+ ɛ Hardness for Max-E3Lin

Size: px
Start display at page:

Download "+ ɛ Hardness for Max-E3Lin"

Transcription

1 Advanced Approximation Algorithms (CMU 5-854B, Spring 008) Lecture : δ vs. + ɛ Hardness for Max-E3Lin April 8, 008 Lecturer: Ryan O Donnell Scribe: Jonah Sherman Recap In this lecture, we finish the hardness reduction for Max-E3Lin]. Recall we began with a Label- Cover(K,L) instance, with left vertices U and right vertices V. We associate K variables u,..., u K with each u U and L variables v,..., v L for each v V. Furthermore, we identify these variables with functions f u : {, } K {, } and g v : {, } L {, } respectively. U V u K L v K] L] Also recall that for the completeness direction of our proof, we will encode the assignment that u U gets key a K] by taking f u to be the a th dictator function, f(x) = x a (and similarly for V, L). Thus, for soundness, our test should also have the property that if f u passes with sufficiently high probability, we can decode f u into a small set of suggested keys. Last time, we saw how to come up with such a test. However, it s not enough to merely test that the functions suggest a labelling we need them to suggest a good labelling. That is, we could have all of the f u and g v be perfectly decodable dictator functions, and they would pass all the tests proposed last time with high probability, even if that assignment doesn t actually satisfy any of the constraints. Thus, our test needs to somehow also simultaneously check that the suggested key/label pairs satsify the edge constraints.

2 The New Test We alter the test from last time to take the constraints into account. Choose b {, }, x {, } K, y {, } L, independently and uniformly at random. Choose λ {, } L from the δ-biased distribution (i.e., each λ i is independently w.p. δ). Define x π {, } L by (x π ) i := x π(i). Set z := x π y λ (b,..., b). Check f(x)g(y)g(z) = b. x K π x π L Next we analyze the probability that a given pair of functions f, g pass. Prf, g pass] = E + bf(x)g(y)g(z)] b,x,y,λ = + ˆf(S)ĝ(T )ĝ(u)e bχ S (x)χ T (y)χ U (z)] = + = + = + S K] T,U L] S,T,U S,T,U S K] ˆf(S)ĝ(T )ĝ(u)e bχ S (x)χ T (y)χ U (x π )χ U (y)χ U (λ)χ U (b,..., b)] ˆf(S)ĝ(T )ĝ(u) E ] b U + E χ S (x)χ U (x π )] E χ T U (y)] E χ U (λ)] } b {{} x y λ }{{}}{{} U odd] T =U] ( δ) U ( δ) T ĝ(t ) ) ˆf(S) E x χ S (x)χ T (x π )] }{{} ( )

3 Now, note that, ] ( ) = E x i x π(j) x i S j T = E x i i i S i K] = E i K] = i K] x π (i) T x π (i) T +i S] i i S π (i) T odd ] = S = π odd (T )] ] where, for each T L], we define, π(t ) := {a K] : π (a) T } π odd (T ) := {a K] : π (a) T is odd} Thus, we have, Prf, g pass] = + ( δ) T ĝ(t ) ˆf(πodd (T )) The following two facts about π(t ) and π odd (T ) will be useful. Fact.. π odd (T ) π(t ). Fact.. If T is odd, then π odd (T ). We re now ready to prove the completeness and soundness of the test.. Completeness Suppose f : {, } K {, }, g : {, } L {, } are matching dictators (i.e., f(x) = x a and g(x) = x α where π(α) = a). Then, g has Fourier support {{α}}, f has Fourier support {{a}}, and π odd ({α}) = {a}, so, Prf, g pass] = + ( δ)ĝ({α}) ˆf(πodd ({α})) = δ 3

4 . Soundness As usual, we ll prove soundness using the probabalistic method. Specifically, we want to come up with random decoding functions Dec f : f u a K] and Dec g : g v α L], such that if f u, g u pass with sufficiently high probability, then π vu (Dec g (g v )) = Dec f (f u ) holds with sufficiently high probability. As before, we ll decode f u, g v in two steps, by first decoding to some suggestion sets Sugg(f u ) K], Sugg(g v ) L], and then choosing the actual key/label uniformly at random from those suggestions. To do this, we want Sugg(f u ), Sugg(g v ) to be small (independent of K, L) and to have the property that if f u, g v pass with probability at least + ɛ, then there exist a Sugg(f u), α Sugg(f v ) such that π vu (α) = a. Suppose f, g pass with probability at least + ɛ. Then, ɛ ( δ) T ĝ(t ) ˆf(πodd (T )) ( δ) T ĝ(t ) ˆf(πodd (T )) Recall from Parseval s theorem that T L] ĝ(t ) =. Thus, we can think of ĝ as a probability distribution on sets T L]. Then, the last line is equivalent to, ] ɛ E ] ( δ) T ˆf(πodd (T )) T ĝ Note the expression inside the expectation is just a RV on T taking values in 0, ], so by a simple averaging argument, ] ɛ Pr ] ( δ) T ˆf(πodd (T )) ɛ T ĝ }{{} GOOD T Now, suppose some set T L] is good (i.e., GOOD T happen. Specifically, occurs). Then, many good things T is odd. T ln(/ɛ) δ =: B. π odd (T ) 0, by Fact.. π odd (T ) B, since π odd (T ) π(t ) and π(t ) T B. ˆf(π odd ) ɛ The last point suggests a good way to decode f. Define, Sugg(f) := {S K] : S B, ˆf(S) ɛ } Note that since each ˆf(S) ɛ, there can be at most /ɛ such S, and each S has size at most B. Thus, Sugg(f) B/ɛ. 4

