Transformed Companion Matrices as a Theoretical Tool in the Numerical Analysis of Differential Equations

Size: px
Start display at page:

Download "Transformed Companion Matrices as a Theoretical Tool in the Numerical Analysis of Differential Equations"

Transcription

1 Transformed Companion Matrices as a Theoretical Tool in the Numerical Analysis of Differential Equations Winfried Auzinger Vienna University of Technology (work in progress, with O. Koch and G. Schranz-Kirlinger) CBC Workshop, Széchenyi István University, Györ October 22, 2004 Györ, Oct p.1/18

2 Contents Companion matrix Algorithmic relevance Companion matrix as a theoretical tool Linear Multistep Methods Example: Stability of BDF 2 (model problem, stiff) Bidiagonal and Bidiagonal-Frobenius form, confluent divided differences Stability of Linear Multistep Methods (stiff case) Further applications, Remarks Györ, Oct p.2/18

3 Companion matrix Companion (or Frobenius) matrix (nonderogatory): 0 1 C = C n n 0 1 γ 0 γ 1... γ n 2 γ n 1... associated with characteristic polynomial charpoly(c) = p(ζ) = n in monomial (or Taylor ) representation i=0 γ i ζ i (γ n := 1) Györ, Oct p.3/18

4 Algorithmic relevance Solving the eigenvalue problem for C (lower Hessenberg) gives the zeros of p Monomial representation of p may be numerically unfavorable Use other representations (Lagrange, Newton,... ) transformed companion matrix Literature: Numerical Polynomial Algebra, by Hans J. Stetter (SIAM Press, 2004)... multivariate polynomial systems We do not consider such algorithmic aspects here Rather: Companion matrices as a theoretical tool Györ, Oct p.4/18

5 Companion matrix as a theoretical tool Example 1: n - step Linear Multistep Method characterized by a polynomial p of degree n ( p not identical with stability function ) Companion matrix C represents equivalent one-step method in a higher dimensional space Example 2: Linear ODE of order n Companion matrix C represents equivalent 1st order system In such cases, the characteristic polynomial p is a symbol for the method or the problem Stability estimates reduce to norm estimates for ϕ(c), e.g. ϕ(c) = C ν or ϕ(c) = exp(tc) ( = constant coefficient case) Györ, Oct p.5/18

6 Linear Multistep Methods ODE: y (t) = f(t, y(t)) n - step linear multistep method (stepsize h) n α k y ν+k = h k=0 n β k f(t ν+k, y ν+k ) k=0 ( y ν+k y(t ν+k ) ) Backward Differentiation Formulas (BDF): β k = 0, k < n, and β n = 1 simplest cases ( n = 1, n = 2, A-stable ): y ν + y ν+1 = hf(t ν+1, y ν+1 ) (Backward Euler) 1 2 y ν 2 y ν y ν+2 = hf(t ν+2, y ν+2 ) (BDF 2) Györ, Oct p.6/18

7 Example: Stability of BDF 2 (i) To begin with: model problem y = λ y, Re λ < 0, stiff Note: BDF 2 is A - stable y ν 0 for ν But: Estimates for finite ν not directly available? y ν?... This is not an open problem... Write BDF 2 as a one-step method in C 2 using companion matrix Apply the Kreiss Matrix Theorem, or Estimate using G-stability But: Both approaches have a very restricted scope Györ, Oct p.7/18

8 Example: Stability of BDF 2 (ii) Let µ := hλ, Y ν := (y ν, y ν+1 ) T BDF 2 Y ν+1 = C(µ) Y ν, with companion matrix 0 1 C(µ) = 1 4, EV 1 (Re µ 0) 3 2µ 3 2µ Wanted: Estimate C(µ) 1, uniformly for Re µ 0 For = 2 this does not hold (consider µ = 0) G-stability: Estimate O.K. for Y = G Y, Y 2, G =... But: G-stable n - step LMM for n > 2 not generalizable Kreiss Matrix Theorem: Restricted to const. coeff. Györ, Oct p.8/18

