Exercise 2. Prove that [ 1, 1] is the set of all the limit points of ( 1, 1] = {x R : 1 <

Size: px
Start display at page:

Download "Exercise 2. Prove that [ 1, 1] is the set of all the limit points of ( 1, 1] = {x R : 1 <"

Transcription

1 Math 316, Intro to Analysis Limits of functions We are experts at taking limits of sequences as the indexing parameter gets close to infinity. What about limits of functions as the independent variable gets close to some number. Today we begin to develop the theory of limits of functions. If we hope to study the behavior of a function close to a number, then we had better know that the function has a behavior close to that number. Definition 1. For a set U R (For example the domain of a function) a number p R is called a limit point of U if for all ɛ > 0 there is a u such that For the region U below locate where the limit points should be. U and Exercise 2. Prove that [ 1, 1] is the set of all the limit points of ( 1, 1] = {x R : 1 < x 1}? Prove that the set of limit points of { 1, 1} is empty. I like sequences, so I ll like the following re-formulation: Proposition 3. For a set U R a number p R is a limit point of U if and only if there is a sequence u n such that and Proof. = Suppose that u n p is a sequence of elements of U different from p converging to p. Consider any ɛ > 0. Since u n p there is an N such that if n > N then. Now we verify that this point u n satisfies the conditions in definition 1. Since, and we see that p is limit point of U. 1

2 2 = Suppose that p is a limit point of U. For any n N let ɛ n = > 0. Since p is a limit point there is an element of U different from p, call it u n p such that u n p < =, so that u n. Next we verify the three conditions of the proposition: by assumption, and. We ve show that. This completes the proof. Now suppose that f : U R is a function and p is a limit point of U. There are elements of the domain of f as close as you like to the point p. What does f do to things close to p? Definition 4. Suppose that f : U R is a function and p is a limit point of U. If L R is a number then we say that the limit of f(x) as x approaches p and write lim f(x) = L if: For all ɛ > 0 there exists a δ > 0 such that for all x U if then The idea is that no matter how close we want f(x) to be to L we can arrange, provided we take x close enough (but not equal to) p Example Let f : [0, ) R be given by f(x) = x. Show that lim Assume that x > 0 (we only want elements of the domain which are not zero) and that x 0 < δ. Then f(x) 0 = Thus, for all ɛ > 0 there is a δ > 0 such that if x [0, ), x 0 and x 0 < δ then f(x) 0 < ɛ. This is exactly the definition of lim Let f : [0, ) R be given by f(x) = x. Show that lim f(x) = 1. We might need to do some scratch work to the side. Assume that x > 0 (we only want elements of the domain which are not zero) and that x 0 < δ. Then f(x) 0 = Thus, for all ɛ > 0 there is a δ > 0 such that if x [0, ), x 0 and x 0 < δ then f(x) 0 < ɛ. This is exactly the definition of lim

3 3 { 2 x if x 1 Let f(x) =. Show that lim 100 if x = 1 f(x) = 2 Framework: Assume that 0 < x 1 < δ. Then since x 1, f(x) 2 = Thus, for all ɛ > 0 there is a δ > 0 such that if x R, x 1 and x 1 < δ then f(x) 2 < ɛ. This is exactly the definition of lim f(x) = 2. As another illustration of ɛ δ proofs lets prove the Squeeze theorem: The addition and multiplication laws for limits are also good exercises in ɛ δ proofs Proposition 5 (The squeeze theorem). Suppose that p is a limit point of U. Let f, g : U R be functions. Assume that lim f(x) = L and lim g(x) = K. Then (1) lim(f + g)(x) = and (2) lim(f g)(x) =. Proof. (Proof of claim 1) Assume that p is a limit point of U, that f, g : U R are functions, that lim f(x) = L and lim g(x) = K. Consider any ɛ > 0. Since lim f(x) = L and lim g(x) = K there exists a δ > 0 such that Suppose x U and x p > δ, using the triangle inequality So that f(x) + g(x) (L + K) < ɛ. Thus, for all ɛ > 0 there is a δ > 0 such that for all x U, if 0 < x p < δ then f(x) + g(x) (K + L) < ɛ. Thus, lim (f + g)(x) = K + L, as we claimed. x L (Proof of claim 2) I ll leave this for you to do outside of class. Assume that p is a limit point of U, that f, g : U R are functions, that lim f(x) = L and lim g(x) = K. Consider any ɛ > 0. Since lim f(x) = L and lim g(x) = K there exists a δ > 0 such that

4 4 Suppose x U and x p > δ, using the triangle inequality So that f(x) g(x) K L < ɛ. Thus, for all ɛ > 0 there is a δ > 0 such that for all x U, if 0 < x p < δ then f(x) g(x) K L < ɛ. Thus, lim (f + g)(x) = K + L, as we claimed. x L At this point we are good at taking limits of sequences. Can we translate the definition of the limit of a function to something about limits of sequences? Proposition 6. Suppose that p is a limit point of U and that f : U R is a function. Then lim f(x) = L if and only if for every sequence u n of elements of U different from p which converges to p, f(x n ) converges to L. Proof. = Suppose that lim f(x) = L. Let x n be any sequence of elements of U different from p which converges to p. We must show that f(x n ) L. Consider any ɛ > 0. (1) What does the definition of lim f(x) = L give us? (a δ > 0 should appear) (2) Since δ > 0 what does the definition of x n p give us. (An N should appear.) (3) Consider any n > N. What does (2) say about x n p?