5 The only remaining question is how to decode g. One immediate but naive idea would be to take the union of all good T. However, we don t have any kind of bound on the number of such good T. That is, it could be the case that there are many small good sets T, in which case the union could be very large. So, we re going to need to decode g in a different manner. Now, in the past, our random decoding has essentially consisted of deterministically decoding g to some small suggestion set, and then choosing the actual label uniformly at random from that. Of course, there s no need for the first step to be deterministic; we re free to have Sugg(g) be a random function too. So, we can simply let Sugg(g) = T, where T is drawn from the distribution given by ĝ. We ve shown how to decode f and g to suggestion sets of small size. Now, suppose T is good. Then, the union in the definition of Sugg(f) includes π odd (T ), so π odd (T ) Sugg(f). Since π odd (T ) is non-empty, there exists some a π odd (T ). But then a π(t ), so there exists some α T with π(α) = a. That is, for any good T, there exists a Sugg(f) and α T = Sugg(g) such that π(α) = a. Now, putting it all together, suppose f, g pass with probability + ɛ. Then, we know Pr T ĝ GOOD T ] ɛ. Thus, Pr T ĝ T B, a Sugg(f), α T : π(α) = a] ɛ Since Dec(f) is chosen uniformly from Sugg(f) and Dec(g) is chosen uniformly from T, we have, References Prπ(Dec(g)) = Dec(f)] Pr T ĝ GOOD T ] Sugg(g) Sugg(f) ɛ B ɛ B = ɛ3 B = ɛ 3 4δ ln (/ɛ) ] J. Håstad. Some optimal inapproximability results. J. ACM, 48(4): , 00. 5

Approximating MAX-E3LIN is NP-Hard

Approximating MAX-E3LIN is NP-Hard Approximating MAX-E3LIN is NP-Hard Evan Chen May 4, 2016 This lecture focuses on the MAX-E3LIN problem. We prove that approximating it is NP-hard by a reduction from LABEL-COVER. 1 Introducing MAX-E3LIN

More information

2 Completing the Hardness of approximation of Set Cover

2 Completing the Hardness of approximation of Set Cover CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005) Lecture 15: Set Cover hardness and testing Long Codes Nov. 21, 2005 Lecturer: Venkat Guruswami Scribe: Atri Rudra 1 Recap We will first

More information

Lec. 11: Håstad s 3-bit PCP

Lec. 11: Håstad s 3-bit PCP Limits of Approximation Algorithms 15 April, 2010 (TIFR) Lec. 11: Håstad s 3-bit PCP Lecturer: Prahladh Harsha cribe: Bodhayan Roy & Prahladh Harsha In last lecture, we proved the hardness of label cover

More information

Lecture 5: February 16, 2012

Lecture 5: February 16, 2012 COMS 6253: Advanced Computational Learning Theory Lecturer: Rocco Servedio Lecture 5: February 16, 2012 Spring 2012 Scribe: Igor Carboni Oliveira 1 Last time and today Previously: Finished first unit on

More information

Lecture 18: Inapproximability of MAX-3-SAT

Lecture 18: Inapproximability of MAX-3-SAT CS 880: Advanced Complexity Theory 3/7/2008 Lecture 18: Inapproximability of MAX-3-SAT Instructor: Dieter van Melkebeek Scribe: Jeff Kinne In this lecture we prove a tight inapproximability result for

More information

Lecture 3 Small bias with respect to linear tests

Lecture 3 Small bias with respect to linear tests 03683170: Expanders, Pseudorandomness and Derandomization 3/04/16 Lecture 3 Small bias with respect to linear tests Amnon Ta-Shma and Dean Doron 1 The Fourier expansion 1.1 Over general domains Let G be

More information

Approximation Algorithms and Hardness of Approximation May 14, Lecture 22

Approximation Algorithms and Hardness of Approximation May 14, Lecture 22 Approximation Algorithms and Hardness of Approximation May 4, 03 Lecture Lecturer: Alantha Newman Scribes: Christos Kalaitzis The Unique Games Conjecture The topic of our next lectures will be the Unique

More information

Lecture 8: Linearity and Assignment Testing

Lecture 8: Linearity and Assignment Testing CE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005) Lecture 8: Linearity and Assignment Testing 26 October 2005 Lecturer: Venkat Guruswami cribe: Paul Pham & Venkat Guruswami 1 Recap In