9 Example: Stability of BDF 2 (iii)... look for general, more flexible approach to stability Jordan canonical form for C = C(µ): C is diagonalizable for µ 1/2, C = X Ξ X X = Vandermonde matrix ξ 1 ξ, ξ k = EV of C 2 X becomes singular (confluent) for µ 1/2 Estimate C X Ξ X 1 useless near µ = 1/2 Note ( charpoly(c) = p(ζ) = (ζ ξ 1 )(ζ ξ 2 ) ) : Jordan form of C is discontinuous w.r.t. parameter µ corresponds to Lagrange representation of p for ξ 1 ξ 2 undefined for ξ 1 = ξ 2 ( µ = 1/2 ) Györ, Oct p.9/18

10 Example: Stability of BDF 2 (iv) Our approach: Consider LU-decomposition of X, X = L U, with 1 0 L = ξ 1 1 Then, for all µ : C = L J L 1, with ξ 1 1 J = 0 ξ 2... Bidiagonal canonical form of C continuous w.r.t. parameter µ cond(l) uniformly bounded for Re µ 0 Györ, Oct p.10/18

11 Example: Stability of BDF 2 (v) We can prove: After appropriate diagonal scaling, J J = D J D 1, J 1 Re µ 0 uniform stability estimate C ν K, ν > 0, Re µ 0 but:... does not work for = 2 Generalization: Transform C to Bidiagonal-Frobenius form, C = L H L 1, with appropriate η 1, η 2 and η 1 1 H = p[η 1 ] p[η 1, η 2 ] + η, L = η 1 1 Györ, Oct p.11/18

12 Example: Stability of BDF 2 (vi) We can prove: With η 1 = η 2 = 1 2 trace(c), and after appropriate diagonal scaling, H H = D H D 1, H 2 1 Re µ 0 ( and: scaled version L of L uniformly well-conditioned ) Proof: Apply the Cohn-Schur-criterion to H T H Interpretation in terms of p = charpoly(c) : H is associated with a (scaled) Newton-Taylor representation of p = Newton representation allowed to be confluent (always well-defined) Györ, Oct p.12/18

13 Bidiagonal-Frobenius form (i) For each n n companion matrix C : C = L H L 1, η 1 1 H = η η n 1 1 p [1] p [1 2]... p [1 n 1] p [1 n] +η n η 1,..., η n arbitrary (not necessarily distinct) p [j k]... [confluent] divided differences of p w.r.t. the η j L from LU-decomposition of Vandermonde matrix X = X(η 1,..., η n ) Györ, Oct p.13/18

14 Confluent divided differences η 1,..., η n arbitrary (not necessarily distinct) [Confluent] divided differences (ϕ smooth enough, j k ): ϕ[η j,..., η k ] := ϕ[η j+1,..., η k ] ϕ[η j,..., η k 1 ], η j η k η k η j lim ε 0 ϕ[η j+1,..., η k +ε] ϕ[η j,..., η k 1 ], η j = η k ε Includes all possible combinations of confluent ( derivative-like ) and nonconfluent cases Györ, Oct p.14/18

15 Bidiagonal-Frobenius form (ii) BF-form always well-defined, continuous w.r.t. varying C L (lower triangular): L = x[η 1 ] x[η 1, η 2 ] x[η 1,..., η n ] where x[η] = (1, η,..., η n 1 ) T, x[η j ] = j - th column of X Interpretation in terms of p = charpoly(c) : H associated with Newton-Taylor representation of p = Newton representation allowed to be confluent Györ, Oct p.15/18

16 Bidiagonal-Frobenius form (iii) Special case: η j ξ j = EV of C Bidiagonal form : ξ 1 1 H = J = ξ ξ n 1 1 ξ n Remark: Matrix functions ϕ(j) are upper tridiagonal, with (ϕ(j)) j,k = ϕ[ξ j,..., ξ k ] Trivial case: η j 0 H = C BF-form can be generalized to companion matrix w.r.t. arbitrary basis polynomials Györ, Oct p.16/18

17 Stability of Linear Multistep Methods Approach much more versatile than G-stability or Kreiss Matrix Theorem Bidiagonal canonical form has been used for stability analysis of A(α)-stable BDF methods applied to stiff ODEs y = λ(t)y y = A(t)y + φ(t, y) (A. Eder, G. Schranz-Kirlinger) To be done: Stability/convergence analysis for highly nonlinear problems Györ, Oct p.17/18

