A supplementary note to The analysis of two-way functional data using two-way regularized singular value decompositions Jianhua Z. Huang, Haipeng Shen, Andreas

More information

Metric-based classifiers. Nuno Vasconcelos UCSD

Metric-based classifiers. Nuno Vasconcelos UCSD Metric-based classifiers Nuno Vasconcelos UCSD Statistical learning goal: given a function f. y f and a collection of eample data-points, learn what the function f. is. this is called training. two major

More information

Binary choice 3.3 Maximum likelihood estimation

Binary choice 3.3 Maximum likelihood estimation Binary choice 3.3 Maximum likelihood estimation Michel Bierlaire Output of the estimation We explain here the various outputs from the maximum likelihood estimation procedure. Solution of the maximum likelihood

More information

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Christopher Paciorek, Department of Statistics, University

More information

Bayesian Gaussian / Linear Models. Read Sections and 3.3 in the text by Bishop

Bayesian Gaussian / Linear Models. Read Sections and 3.3 in the text by Bishop Bayesian Gaussian / Linear Models Read Sections 2.3.3 and 3.3 in the text by Bishop Multivariate Gaussian Model with Multivariate Gaussian Prior Suppose we model the observed vector b as having a multivariate

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2014 1 See last slide for copyright information. 1 / 37 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

TOPICS IN FUNCTIONAL DATA ANALYSIS WITH BIOLOGICAL APPLICATIONS. A Dissertation YEHUA LI

TOPICS IN FUNCTIONAL DATA ANALYSIS WITH BIOLOGICAL APPLICATIONS. A Dissertation YEHUA LI TOPICS IN FUNCTIONAL DATA ANALYSIS WITH BIOLOGICAL APPLICATIONS A Dissertation by YEHUA LI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

1 Statistics 249: Categorical Data/GLM Lecture 23

1 Statistics 249: Categorical Data/GLM Lecture 23 1 : 1.1 Review of Multiple Responses First: 1. Each response f(covariates = glm 2. How Responses are related to each other. A B A + B + A : B }{{} interaction 3. (1 + 2 global modela, B = f(covariates

More information

Identifiability, Invertibility

Identifiability, Invertibility Identifiability, Invertibility Defn: If {ǫ t } is a white noise series and µ and b 0,..., b p are constants then X t = µ + b 0 ǫ t + b ǫ t + + b p ǫ t p is a moving average of order p; write MA(p). Q:

More information

Generalized Linear. Mixed Models. Methods and Applications. Modern Concepts, Walter W. Stroup. Texts in Statistical Science.

Generalized Linear. Mixed Models. Methods and Applications. Modern Concepts, Walter W. Stroup. Texts in Statistical Science. Texts in Statistical Science Generalized Linear Mixed Models Modern Concepts, Methods and Applications Walter W. Stroup CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint

More information

Wavelet-based functional mixed models

Wavelet-based functional mixed models J. R. Statist. Soc. B (26) 68, Part 2, pp. 79 99 Wavelet-based functional mixed models Jeffrey S. Morris University of Texas MD Anderson Cancer Center, Houston, USA and Raymond J. Carroll Texas A&M University,

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 MA 575 Linear Models: Cedric E Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 1 Within-group Correlation Let us recall the simple two-level hierarchical

More information

Kneib, Fahrmeir: Supplement to "Structured additive regression for categorical space-time data: A mixed model approach"

Kneib, Fahrmeir: Supplement to Structured additive regression for categorical space-time data: A mixed model approach Kneib, Fahrmeir: Supplement to "Structured additive regression for categorical space-time data: A mixed model approach" Sonderforschungsbereich 386, Paper 43 (25) Online unter: http://epub.ub.uni-muenchen.de/

More information

Notes on Random Vectors and Multivariate Normal

Notes on Random Vectors and Multivariate Normal MATH 590 Spring 06 Notes on Random Vectors and Multivariate Normal Properties of Random Vectors If X,, X n are random variables, then X = X,, X n ) is a random vector, with the cumulative distribution

More information

arxiv:hep-ex/ v1 17 Sep 1999

arxiv:hep-ex/ v1 17 Sep 1999 Propagation of Errors for Matrix Inversion M. Lefebvre 1, R.K. Keeler 1, R. Sobie 1,2, J. White 1,3 arxiv:hep-ex/9909031v1 17 Sep 1999 Abstract A formula is given for the propagation of errors during matrix

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

Least Sparsity of p-norm based Optimization Problems with p > 1

Least Sparsity of p-norm based Optimization Problems with p > 1 Least Sparsity of p-norm based Optimization Problems with p > Jinglai Shen and Seyedahmad Mousavi Original version: July, 07; Revision: February, 08 Abstract Motivated by l p -optimization arising from