More information

Lecture 19: Simple Applications of Fourier Analysis & Convolution. Fourier Analysis

Lecture 19: Simple Applications of Fourier Analysis & Convolution. Fourier Analysis Lecture 19: Simple Applications of & Convolution Recall I Let f : {0, 1} n R be a function Let = 2 n Inner product of two functions is defined as follows f, g := 1 f (x)g(x) For S {0, 1} n, define the

More information

FOURIER ANALYSIS OF BOOLEAN FUNCTIONS

FOURIER ANALYSIS OF BOOLEAN FUNCTIONS FOURIER ANALYSIS OF BOOLEAN FUNCTIONS SAM SPIRO Abstract. This paper introduces the technique of Fourier analysis applied to Boolean functions. We use this technique to illustrate proofs of both Arrow

More information

Learning and Fourier Analysis

Learning and Fourier Analysis Learning and Fourier Analysis Grigory Yaroslavtsev http://grigory.us CIS 625: Computational Learning Theory Fourier Analysis and Learning Powerful tool for PAC-style learning under uniform distribution

More information

Lecture 22. m n c (k) i,j x i x j = c (k) k=1

Lecture 22. m n c (k) i,j x i x j = c (k) k=1 Notes on Complexity Theory Last updated: June, 2014 Jonathan Katz Lecture 22 1 N P PCP(poly, 1) We show here a probabilistically checkable proof for N P in which the verifier reads only a constant number

More information

New NP-hardness results for 3-Coloring and 2-to-1 Label Cover

New NP-hardness results for 3-Coloring and 2-to-1 Label Cover New NP-hardness results for 3-Coloring and -to- Label Cover Per Austrin Ryan O Donnell Li-Yang Tan John Wright July 6, 03 Abstract We show that given a 3-colorable graph, it is NP-hard to find a 3-coloring

More information

Bagging. Ryan Tibshirani Data Mining: / April Optional reading: ISL 8.2, ESL 8.7

Bagging. Ryan Tibshirani Data Mining: / April Optional reading: ISL 8.2, ESL 8.7 Bagging Ryan Tibshirani Data Mining: 36-462/36-662 April 23 2013 Optional reading: ISL 8.2, ESL 8.7 1 Reminder: classification trees Our task is to predict the class label y {1,... K} given a feature vector

More information

Lecture 3: Boolean Functions and the Walsh Hadamard Code 1

Lecture 3: Boolean Functions and the Walsh Hadamard Code 1 CS-E4550 Advanced Combinatorics in Computer Science Autumn 2016: Selected Topics in Complexity Theory Lecture 3: Boolean Functions and the Walsh Hadamard Code 1 1. Introduction The present lecture develops

More information

APPROXIMATION RESISTANCE AND LINEAR THRESHOLD FUNCTIONS

APPROXIMATION RESISTANCE AND LINEAR THRESHOLD FUNCTIONS APPROXIMATION RESISTANCE AND LINEAR THRESHOLD FUNCTIONS RIDWAN SYED Abstract. In the boolean Max k CSP (f) problem we are given a predicate f : { 1, 1} k {0, 1}, a set of variables, and local constraints

More information

Lecture 4: LMN Learning (Part 2)

Lecture 4: LMN Learning (Part 2) CS 294-114 Fine-Grained Compleity and Algorithms Sept 8, 2015 Lecture 4: LMN Learning (Part 2) Instructor: Russell Impagliazzo Scribe: Preetum Nakkiran 1 Overview Continuing from last lecture, we will

More information

Lecture 4: Graph Limits and Graphons

Lecture 4: Graph Limits and Graphons Lecture 4: Graph Limits and Graphons 36-781, Fall 2016 3 November 2016 Abstract Contents 1 Reprise: Convergence of Dense Graph Sequences 1 2 Calculating Homomorphism Densities 3 3 Graphons 4 4 The Cut

More information

CS 6815: Lecture 4. September 4, 2018

CS 6815: Lecture 4. September 4, 2018 XS = X s... X st CS 685: Lecture 4 Instructor: Eshan Chattopadhyay Scribe: Makis Arsenis and Ayush Sekhari September 4, 208 In this lecture, we will first see an algorithm to construct ɛ-biased spaces.