18 Further applications, Remarks Sharp growth estimates for higher order ODEs [Numerical] analysis of singular ODE systems: Well-posedness of BVP depends on Jordan structure of boundary conditions... Use of bidiagonal form simplifies the analysis, e.g. for parameter-dependent problems General linear methods: [generalized] companion matrices play a role in the analysis may be worth considering (Example: Butcher, Wright ESIRK methods characterized by doubly companion matrices) General matrices: Frobenius canonical form can be transformed blockwise Györ, Oct p.18/18

Part IB Numerical Analysis

Part IB Numerical Analysis Part IB Numerical Analysis Definitions Based on lectures by G. Moore Notes taken by Dexter Chua Lent 206 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Modified Defect Correction Algorithms for ODEs. Part II: Stiff Initial Value Problems

Modified Defect Correction Algorithms for ODEs. Part II: Stiff Initial Value Problems Modified Defect Correction Algorithms for ODEs. Part II: Stiff Initial Value Problems Winfried Auzinger Harald Hofstätter Wolfgang Kreuzer Ewa Weinmüller to appear in Numerical Algorithms ANUM Preprint

More information

CHAPTER 5: Linear Multistep Methods

CHAPTER 5: Linear Multistep Methods CHAPTER 5: Linear Multistep Methods Multistep: use information from many steps Higher order possible with fewer function evaluations than with RK. Convenient error estimates. Changing stepsize or order

More information

CHAPTER 10: Numerical Methods for DAEs

CHAPTER 10: Numerical Methods for DAEs CHAPTER 10: Numerical Methods for DAEs Numerical approaches for the solution of DAEs divide roughly into two classes: 1. direct discretization 2. reformulation (index reduction) plus discretization Direct

More information

Consistency and Convergence

Consistency and Convergence Jim Lambers MAT 77 Fall Semester 010-11 Lecture 0 Notes These notes correspond to Sections 1.3, 1.4 and 1.5 in the text. Consistency and Convergence We have learned that the numerical solution obtained

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Introduction to Numerical Analysis

Introduction to Numerical Analysis J. Stoer R. Bulirsch Introduction to Numerical Analysis Second Edition Translated by R. Bartels, W. Gautschi, and C. Witzgall With 35 Illustrations Springer Contents Preface to the Second Edition Preface

More information

Eigenvalue and Eigenvector Problems

Eigenvalue and Eigenvector Problems Eigenvalue and Eigenvector Problems An attempt to introduce eigenproblems Radu Trîmbiţaş Babeş-Bolyai University April 8, 2009 Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems

More information

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems Index A-conjugate directions, 83 A-stability, 171 A( )-stability, 171 absolute error, 243 absolute stability, 149 for systems of equations, 154 absorbing boundary conditions, 228 Adams Bashforth methods,

More information

1 Ordinary Differential Equations

1 Ordinary Differential Equations Ordinary Differential Equations.0 Mathematical Background.0. Smoothness Definition. A function f defined on [a, b] is continuous at ξ [a, b] if lim x ξ f(x) = f(ξ). Remark Note that this implies existence

More information

MATHEMATICAL METHODS INTERPOLATION

MATHEMATICAL METHODS INTERPOLATION MATHEMATICAL METHODS INTERPOLATION I YEAR BTech By Mr Y Prabhaker Reddy Asst Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad SYLLABUS OF MATHEMATICAL METHODS (as per JNTU

More information

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018 Numerical Analysis Preliminary Exam 1 am to 1 pm, August 2, 218 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

PARTIAL DIFFERENTIAL EQUATIONS

PARTIAL DIFFERENTIAL EQUATIONS MATHEMATICAL METHODS PARTIAL DIFFERENTIAL EQUATIONS I YEAR B.Tech By Mr. Y. Prabhaker Reddy Asst. Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad. SYLLABUS OF MATHEMATICAL

More information

1 Number Systems and Errors 1

1 Number Systems and Errors 1 Contents 1 Number Systems and Errors 1 1.1 Introduction................................ 1 1.2 Number Representation and Base of Numbers............. 1 1.2.1 Normalized Floating-point Representation...........