More information

Marcia Gumpertz and Sastry G. Pantula Department of Statistics North Carolina State University Raleigh, NC

Marcia Gumpertz and Sastry G. Pantula Department of Statistics North Carolina State University Raleigh, NC A Simple Approach to Inference in Random Coefficient Models March 8, 1988 Marcia Gumpertz and Sastry G. Pantula Department of Statistics North Carolina State University Raleigh, NC 27695-8203 Key Words

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Multivariate spatial models and the multikrig class

Multivariate spatial models and the multikrig class Multivariate spatial models and the multikrig class Stephan R Sain, IMAGe, NCAR ENAR Spring Meetings March 15, 2009 Outline Overview of multivariate spatial regression models Case study: pedotransfer functions

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

Gradient Enhanced Universal Kriging Model for Uncertainty Propagation in Nuclear Engineering

Gradient Enhanced Universal Kriging Model for Uncertainty Propagation in Nuclear Engineering Gradient Enhanced Universal Kriging Model for Uncertainty Propagation in Nuclear Engineering Brian A. Lockwood 1 and Mihai Anitescu 2 1 Department of Mechanical Engineering University of Wyoming 2 Mathematics

More information

Student-t Process as Alternative to Gaussian Processes Discussion

Student-t Process as Alternative to Gaussian Processes Discussion Student-t Process as Alternative to Gaussian Processes Discussion A. Shah, A. G. Wilson and Z. Gharamani Discussion by: R. Henao Duke University June 20, 2014 Contributions The paper is concerned about

More information

Function-on-Scalar Regression with the refund Package

Function-on-Scalar Regression with the refund Package University of Haifa From the SelectedWorks of Philip T. Reiss July 30, 2012 Function-on-Scalar Regression with the refund Package Philip T. Reiss, New York University Available at: https://works.bepress.com/phil_reiss/28/

More information

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Penalized Splines, Mixed Models, and Recent Large-Sample Results Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert Operations Research & Information Engineering, Cornell University Feb 4, 2011 Collaborators Matt Wand, University of Wollongong

More information

Analysis of incremental RLS adaptive networks with noisy links

Analysis of incremental RLS adaptive networks with noisy links Analysis of incremental RLS adaptive networs with noisy lins Azam Khalili, Mohammad Ali Tinati, and Amir Rastegarnia a) Faculty of Electrical and Computer Engineering, University of Tabriz Tabriz 51664,

More information

COMPARISON OF FIVE TESTS FOR THE COMMON MEAN OF SEVERAL MULTIVARIATE NORMAL POPULATIONS

COMPARISON OF FIVE TESTS FOR THE COMMON MEAN OF SEVERAL MULTIVARIATE NORMAL POPULATIONS Communications in Statistics - Simulation and Computation 33 (2004) 431-446 COMPARISON OF FIVE TESTS FOR THE COMMON MEAN OF SEVERAL MULTIVARIATE NORMAL POPULATIONS K. Krishnamoorthy and Yong Lu Department

More information

On the Identifiability of the Functional Convolution. Model

On the Identifiability of the Functional Convolution. Model On the Identifiability of the Functional Convolution Model Giles Hooker Abstract This report details conditions under which the Functional Convolution Model described in Asencio et al. (2013) can be identified

More information

Chemometrics: Classification of spectra

Chemometrics: Classification of spectra Chemometrics: Classification of spectra Vladimir Bochko Jarmo Alander University of Vaasa November 1, 2010 Vladimir Bochko Chemometrics: Classification 1/36 Contents Terminology Introduction Big picture

More information

y it = α i + β 0 ix it + ε it (0.1) The panel data estimators for the linear model are all standard, either the application of OLS or GLS.

y it = α i + β 0 ix it + ε it (0.1) The panel data estimators for the linear model are all standard, either the application of OLS or GLS. 0.1. Panel Data. Suppose we have a panel of data for groups (e.g. people, countries or regions) i =1, 2,..., N over time periods t =1, 2,..., T on a dependent variable y it and a kx1 vector of independent

More information

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A )

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A ) Econ 60 Matrix Differentiation Let a and x are k vectors and A is an k k matrix. a x a x = a = a x Ax =A + A x Ax x =A + A x Ax = xx A We don t want to prove the claim rigorously. But a x = k a i x i i=

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

A Peak to the World of Multivariate Statistical Analysis

A Peak to the World of Multivariate Statistical Analysis A Peak to the World of Multivariate Statistical Analysis Real Contents Real Real Real Why is it important to know a bit about the theory behind the methods? Real 5 10 15 20 Real 10 15 20 Figure: Multivariate