More information

Lecture 16: Constraint Satisfaction Problems

Lecture 16: Constraint Satisfaction Problems A Theorist s Toolkit (CMU 18-859T, Fall 2013) Lecture 16: Constraint Satisfaction Problems 10/30/2013 Lecturer: Ryan O Donnell Scribe: Neal Barcelo 1 Max-Cut SDP Approximation Recall the Max-Cut problem

More information

Math Lecture 23 Notes

Math Lecture 23 Notes Math 1010 - Lecture 23 Notes Dylan Zwick Fall 2009 In today s lecture we ll expand upon the concept of radicals and radical expressions, and discuss how we can deal with equations involving these radical

More information

Lecture 7: Quantum Fourier Transform over Z N

Lecture 7: Quantum Fourier Transform over Z N Quantum Computation (CMU 18-859BB, Fall 015) Lecture 7: Quantum Fourier Transform over Z September 30, 015 Lecturer: Ryan O Donnell Scribe: Chris Jones 1 Overview Last time, we talked about two main topics:

More information

E.g. The set RE of regular expressions is given by the following rules:

E.g. The set RE of regular expressions is given by the following rules: 1 Lecture Summary We gave a brief overview of inductively defined sets, inductively defined functions, and proofs by structural induction We showed how to prove that a machine is correct using induction

More information

Lecture 10: Learning DNF, AC 0, Juntas. 1 Learning DNF in Almost Polynomial Time

Lecture 10: Learning DNF, AC 0, Juntas. 1 Learning DNF in Almost Polynomial Time Analysis of Boolean Functions (CMU 8-859S, Spring 2007) Lecture 0: Learning DNF, AC 0, Juntas Feb 5, 2007 Lecturer: Ryan O Donnell Scribe: Elaine Shi Learning DNF in Almost Polynomial Time From previous

More information

Lecture 8: Period Finding: Simon s Problem over Z N

Lecture 8: Period Finding: Simon s Problem over Z N Quantum Computation (CMU 8-859BB, Fall 205) Lecture 8: Period Finding: Simon Problem over Z October 5, 205 Lecturer: John Wright Scribe: icola Rech Problem A mentioned previouly, period finding i a rephraing

More information

Minimax risk bounds for linear threshold functions

Minimax risk bounds for linear threshold functions CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 3 Minimax risk bounds for linear threshold functions Lecturer: Peter Bartlett Scribe: Hao Zhang 1 Review We assume that there is a probability

More information

Lecture 11: Polar codes construction

Lecture 11: Polar codes construction 15-859: Information Theory and Applications in TCS CMU: Spring 2013 Lecturer: Venkatesan Guruswami Lecture 11: Polar codes construction February 26, 2013 Scribe: Dan Stahlke 1 Polar codes: recap of last

More information

Lecture 10: Hardness of approximating clique, FGLSS graph

Lecture 10: Hardness of approximating clique, FGLSS graph CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005) Lecture 10: Hardness of approximating clique, FGLSS graph Nov. 2, 2005 Lecturer: Venkat Guruswami and Ryan O Donnell Scribe: Ioannis

More information

Lecture 7: ɛ-biased and almost k-wise independent spaces

Lecture 7: ɛ-biased and almost k-wise independent spaces Lecture 7: ɛ-biased and almost k-wise independent spaces Topics in Complexity Theory and Pseudorandomness (pring 203) Rutgers University wastik Kopparty cribes: Ben Lund, Tim Naumovitz Today we will see

More information

Extra Topic: DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARIABLES

Extra Topic: DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARIABLES Extra Topic: DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARIABLES A little in Montgomery and Runger text in Section 5-5. Previously in Section 5-4 Linear Functions of Random Variables, we saw that we could find

More information

2.2 Graphs of Functions

2.2 Graphs of Functions 2.2 Graphs of Functions Introduction DEFINITION domain of f, D(f) Associated with every function is a set called the domain of the function. This set influences what the graph of the function looks like.

More information

Fourier analysis and inapproximability for MAX-CUT: a case study

Fourier analysis and inapproximability for MAX-CUT: a case study Fourier analysis and inapproximability for MAX-CUT: a case study Jake Wellens May 6, 06 Abstract Many statements in the study of computational complexity can be cast as statements about Boolean functions

More information

Classification 2: Linear discriminant analysis (continued); logistic regression

Classification 2: Linear discriminant analysis (continued); logistic regression Classification 2: Linear discriminant analysis (continued); logistic regression Ryan Tibshirani Data Mining: 36-462/36-662 April 4 2013 Optional reading: ISL 4.4, ESL 4.3; ISL 4.3, ESL 4.4 1 Reminder:

More information

Lecture 7: Passive Learning

Lecture 7: Passive Learning CS 880: Advanced Complexity Theory 2/8/2008 Lecture 7: Passive Learning Instructor: Dieter van Melkebeek Scribe: Tom Watson In the previous lectures, we studied harmonic analysis as a tool for analyzing

More information

Lecture 9: March 26, 2014

Lecture 9: March 26, 2014 COMS 6998-3: Sub-Linear Algorithms in Learning and Testing Lecturer: Rocco Servedio Lecture 9: March 26, 204 Spring 204 Scriber: Keith Nichols Overview. Last Time Finished analysis of O ( n ɛ ) -query

More information

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ).