More information

Definition (T -invariant subspace) Example. Example

Definition (T -invariant subspace) Example. Example Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 9 Initial Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

Eigenvalue Problems and Singular Value Decomposition

Eigenvalue Problems and Singular Value Decomposition Eigenvalue Problems and Singular Value Decomposition Sanzheng Qiao Department of Computing and Software McMaster University August, 2012 Outline 1 Eigenvalue Problems 2 Singular Value Decomposition 3 Software

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 9 Initial Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

FINITE-DIMENSIONAL LINEAR ALGEBRA

FINITE-DIMENSIONAL LINEAR ALGEBRA DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H ROSEN FINITE-DIMENSIONAL LINEAR ALGEBRA Mark S Gockenbach Michigan Technological University Houghton, USA CRC Press Taylor & Francis Croup

More information

Numerical Mathematics

Numerical Mathematics Alfio Quarteroni Riccardo Sacco Fausto Saleri Numerical Mathematics Second Edition With 135 Figures and 45 Tables 421 Springer Contents Part I Getting Started 1 Foundations of Matrix Analysis 3 1.1 Vector

More information

EIGENVALUE PROBLEMS. EIGENVALUE PROBLEMS p. 1/4

EIGENVALUE PROBLEMS. EIGENVALUE PROBLEMS p. 1/4 EIGENVALUE PROBLEMS EIGENVALUE PROBLEMS p. 1/4 EIGENVALUE PROBLEMS p. 2/4 Eigenvalues and eigenvectors Let A C n n. Suppose Ax = λx, x 0, then x is a (right) eigenvector of A, corresponding to the eigenvalue

More information

Defect-based a-posteriori error estimation for implicit ODEs and DAEs

Defect-based a-posteriori error estimation for implicit ODEs and DAEs 1 / 24 Defect-based a-posteriori error estimation for implicit ODEs and DAEs W. Auzinger Institute for Analysis and Scientific Computing Vienna University of Technology Workshop on Innovative Integrators

More information

Parallel Methods for ODEs

Parallel Methods for ODEs Parallel Methods for ODEs Levels of parallelism There are a number of levels of parallelism that are possible within a program to numerically solve ODEs. An obvious place to start is with manual code restructuring

More information

Solving Ordinary Differential equations

Solving Ordinary Differential equations Solving Ordinary Differential equations Taylor methods can be used to build explicit methods with higher order of convergence than Euler s method. The main difficult of these methods is the computation

More information

Introduction to Applied Linear Algebra with MATLAB

Introduction to Applied Linear Algebra with MATLAB Sigam Series in Applied Mathematics Volume 7 Rizwan Butt Introduction to Applied Linear Algebra with MATLAB Heldermann Verlag Contents Number Systems and Errors 1 1.1 Introduction 1 1.2 Number Representation

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

The Milne error estimator for stiff problems

The Milne error estimator for stiff problems 13 R. Tshelametse / SAJPAM. Volume 4 (2009) 13-28 The Milne error estimator for stiff problems Ronald Tshelametse Department of Mathematics University of Botswana Private Bag 0022 Gaborone, Botswana. E-mail

More information

Jordan Canonical Form Homework Solutions

Jordan Canonical Form Homework Solutions Jordan Canonical Form Homework Solutions For each of the following, put the matrix in Jordan canonical form and find the matrix S such that S AS = J. [ ]. A = A λi = λ λ = ( λ) = λ λ = λ =, Since we have

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Chapter 2: Runge Kutta and Linear Multistep methods Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the

More information

CS 257: Numerical Methods

CS 257: Numerical Methods CS 57: Numerical Methods Final Exam Study Guide Version 1.00 Created by Charles Feng http://www.fenguin.net CS 57: Numerical Methods Final Exam Study Guide 1 Contents 1 Introductory Matter 3 1.1 Calculus

More information

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by Numerical Analysis A Comprehensive Introduction H. R. Schwarz University of Zürich Switzerland with a contribution by J. Waldvogel Swiss Federal Institute of Technology, Zürich JOHN WILEY & SONS Chichester

More information

Finite difference method for elliptic problems: I

Finite difference method for elliptic problems: I Finite difference method for elliptic problems: I Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Theory, Solution Techniques and Applications of Singular Boundary Value Problems