More information

STA 414/2104, Spring 2014, Practice Problem Set #1

STA 414/2104, Spring 2014, Practice Problem Set #1 STA 44/4, Spring 4, Practice Problem Set # Note: these problems are not for credit, and not to be handed in Question : Consider a classification problem in which there are two real-valued inputs, and,

More information

Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as

Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as MAHALANOBIS DISTANCE Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as d E (x, y) = (x 1 y 1 ) 2 + +(x p y p ) 2

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

10-725/36-725: Convex Optimization Prerequisite Topics

10-725/36-725: Convex Optimization Prerequisite Topics 10-725/36-725: Convex Optimization Prerequisite Topics February 3, 2015 This is meant to be a brief, informal refresher of some topics that will form building blocks in this course. The content of the

More information

From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. About This Book... xiii About The Author...

From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. About This Book... xiii About The Author... From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. Contents About This Book... xiii About The Author... xxiii Chapter 1 Getting Started: Data Analysis with JMP...

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Linear Algebra Review 1 / 45 Definition of Matrix Rectangular array of elements arranged in rows and

More information

Generalized Functional Concurrent Model

Generalized Functional Concurrent Model Biometrics, 1 25 2015 Generalized Functional Concurrent Model Janet S. Kim, Arnab Maity, and Ana-Maria Staicu Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695, U.S.A.

More information

Network Connectivity, Systematic Risk and Diversification

Network Connectivity, Systematic Risk and Diversification Network Connectivity, Systematic Risk and Diversification Monica Billio 1 Massimiliano Caporin 2 Roberto Panzica 3 Loriana Pelizzon 1,3 1 University Ca Foscari Venezia (Italy) 2 University of Padova (Italy)

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

Effective Linear Discriminant Analysis for High Dimensional, Low Sample Size Data

Effective Linear Discriminant Analysis for High Dimensional, Low Sample Size Data Effective Linear Discriant Analysis for High Dimensional, Low Sample Size Data Zhihua Qiao, Lan Zhou and Jianhua Z. Huang Abstract In the so-called high dimensional, low sample size (HDLSS) settings, LDA

More information

Principal Components Theory Notes

Principal Components Theory Notes Principal Components Theory Notes Charles J. Geyer August 29, 2007 1 Introduction These are class notes for Stat 5601 (nonparametrics) taught at the University of Minnesota, Spring 2006. This not a theory

More information

Measurement error, GLMs, and notational conventions

Measurement error, GLMs, and notational conventions The Stata Journal (2003) 3, Number 4, pp. 329 341 Measurement error, GLMs, and notational conventions James W. Hardin Arnold School of Public Health University of South Carolina Columbia, SC 29208 Raymond

More information

PQL Estimation Biases in Generalized Linear Mixed Models

PQL Estimation Biases in Generalized Linear Mixed Models PQL Estimation Biases in Generalized Linear Mixed Models Woncheol Jang Johan Lim March 18, 2006 Abstract The penalized quasi-likelihood (PQL) approach is the most common estimation procedure for the generalized

More information

Appendix A Summary of Tasks. Appendix Table of Contents

Appendix A Summary of Tasks. Appendix Table of Contents Appendix A Summary of Tasks Appendix Table of Contents Reporting Tasks...357 ListData...357 Tables...358 Graphical Tasks...358 BarChart...358 PieChart...359 Histogram...359 BoxPlot...360 Probability Plot...360

More information

Lesson 6 Maximum Likelihood: Part III. (plus a quick bestiary of models)

Lesson 6 Maximum Likelihood: Part III. (plus a quick bestiary of models) Lesson 6 Maximum Likelihood: Part III (plus a quick bestiary of models) Homework You want to know the density of fish in a set of experimental ponds You observe the following counts in ten ponds: 5,6,7,3,6,5,8,4,4,3

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

Function of Longitudinal Data

Function of Longitudinal Data New Local Estimation Procedure for Nonparametric Regression Function of Longitudinal Data Weixin Yao and Runze Li Abstract This paper develops a new estimation of nonparametric regression functions for

More information

Effective Computation for Odds Ratio Estimation in Nonparametric Logistic Regression

Effective Computation for Odds Ratio Estimation in Nonparametric Logistic Regression Communications of the Korean Statistical Society 2009, Vol. 16, No. 4, 713 722 Effective Computation for Odds Ratio Estimation in Nonparametric Logistic Regression Young-Ju Kim 1,a a Department of Information