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ). CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 8 Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According to clinical trials,

More information

Math 480 The Vector Space of Differentiable Functions

Math 480 The Vector Space of Differentiable Functions Math 480 The Vector Space of Differentiable Functions The vector space of differentiable functions. Let C (R) denote the set of all infinitely differentiable functions f : R R. Then C (R) is a vector space,

More information

Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases

Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases September 22, 2018 Recall from last week that the purpose of a proof

More information

Modern Cryptography Lecture 4

Modern Cryptography Lecture 4 Modern Cryptography Lecture 4 Pseudorandom Functions Block-Ciphers Modes of Operation Chosen-Ciphertext Security 1 October 30th, 2018 2 Webpage Page for first part, Homeworks, Slides http://pub.ist.ac.at/crypto/moderncrypto18.html

More information

Lecture 13: Lower Bounds using the Adversary Method. 2 The Super-Basic Adversary Method [Amb02]

Lecture 13: Lower Bounds using the Adversary Method. 2 The Super-Basic Adversary Method [Amb02] Quantum Computation (CMU 18-859BB, Fall 015) Lecture 13: Lower Bounds using the Adversary Method October 1, 015 Lecturer: Ryan O Donnell Scribe: Kumail Jaffer 1 Introduction There are a number of known

More information

Canonical SDP Relaxation for CSPs

Canonical SDP Relaxation for CSPs Lecture 14 Canonical SDP Relaxation for CSPs 14.1 Recalling the canonical LP relaxation Last time, we talked about the canonical LP relaxation for a CSP. A CSP(Γ) is comprised of Γ, a collection of predicates

More information

Lecture 2: Basics of Harmonic Analysis. 1 Structural properties of Boolean functions (continued)

Lecture 2: Basics of Harmonic Analysis. 1 Structural properties of Boolean functions (continued) CS 880: Advanced Complexity Theory 1/25/2008 Lecture 2: Basics of Harmonic Analysis Instructor: Dieter van Melkebeek Scribe: Priyananda Shenoy In the last lecture, we mentioned one structural property

More information

Notes for Lecture 25

Notes for Lecture 25 U.C. Berkeley CS278: Computational Complexity Handout N25 ofessor Luca Trevisan 12/1/2004 Notes for Lecture 25 Circuit Lower Bounds for Parity Using Polynomials In this lecture we prove a lower bound on

More information

Lecturer: Shuchi Chawla Topic: Inapproximability Date: 4/27/2007

Lecturer: Shuchi Chawla Topic: Inapproximability Date: 4/27/2007 CS880: Approximations Algorithms Scribe: Tom Watson Lecturer: Shuchi Chawla Topic: Inapproximability Date: 4/27/2007 So far in this course, we have been proving upper bounds on the approximation factors

More information

6.842 Randomness and Computation April 2, Lecture 14

6.842 Randomness and Computation April 2, Lecture 14 6.84 Randomness and Computation April, 0 Lecture 4 Lecturer: Ronitt Rubinfeld Scribe: Aaron Sidford Review In the last class we saw an algorithm to learn a function where very little of the Fourier coeffecient

More information

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018 CS 301 Lecture 18 Decidable languages Stephen Checkoway April 2, 2018 1 / 26 Decidable language Recall, a language A is decidable if there is some TM M that 1 recognizes A (i.e., L(M) = A), and 2 halts

More information

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak; Topics in Theoretical Computer Science April 18, 2016 Lecturer: Ola Svensson Lecture 8 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Chapter REVIEW ANSWER KEY

Chapter REVIEW ANSWER KEY TEXTBOOK HELP Pg. 313 Chapter 3.2-3.4 REVIEW ANSWER KEY 1. What qualifies a function as a polynomial? Powers = non-negative integers Polynomial functions of degree 2 or higher have graphs that are smooth

More information

PCP Theorem And Hardness Of Approximation For MAX-SATISFY Over Finite Fields

PCP Theorem And Hardness Of Approximation For MAX-SATISFY Over Finite Fields MM Research Preprints KLMM, AMSS, Academia Sinica Vol. 7, 1 15, July, 008 1 PCP Theorem And Hardness Of Approximation For MAX-SATISFY Over Finite Fields Shangwei Zhao Key Laboratory of Mathematics Mechanization

More information

1 Last time and today

1 Last time and today COMS 6253: Advanced Computational Learning Spring 2012 Theory Lecture 12: April 12, 2012 Lecturer: Rocco Servedio 1 Last time and today Scribe: Dean Alderucci Previously: Started the BKW algorithm for

More information

Further discussion of Turing machines

Further discussion of Turing machines Further discussion of Turing machines In this lecture we will discuss various aspects of decidable and Turing-recognizable languages that were not mentioned in previous lectures. In particular, we will

More information

Lecture 23: Analysis of Boolean Functions

Lecture 23: Analysis of Boolean Functions CCI-B609: A Theorist s Toolkit, Fall 016 Nov 9 Lecture 3: Analysis of Boolean Functions Lecturer: Yuan Zhou cribe: Haoyu Zhang 1 Introduction In this lecture, we will talk about boolean function f : {0,

More information

Lecture 23 : Nondeterministic Finite Automata DRAFT Connection between Regular Expressions and Finite Automata

Lecture 23 : Nondeterministic Finite Automata DRAFT Connection between Regular Expressions and Finite Automata CS/Math 24: Introduction to Discrete Mathematics 4/2/2 Lecture 23 : Nondeterministic Finite Automata Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last time we designed finite state automata