Theory, Solution Techniques and Applications of Singular Boundary Value Problems Theory, Solution Techniques and Applications of Singular Boundary Value Problems W. Auzinger O. Koch E. Weinmüller Vienna University of Technology, Austria Problem Class z (t) = M(t) z(t) + f(t, z(t)),

More information

Applied Numerical Analysis

Applied Numerical Analysis Applied Numerical Analysis Using MATLAB Second Edition Laurene V. Fausett Texas A&M University-Commerce PEARSON Prentice Hall Upper Saddle River, NJ 07458 Contents Preface xi 1 Foundations 1 1.1 Introductory

More information

x n+1 = x n f(x n) f (x n ), n 0.

x n+1 = x n f(x n) f (x n ), n 0. 1. Nonlinear Equations Given scalar equation, f(x) = 0, (a) Describe I) Newtons Method, II) Secant Method for approximating the solution. (b) State sufficient conditions for Newton and Secant to converge.

More information

(Linear equations) Applied Linear Algebra in Geoscience Using MATLAB

(Linear equations) Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB (Linear equations) Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots

More information

Asymptotically Correct Error Estimation for Collocation Methods Applied to Singular Boundary Value Problems

Asymptotically Correct Error Estimation for Collocation Methods Applied to Singular Boundary Value Problems Numerische Mathematik manuscript No. (will be inserted by the editor) Asymptotically Correct Error Estimation for Collocation Methods Applied to Singular Boundary Value Problems Othmar Koch Vienna University

More information

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1 Chapter 01.01 Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 Chapter 01.02 Measuring errors 11 True error 11 Relative

More information

Numerical solution of ODEs

Numerical solution of ODEs Numerical solution of ODEs Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology November 5 2007 Problem and solution strategy We want to find an approximation

More information

QR Decomposition. When solving an overdetermined system by projection (or a least squares solution) often the following method is used:

QR Decomposition. When solving an overdetermined system by projection (or a least squares solution) often the following method is used: (In practice not Gram-Schmidt, but another process Householder Transformations are used.) QR Decomposition When solving an overdetermined system by projection (or a least squares solution) often the following

More information

Numerical Analysis Comprehensive Exam Questions

Numerical Analysis Comprehensive Exam Questions Numerical Analysis Comprehensive Exam Questions 1. Let f(x) = (x α) m g(x) where m is an integer and g(x) C (R), g(α). Write down the Newton s method for finding the root α of f(x), and study the order

More information

Solutions Preliminary Examination in Numerical Analysis January, 2017

Solutions Preliminary Examination in Numerical Analysis January, 2017 Solutions Preliminary Examination in Numerical Analysis January, 07 Root Finding The roots are -,0, a) First consider x 0 > Let x n+ = + ε and x n = + δ with δ > 0 The iteration gives 0 < ε δ < 3, which

More information

The Eigenvalue Problem: Perturbation Theory

The Eigenvalue Problem: Perturbation Theory Jim Lambers MAT 610 Summer Session 2009-10 Lecture 13 Notes These notes correspond to Sections 7.2 and 8.1 in the text. The Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem Just

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 216 17 INTRODUCTION TO NUMERICAL ANALYSIS MTHE612B Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions.

More information

Hands-on Matrix Algebra Using R

Hands-on Matrix Algebra Using R Preface vii 1. R Preliminaries 1 1.1 Matrix Defined, Deeper Understanding Using Software.. 1 1.2 Introduction, Why R?.................... 2 1.3 Obtaining R.......................... 4 1.4 Reference Manuals

More information

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Chapter 2: Runge Kutta and Multistep Methods Gustaf Söderlind Numerical Analysis, Lund University Contents V4.16 1. Runge Kutta methods 2. Embedded RK methods

More information

NUMERICAL METHODS FOR ENGINEERING APPLICATION

NUMERICAL METHODS FOR ENGINEERING APPLICATION NUMERICAL METHODS FOR ENGINEERING APPLICATION Second Edition JOEL H. FERZIGER A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information

Math 128A Spring 2003 Week 12 Solutions

Math 128A Spring 2003 Week 12 Solutions Math 128A Spring 2003 Week 12 Solutions Burden & Faires 5.9: 1b, 2b, 3, 5, 6, 7 Burden & Faires 5.10: 4, 5, 8 Burden & Faires 5.11: 1c, 2, 5, 6, 8 Burden & Faires 5.9. Higher-Order Equations and Systems