More information

Bayesian Estimation of Principal Components for Functional Data

Bayesian Estimation of Principal Components for Functional Data Bayesian Analysis (2014) 1, Number 1 Bayesian Estimation of Principal Components for Functional Data Adam Suarez and Subhashis Ghosal Abstract. The area of principal components analysis (PCA) has seen

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

General Functional Concurrent Model

General Functional Concurrent Model General Functional Concurrent Model Janet S. Kim Arnab Maity Ana-Maria Staicu June 17, 2016 Abstract We propose a flexible regression model to study the association between a functional response and multiple

More information

Exam 2. Jeremy Morris. March 23, 2006

Exam 2. Jeremy Morris. March 23, 2006 Exam Jeremy Morris March 3, 006 4. Consider a bivariate normal population with µ 0, µ, σ, σ and ρ.5. a Write out the bivariate normal density. The multivariate normal density is defined by the following

More information

Simulating Uniform- and Triangular- Based Double Power Method Distributions

Simulating Uniform- and Triangular- Based Double Power Method Distributions Journal of Statistical and Econometric Methods, vol.6, no.1, 2017, 1-44 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2017 Simulating Uniform- and Triangular- Based Double Power Method Distributions

More information

STATS306B STATS306B. Discriminant Analysis. Jonathan Taylor Department of Statistics Stanford University. June 3, 2010

STATS306B STATS306B. Discriminant Analysis. Jonathan Taylor Department of Statistics Stanford University. June 3, 2010 STATS306B Discriminant Analysis Jonathan Taylor Department of Statistics Stanford University June 3, 2010 Spring 2010 Classification Given K classes in R p, represented as densities f i (x), 1 i K classify

More information

ON EXACT INFERENCE IN LINEAR MODELS WITH TWO VARIANCE-COVARIANCE COMPONENTS

ON EXACT INFERENCE IN LINEAR MODELS WITH TWO VARIANCE-COVARIANCE COMPONENTS Ø Ñ Å Ø Ñ Ø Ð ÈÙ Ð Ø ÓÒ DOI: 10.2478/v10127-012-0017-9 Tatra Mt. Math. Publ. 51 (2012), 173 181 ON EXACT INFERENCE IN LINEAR MODELS WITH TWO VARIANCE-COVARIANCE COMPONENTS Júlia Volaufová Viktor Witkovský

More information

Accurate eigenvalue decomposition of arrowhead matrices and applications

Accurate eigenvalue decomposition of arrowhead matrices and applications Accurate eigenvalue decomposition of arrowhead matrices and applications Nevena Jakovčević Stor FESB, University of Split joint work with Ivan Slapničar and Jesse Barlow IWASEP9 June 4th, 2012. 1/31 Introduction

More information

Solutions for Econometrics I Homework No.1

Solutions for Econometrics I Homework No.1 Solutions for Econometrics I Homework No.1 due 2006-02-20 Feldkircher, Forstner, Ghoddusi, Grafenhofer, Pichler, Reiss, Yan, Zeugner Exercise 1.1 Structural form of the problem: 1. q d t = α 0 + α 1 p

More information

Chapter 12 REML and ML Estimation

Chapter 12 REML and ML Estimation Chapter 12 REML and ML Estimation C. R. Henderson 1984 - Guelph 1 Iterative MIVQUE The restricted maximum likelihood estimator (REML) of Patterson and Thompson (1971) can be obtained by iterating on MIVQUE,

More information

Sliced Inverse Regression

Sliced Inverse Regression Sliced Inverse Regression Ge Zhao gzz13@psu.edu Department of Statistics The Pennsylvania State University Outline Background of Sliced Inverse Regression (SIR) Dimension Reduction Definition of SIR Inversed

More information

Bayesian Nonparametric Point Estimation Under a Conjugate Prior

Bayesian Nonparametric Point Estimation Under a Conjugate Prior University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 5-15-2002 Bayesian Nonparametric Point Estimation Under a Conjugate Prior Xuefeng Li University of Pennsylvania Linda

More information

Online Supplementary Material to: Perfluoroalkyl Chemicals, Menstrual Cycle Length and Fecundity: Findings from a. Prospective Pregnancy Study

Online Supplementary Material to: Perfluoroalkyl Chemicals, Menstrual Cycle Length and Fecundity: Findings from a. Prospective Pregnancy Study Online Supplementary Material to: Perfluoroalkyl Chemicals, Menstrual Cycle Length and Fecundity: Findings from a Prospective Pregnancy Study by Kirsten J. Lum 1,a,b, Rajeshwari Sundaram a, Dana Boyd Barr

More information