More information

Topics in Representation Theory: Fourier Analysis and the Peter Weyl Theorem

Topics in Representation Theory: Fourier Analysis and the Peter Weyl Theorem Topics in Representation Theory: Fourier Analysis and the Peter Weyl Theorem 1 Fourier Analysis, a review We ll begin with a short review of simple facts about Fourier analysis, before going on to interpret

More information

1 Review of The Learning Setting

1 Review of The Learning Setting COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #8 Scribe: Changyan Wang February 28, 208 Review of The Learning Setting Last class, we moved beyond the PAC model: in the PAC model we

More information

Lecture 8: Spectral Graph Theory III

Lecture 8: Spectral Graph Theory III A Theorist s Toolkit (CMU 18-859T, Fall 13) Lecture 8: Spectral Graph Theory III October, 13 Lecturer: Ryan O Donnell Scribe: Jeremy Karp 1 Recap Last time we showed that every function f : V R is uniquely

More information

Lecture 8: Channel and source-channel coding theorems; BEC & linear codes. 1 Intuitive justification for upper bound on channel capacity

Lecture 8: Channel and source-channel coding theorems; BEC & linear codes. 1 Intuitive justification for upper bound on channel capacity 5-859: Information Theory and Applications in TCS CMU: Spring 23 Lecture 8: Channel and source-channel coding theorems; BEC & linear codes February 7, 23 Lecturer: Venkatesan Guruswami Scribe: Dan Stahlke

More information

CMPSCI 250: Introduction to Computation. Lecture #29: Proving Regular Language Identities David Mix Barrington 6 April 2012

CMPSCI 250: Introduction to Computation. Lecture #29: Proving Regular Language Identities David Mix Barrington 6 April 2012 CMPSCI 250: Introduction to Computation Lecture #29: Proving Regular Language Identities David Mix Barrington 6 April 2012 Proving Regular Language Identities Regular Language Identities The Semiring Axioms

More information

Lecture 3: AC 0, the switching lemma

Lecture 3: AC 0, the switching lemma Lecture 3: AC 0, the switching lemma Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: Meng Li, Abdul Basit 1 Pseudorandom sets We start by proving

More information

Computer Problems for Fourier Series and Transforms

Computer Problems for Fourier Series and Transforms Computer Problems for Fourier Series and Transforms 1. Square waves are frequently used in electronics and signal processing. An example is shown below. 1 π < x < 0 1 0 < x < π y(x) = 1 π < x < 2π... and

More information

CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds

CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds Lecturer: Toniann Pitassi Scribe: Robert Robere Winter 2014 1 Switching

More information

DECOUPLING LECTURE 6

DECOUPLING LECTURE 6 18.118 DECOUPLING LECTURE 6 INSTRUCTOR: LARRY GUTH TRANSCRIBED BY DONGHAO WANG We begin by recalling basic settings of multi-linear restriction problem. Suppose Σ i,, Σ n are some C 2 hyper-surfaces in

More information

Introduction to Series and Sequences Math 121 Calculus II Spring 2015

Introduction to Series and Sequences Math 121 Calculus II Spring 2015 Introduction to Series and Sequences Math Calculus II Spring 05 The goal. The main purpose of our study of series and sequences is to understand power series. A power series is like a polynomial of infinite

More information

Lecture Introduction. 2 Formal Definition. CS CTT Current Topics in Theoretical CS Oct 30, 2012

Lecture Introduction. 2 Formal Definition. CS CTT Current Topics in Theoretical CS Oct 30, 2012 CS 59000 CTT Current Topics in Theoretical CS Oct 30, 0 Lecturer: Elena Grigorescu Lecture 9 Scribe: Vivek Patel Introduction In this lecture we study locally decodable codes. Locally decodable codes are

More information

Lecture 1: 01/22/2014

Lecture 1: 01/22/2014 COMS 6998-3: Sub-Linear Algorithms in Learning and Testing Lecturer: Rocco Servedio Lecture 1: 01/22/2014 Spring 2014 Scribes: Clément Canonne and Richard Stark 1 Today High-level overview Administrative

More information

Lecture 5. Shearer s Lemma

Lecture 5. Shearer s Lemma Stanford University Spring 2016 Math 233: Non-constructive methods in combinatorics Instructor: Jan Vondrák Lecture date: April 6, 2016 Scribe: László Miklós Lovász Lecture 5. Shearer s Lemma 5.1 Introduction

More information

CS261: A Second Course in Algorithms Lecture #18: Five Essential Tools for the Analysis of Randomized Algorithms

CS261: A Second Course in Algorithms Lecture #18: Five Essential Tools for the Analysis of Randomized Algorithms CS261: A Second Course in Algorithms Lecture #18: Five Essential Tools for the Analysis of Randomized Algorithms Tim Roughgarden March 3, 2016 1 Preamble In CS109 and CS161, you learned some tricks of