More information

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization AM 205: lecture 6 Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization Unit II: Numerical Linear Algebra Motivation Almost everything in Scientific Computing

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon's method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

2 Numerical Methods for Initial Value Problems

2 Numerical Methods for Initial Value Problems Numerical Analysis of Differential Equations 44 2 Numerical Methods for Initial Value Problems Contents 2.1 Some Simple Methods 2.2 One-Step Methods Definition and Properties 2.3 Runge-Kutta-Methods 2.4

More information

Derivative Based vs. Derivative Free Optimization Methods for Nonlinear Optimum Experimental Design

Derivative Based vs. Derivative Free Optimization Methods for Nonlinear Optimum Experimental Design Derivative Based vs. Derivative Free Optimization Methods for Nonlinear Optimum Experimental Design Stefan Körkel 1, Huiqin Qu 2, Gerd Rücker 3, and Sebastian Sager 1 1 Interdisciplinary Center for Scientific

More information

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization AM 205: lecture 6 Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization Unit II: Numerical Linear Algebra Motivation Almost everything in Scientific Computing

More information

Numerical Methods for Engineers. and Scientists. Applications using MATLAB. An Introduction with. Vish- Subramaniam. Third Edition. Amos Gilat.

Numerical Methods for Engineers. and Scientists. Applications using MATLAB. An Introduction with. Vish- Subramaniam. Third Edition. Amos Gilat. Numerical Methods for Engineers An Introduction with and Scientists Applications using MATLAB Third Edition Amos Gilat Vish- Subramaniam Department of Mechanical Engineering The Ohio State University Wiley

More information

CS520: numerical ODEs (Ch.2)

CS520: numerical ODEs (Ch.2) .. CS520: numerical ODEs (Ch.2) Uri Ascher Department of Computer Science University of British Columbia ascher@cs.ubc.ca people.cs.ubc.ca/ ascher/520.html Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall

More information

Notes on Numerical Analysis

Notes on Numerical Analysis Notes on Numerical Analysis Alejandro Cantarero This set of notes covers topics that most commonly show up on the Numerical Analysis qualifying exam in the Mathematics department at UCLA. Each section

More information

Diagonalizing Matrices

Diagonalizing Matrices Diagonalizing Matrices Massoud Malek A A Let A = A k be an n n non-singular matrix and let B = A = [B, B,, B k,, B n ] Then A n A B = A A 0 0 A k [B, B,, B k,, B n ] = 0 0 = I n 0 A n Notice that A i B

More information

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors Chapter 7 Canonical Forms 7.1 Eigenvalues and Eigenvectors Definition 7.1.1. Let V be a vector space over the field F and let T be a linear operator on V. An eigenvalue of T is a scalar λ F such that there

More information

Pseudospectra and Nonnormal Dynamical Systems

Pseudospectra and Nonnormal Dynamical Systems Pseudospectra and Nonnormal Dynamical Systems Mark Embree and Russell Carden Computational and Applied Mathematics Rice University Houston, Texas ELGERSBURG MARCH 1 Overview of the Course These lectures

More information

Compound matrices and some classical inequalities

Compound matrices and some classical inequalities Compound matrices and some classical inequalities Tin-Yau Tam Mathematics & Statistics Auburn University Dec. 3, 04 We discuss some elegant proofs of several classical inequalities of matrices by using

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Ordinary Differential Equations (ODEs) NRiC Chapter 16. ODEs involve derivatives wrt one independent variable, e.g. time t. ODEs can always be reduced to a set of firstorder equations (involving only first

More information

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear

More information

ECE504: Lecture 8. D. Richard Brown III. Worcester Polytechnic Institute. 28-Oct-2008

ECE504: Lecture 8. D. Richard Brown III. Worcester Polytechnic Institute. 28-Oct-2008 ECE504: Lecture 8 D. Richard Brown III Worcester Polytechnic Institute 28-Oct-2008 Worcester Polytechnic Institute D. Richard Brown III 28-Oct-2008 1 / 30 Lecture 8 Major Topics ECE504: Lecture 8 We are