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

Theoretical Cryptography, Lectures 18-20

Theoretical Cryptography, Lectures 18-20 Theoretical Cryptography, Lectures 18-20 Instructor: Manuel Blum Scribes: Ryan Williams and Yinmeng Zhang March 29, 2006 1 Content of the Lectures These lectures will cover how someone can prove in zero-knowledge

More information

Fourier Series. 1. Review of Linear Algebra

Fourier Series. 1. Review of Linear Algebra Fourier Series In this section we give a short introduction to Fourier Analysis. If you are interested in Fourier analysis and would like to know more detail, I highly recommend the following book: Fourier

More information

A On the Usefulness of Predicates

A On the Usefulness of Predicates A On the Usefulness of Predicates Per Austrin, Aalto University and KTH Royal Institute of Technology Johan Håstad, KTH Royal Institute of Technology Motivated by the pervasiveness of strong inapproximability

More information

Quantum boolean functions

Quantum boolean functions Quantum boolean functions Ashley Montanaro 1 and Tobias Osborne 2 1 Department of Computer Science 2 Department of Mathematics University of Bristol Royal Holloway, University of London Bristol, UK London,

More information

Math 320-2: Final Exam Practice Solutions Northwestern University, Winter 2015

Math 320-2: Final Exam Practice Solutions Northwestern University, Winter 2015 Math 30-: Final Exam Practice Solutions Northwestern University, Winter 015 1. Give an example of each of the following. No justification is needed. (a) A closed and bounded subset of C[0, 1] which is

More information

CMPSCI 250: Introduction to Computation. Lecture #22: From λ-nfa s to NFA s to DFA s David Mix Barrington 22 April 2013

CMPSCI 250: Introduction to Computation. Lecture #22: From λ-nfa s to NFA s to DFA s David Mix Barrington 22 April 2013 CMPSCI 250: Introduction to Computation Lecture #22: From λ-nfa s to NFA s to DFA s David Mix Barrington 22 April 2013 λ-nfa s to NFA s to DFA s Reviewing the Three Models and Kleene s Theorem The Subset

More information

Lecture 11: Continuous-valued signals and differential entropy

Lecture 11: Continuous-valued signals and differential entropy Lecture 11: Continuous-valued signals and differential entropy Biology 429 Carl Bergstrom September 20, 2008 Sources: Parts of today s lecture follow Chapter 8 from Cover and Thomas (2007). Some components

More information

4.9 Anti-derivatives. Definition. An anti-derivative of a function f is a function F such that F (x) = f (x) for all x.

4.9 Anti-derivatives. Definition. An anti-derivative of a function f is a function F such that F (x) = f (x) for all x. 4.9 Anti-derivatives Anti-differentiation is exactly what it sounds like: the opposite of differentiation. That is, given a function f, can we find a function F whose derivative is f. Definition. An anti-derivative

More information

Mathematics 220 Midterm Practice problems from old exams Page 1 of 8

Mathematics 220 Midterm Practice problems from old exams Page 1 of 8 Mathematics 220 Midterm Practice problems from old exams Page 1 of 8 1. (a) Write the converse, contrapositive and negation of the following statement: For every integer n, if n is divisible by 3 then

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

Quick Sort Notes , Spring 2010

Quick Sort Notes , Spring 2010 Quick Sort Notes 18.310, Spring 2010 0.1 Randomized Median Finding In a previous lecture, we discussed the problem of finding the median of a list of m elements, or more generally the element of rank m.

More information

F (x) = P [X x[. DF1 F is nondecreasing. DF2 F is right-continuous

F (x) = P [X x[. DF1 F is nondecreasing. DF2 F is right-continuous 7: /4/ TOPIC Distribution functions their inverses This section develops properties of probability distribution functions their inverses Two main topics are the so-called probability integral transformation

More information

Topic: Sampling, Medians of Means method and DNF counting Date: October 6, 2004 Scribe: Florin Oprea

Topic: Sampling, Medians of Means method and DNF counting Date: October 6, 2004 Scribe: Florin Oprea 15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Sampling, Medians of Means method and DNF counting Date: October 6, 200 Scribe: Florin Oprea 8.1 Introduction In this lecture we will consider

More information

Learning and Fourier Analysis

Learning and Fourier Analysis Learning and Fourier Analysis Grigory Yaroslavtsev http://grigory.us Slides at http://grigory.us/cis625/lecture2.pdf CIS 625: Computational Learning Theory Fourier Analysis and Learning Powerful tool for

More information

Lecture Notes 17. Randomness: The verifier can toss coins and is allowed to err with some (small) probability if it is unlucky in its coin tosses.

Lecture Notes 17. Randomness: The verifier can toss coins and is allowed to err with some (small) probability if it is unlucky in its coin tosses. CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 17 March 31, 2010 Scribe: Jonathan Ullman 1 Interactive Proofs ecall the definition of NP: L NP there exists a polynomial-time V and polynomial

More information

Math 5a Reading Assignments for Sections

Math 5a Reading Assignments for Sections Math 5a Reading Assignments for Sections 4.1 4.5 Due Dates for Reading Assignments Note: There will be a very short online reading quiz (WebWork) on each reading assignment due one hour before class on

More information

Harmonic Analysis of Boolean Functions

Harmonic Analysis of Boolean Functions Harmonic Analysis of Boolean Functions Lectures: MW 10:05-11:25 in MC 103 Office Hours: MC 328, by appointment (hatami@cs.mcgill.ca). Evaluation: Assignments: 60 % Presenting a paper at the end of the

More information

Most Continuous Functions are Nowhere Differentiable

Most Continuous Functions are Nowhere Differentiable Most Continuous Functions are Nowhere Differentiable Spring 2004 The Space of Continuous Functions Let K = [0, 1] and let C(K) be the set of all continuous functions f : K R. Definition 1 For f C(K) we

More information

Notes for Lecture 11

Notes for Lecture 11 Stanford University CS254: Computational Complexity Notes 11 Luca Trevisan 2/11/2014 Notes for Lecture 11 Circuit Lower Bounds for Parity Using Polynomials In this lecture we prove a lower bound on the

More information

14 : Approximate Inference Monte Carlo Methods

14 : Approximate Inference Monte Carlo Methods 10-708: Probabilistic Graphical Models 10-708, Spring 2018 14 : Approximate Inference Monte Carlo Methods Lecturer: Kayhan Batmanghelich Scribes: Biswajit Paria, Prerna Chiersal 1 Introduction We have

More information

Understanding Generalization Error: Bounds and Decompositions

Understanding Generalization Error: Bounds and Decompositions CIS 520: Machine Learning Spring 2018: Lecture 11 Understanding Generalization Error: Bounds and Decompositions Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the

More information

Lecture 5: Derandomization (Part II)

Lecture 5: Derandomization (Part II) CS369E: Expanders May 1, 005 Lecture 5: Derandomization (Part II) Lecturer: Prahladh Harsha Scribe: Adam Barth Today we will use expanders to derandomize the algorithm for linearity test. Before presenting

More information

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities 1 MATH 1 REVIEW SOLVING AN ABSOLUTE VALUE EQUATION Absolute value is a measure of distance; how far a number is from zero. In practice,

More information

Notes for Lecture 15

Notes for Lecture 15 U.C. Berkeley CS278: Computational Complexity Handout N15 Professor Luca Trevisan 10/27/2004 Notes for Lecture 15 Notes written 12/07/04 Learning Decision Trees In these notes it will be convenient to

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 71E Probability and Statistics Spring 013 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 1.30, Wednesday EEB 5303 10.00 1.00, Wednesday

More information

f (x)e inx dx 2π π for 2π period functions. Now take we can take an arbitrary interval, then our dense exponentials are 1 2π e(inπx)/a.

f (x)e inx dx 2π π for 2π period functions. Now take we can take an arbitrary interval, then our dense exponentials are 1 2π e(inπx)/a. 7 Fourier Transforms (Lecture with S. Helgason) Fourier series are defined as f () a n e in, a n = π f ()e in d π π for π period functions. Now take we can take an arbitrary interval, then our dense eponentials

More information

Exercise 2. Prove that [ 1, 1] is the set of all the limit points of ( 1, 1] = {x R : 1 <

Exercise 2. Prove that [ 1, 1] is the set of all the limit points of ( 1, 1] = {x R : 1 < Math 316, Intro to Analysis Limits of functions We are experts at taking limits of sequences as the indexing parameter gets close to infinity. What about limits of functions as the independent variable

More information

Notes for Lecture A can repeat step 3 as many times as it wishes. We will charge A one unit of time for every time it repeats step 3.

Notes for Lecture A can repeat step 3 as many times as it wishes. We will charge A one unit of time for every time it repeats step 3. COS 533: Advanced Cryptography Lecture 2 (September 18, 2017) Lecturer: Mark Zhandry Princeton University Scribe: Mark Zhandry Notes for Lecture 2 1 Last Time Last time, we defined formally what an encryption

More information

ECE353: Probability and Random Processes. Lecture 7 -Continuous Random Variable

ECE353: Probability and Random Processes. Lecture 7 -Continuous Random Variable ECE353: Probability and Random Processes Lecture 7 -Continuous Random Variable Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu Continuous

More information

9.4 Radical Expressions

9.4 Radical Expressions Section 9.4 Radical Expressions 95 9.4 Radical Expressions In the previous two sections, we learned how to multiply and divide square roots. Specifically, we are now armed with the following two properties.

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 3

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 3 EECS 6A Designing Information Devices and Systems I Spring 209 Lecture Notes Note 3 3. Linear Dependence Recall the simple tomography example from Note, in which we tried to determine the composition of

More information

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013 Lecture 11: Extrema Nathan Pflueger 2 October 201 1 Introduction In this lecture we begin to consider the notion of extrema of functions on chosen intervals. This discussion will continue in the lectures

More information