More information

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING C. Pozrikidis University of California, San Diego New York Oxford OXFORD UNIVERSITY PRESS 1998 CONTENTS Preface ix Pseudocode Language Commands xi 1 Numerical

More information

Preliminary Examination, Numerical Analysis, August 2016

Preliminary Examination, Numerical Analysis, August 2016 Preliminary Examination, Numerical Analysis, August 2016 Instructions: This exam is closed books and notes. The time allowed is three hours and you need to work on any three out of questions 1-4 and any

More information

Exercise Set 7.2. Skills

Exercise Set 7.2. Skills Orthogonally diagonalizable matrix Spectral decomposition (or eigenvalue decomposition) Schur decomposition Subdiagonal Upper Hessenburg form Upper Hessenburg decomposition Skills Be able to recognize

More information

Positive entries of stable matrices

Positive entries of stable matrices Positive entries of stable matrices Shmuel Friedland Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago Chicago, Illinois 60607-7045, USA Daniel Hershkowitz,

More information

APPLIED NUMERICAL LINEAR ALGEBRA

APPLIED NUMERICAL LINEAR ALGEBRA APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation

More information

The C-Numerical Range in Infinite Dimensions

The C-Numerical Range in Infinite Dimensions The C-Numerical Range in Infinite Dimensions Frederik vom Ende Technical University of Munich June 17, 2018 WONRA 2018 Joint work with Gunther Dirr (University of Würzburg) Frederik vom Ende (TUM) C-Numerical

More information

Index. for generalized eigenvalue problem, butterfly form, 211

Index. for generalized eigenvalue problem, butterfly form, 211 Index ad hoc shifts, 165 aggressive early deflation, 205 207 algebraic multiplicity, 35 algebraic Riccati equation, 100 Arnoldi process, 372 block, 418 Hamiltonian skew symmetric, 420 implicitly restarted,

More information

The local structure of affine systems

The local structure of affine systems The local structure of affine systems César Aguilar and Andrew D. Lewis Department of Mathematics and Statistics, Queen s University 05/06/2008 C. Aguilar, A. Lewis (Queen s University) The local structure

More information

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004 Department of Applied Mathematics and Theoretical Physics AMA 204 Numerical analysis Exam Winter 2004 The best six answers will be credited All questions carry equal marks Answer all parts of each question

More information

Ordinary differential equations - Initial value problems

Ordinary differential equations - Initial value problems Education has produced a vast population able to read but unable to distinguish what is worth reading. G.M. TREVELYAN Chapter 6 Ordinary differential equations - Initial value problems In this chapter

More information

8. Diagonalization.

8. Diagonalization. 8. Diagonalization 8.1. Matrix Representations of Linear Transformations Matrix of A Linear Operator with Respect to A Basis We know that every linear transformation T: R n R m has an associated standard

More information

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2 Contents Preface for the Instructor xi Preface for the Student xv Acknowledgments xvii 1 Vector Spaces 1 1.A R n and C n 2 Complex Numbers 2 Lists 5 F n 6 Digression on Fields 10 Exercises 1.A 11 1.B Definition

More information

Chapter 7. Homogeneous equations with constant coefficients

Chapter 7. Homogeneous equations with constant coefficients Chapter 7. Homogeneous equations with constant coefficients It has already been remarked that we can write down a formula for the general solution of any linear second differential equation y + a(t)y +

More information

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular form) Given: matrix C = (c i,j ) n,m i,j=1 ODE and num math: Linear algebra (N) [lectures] c phabala 2016 DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix

More information

MCS 563 Spring 2014 Analytic Symbolic Computation Friday 31 January. Quotient Rings

MCS 563 Spring 2014 Analytic Symbolic Computation Friday 31 January. Quotient Rings Quotient Rings In this note we consider again ideals, but here we do not start from polynomials, but from a finite set of points. The application in statistics and the pseudo code of the Buchberger-Möller

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 28 PART II Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 29 BOUNDARY VALUE PROBLEMS (I) Solving a TWO

More information

Matrix decompositions

Matrix decompositions Matrix decompositions Zdeněk Dvořák May 19, 2015 Lemma 1 (Schur decomposition). If A is a symmetric real matrix, then there exists an orthogonal matrix Q and a diagonal matrix D such that A = QDQ T. The

More information

On the stability regions of implicit linear multistep methods

On the stability regions of implicit linear multistep methods On the stability regions of implicit linear multistep methods arxiv:1404.6934v1 [math.na] 8 Apr 014 Lajos Lóczi April 9, 014 Abstract If we apply the accepted definition to determine the stability region

More information

Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary Differential Equations

Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary Differential Equations International Mathematics and Mathematical Sciences Volume 212, Article ID 767328, 8 pages doi:1.1155/212/767328 Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving

More information

Section 4.5 Eigenvalues of Symmetric Tridiagonal Matrices

Section 4.5 Eigenvalues of Symmetric Tridiagonal Matrices Section 4.5 Eigenvalues of Symmetric Tridiagonal Matrices Key Terms Symmetric matrix Tridiagonal matrix Orthogonal matrix QR-factorization Rotation matrices (plane rotations) Eigenvalues We will now complete

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

Numerical methods for eigenvalue problems

Numerical methods for eigenvalue problems Numerical methods for eigenvalue problems D. Löchel Supervisors: M. Hochbruck und M. Tokar Mathematisches Institut Heinrich-Heine-Universität Düsseldorf GRK 1203 seminar february 2008 Outline Introduction

More information

Numerical Methods I: Eigenvalues and eigenvectors

Numerical Methods I: Eigenvalues and eigenvectors 1/25 Numerical Methods I: Eigenvalues and eigenvectors Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 2, 2017 Overview 2/25 Conditioning Eigenvalues and eigenvectors How hard are they

More information

MATH 581D FINAL EXAM Autumn December 12, 2016

MATH 581D FINAL EXAM Autumn December 12, 2016 MATH 58D FINAL EXAM Autumn 206 December 2, 206 NAME: SIGNATURE: Instructions: there are 6 problems on the final. Aim for solving 4 problems, but do as much as you can. Partial credit will be given on all

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 16: Eigenvalue Problems; Similarity Transformations Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Eigenvalue

More information

Function approximation

Function approximation Week 9: Monday, Mar 26 Function approximation A common task in scientific computing is to approximate a function. The approximated function might be available only through tabulated data, or it may be

More information

A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS

A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS Victor S. Ryaben'kii Semyon V. Tsynkov Chapman &. Hall/CRC Taylor & Francis Group Boca Raton London New York Chapman & Hall/CRC is an imprint of the Taylor

More information

Matrix Theory. A.Holst, V.Ufnarovski

Matrix Theory. A.Holst, V.Ufnarovski Matrix Theory AHolst, VUfnarovski 55 HINTS AND ANSWERS 9 55 Hints and answers There are two different approaches In the first one write A as a block of rows and note that in B = E ij A all rows different

More information

Modeling & Simulation 2018 Lecture 12. Simulations

Modeling & Simulation 2018 Lecture 12. Simulations Modeling & Simulation 2018 Lecture 12. Simulations Claudio Altafini Automatic Control, ISY Linköping University, Sweden Summary of lecture 7-11 1 / 32 Models of complex systems physical interconnections,

More information

5. Hand in the entire exam booklet and your computer score sheet.

5. Hand in the entire exam booklet and your computer score sheet. WINTER 2016 MATH*2130 Final Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie 19 April, 2016 INSTRUCTIONS: 1. This is a closed book examination, but a calculator is allowed. The test

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit V Solution of

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit V Solution of Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit V Solution of Differential Equations Part 1 Dianne P. O Leary c 2008 1 The

More information

Matrix Computations and Semiseparable Matrices

Matrix Computations and Semiseparable Matrices Matrix Computations and Semiseparable Matrices Volume I: Linear Systems Raf Vandebril Department of Computer Science Catholic University of Louvain Marc Van Barel Department of Computer Science Catholic

More information

Numerical Analysis: Solving Systems of Linear Equations

Numerical Analysis: Solving Systems of Linear Equations Numerical Analysis: Solving Systems of Linear Equations Mirko Navara http://cmpfelkcvutcz/ navara/ Center for Machine Perception, Department of Cybernetics, FEE, CTU Karlovo náměstí, building G, office

More information