5 5 (4) What does (1) say about f(x n ) L? = This proof will proceed by contraposition. We assume NOT( lim f(x) = L) and try to conclude that there exists a sequence x n of elements of U other than p such that but (. ) Suppose that NOT lim f(x) = L Expanding this out: NOT( ) According to DeMorgan s law from logic: Let δ n = 1 n According to the above statement, there exists a x n U such that and. The first conclusion says that x n is a sequence in U different from p such that x n p. The second conclusion says that f(x n ) does not converge to L. This is the negation of the hypothesis of the proposition. The principle of contraposition completes the proof. According to this proposition, every fact we know about limits of sequences translates to a statements about limits of functions. Given time we can re-prove the multiplication law from the sequences again. We can also prove the Squeeze theorem from a sequences point of view. Proposition 7 (The squeeze theorem). Suppose that p is a limit point of U. Let f, g, h : U R be functions. Assume that lim f(x) = lim h(x) = L and that for all x U, f(x) g(x) h(x). Then lim g(x) = L. Proof. I ll do the squeeze theorem. Let f, g, h : U R be functions. Assume that lim f(x) = lim h(x) = L and that for all x U, f(x) g(x) h(x). Consider any sequence x n of elements of U other than p satisfying that x n p. Then f(x n ) and h(x n ). Additionally,. Thus, by the squeeze theorem for sequences, g(x n ). Thus, we have shown that for every sequence x n of elements of U other than p which converges to p g(x n ) L by Proposition 6 this means that lim g(x) = L.

Math 328 Course Notes

Math 328 Course Notes Math 328 Course Notes Ian Robertson March 3, 2006 3 Properties of C[0, 1]: Sup-norm and Completeness In this chapter we are going to examine the vector space of all continuous functions defined on the

More information

Proof by Contradiction

Proof by Contradiction Proof by Contradiction MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Proof by Contradiction Fall 2014 1 / 12 Outline 1 Proving Statements with Contradiction 2 Proving

More information

A lower bound for X is an element z F such that

A lower bound for X is an element z F such that Math 316, Intro to Analysis Completeness. Definition 1 (Upper bounds). Let F be an ordered field. For a subset X F an upper bound for X is an element y F such that A lower bound for X is an element z F

More information

A lower bound for X is an element z F such that

A lower bound for X is an element z F such that Math 316, Intro to Analysis Completeness. Definition 1 (Upper bounds). Let F be an ordered field. For a subset X F an upper bound for X is an element y F such that A lower bound for X is an element z F

More information

Contradiction MATH Contradiction. Benjamin V.C. Collins, James A. Swenson MATH 2730

Contradiction MATH Contradiction. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Contradiction Benjamin V.C. Collins James A. Swenson Contrapositive The contrapositive of the statement If A, then B is the statement If not B, then not A. A statement and its contrapositive

More information

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions For each question, there is a model solution (showing you the level of detail I expect on the exam) and then below

More information

The definition, and some continuity laws. Types of discontinuities. The Squeeze Theorem. Two special limits. The IVT and EVT.

The definition, and some continuity laws. Types of discontinuities. The Squeeze Theorem. Two special limits. The IVT and EVT. MAT137 - Week 5 The deadline to drop to MAT135 is tomorrow. (Details on course website.) The deadline to let us know you have a scheduling conflict with Test 1 is also tomorrow. (Details on the course

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Strategies for Proofs

Strategies for Proofs G. Carl Evans University of Illinois Summer 2013 Today Practice with proofs Become familiar with various strategies for proofs Review: proving universal statements Claim: For any integer a, if a is odd,

More information

a 2n = . On the other hand, the subsequence a 2n+1 =

a 2n = . On the other hand, the subsequence a 2n+1 = Math 316, Intro to Analysis subsequences. This is another note pack which should last us two days. Recall one of our arguments about why a n = ( 1) n diverges. Consider the subsequence a n = It converges

More information

means is a subset of. So we say A B for sets A and B if x A we have x B holds. BY CONTRAST, a S means that a is a member of S.

means is a subset of. So we say A B for sets A and B if x A we have x B holds. BY CONTRAST, a S means that a is a member of S. 1 Notation For those unfamiliar, we have := means equal by definition, N := {0, 1,... } or {1, 2,... } depending on context. (i.e. N is the set or collection of counting numbers.) In addition, means for

More information

Preliminary check: are the terms that we are adding up go to zero or not? If not, proceed! If the terms a n are going to zero, pick another test.

Preliminary check: are the terms that we are adding up go to zero or not? If not, proceed! If the terms a n are going to zero, pick another test. Throughout these templates, let series. be a series. We hope to determine the convergence of this Divergence Test: If lim is not zero or does not exist, then the series diverges. Preliminary check: are

More information

and lim lim 6. The Squeeze Theorem

and lim lim 6. The Squeeze Theorem Limits (day 3) Things we ll go over today 1. Limits of the form 0 0 (continued) 2. Limits of piecewise functions 3. Limits involving absolute values 4. Limits of compositions of functions 5. Limits similar

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 7 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 7 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 7 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 4.2.1, 4.2.3, 4.2.6, 4.2.8,

More information

Math 421, Homework #9 Solutions

Math 421, Homework #9 Solutions Math 41, Homework #9 Solutions (1) (a) A set E R n is said to be path connected if for any pair of points x E and y E there exists a continuous function γ : [0, 1] R n satisfying γ(0) = x, γ(1) = y, and

More information

Piecewise Defined Functions

Piecewise Defined Functions Piecewise Defined Functions Most of the functions that we ve looked at this semester can be expressed as a single equation. For example, fx) =3x 2 5x +2,orgx) = p x 1, or hx) =e 3x 1. Sometimes an equation

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

MATH 101, FALL 2018: SUPPLEMENTARY NOTES ON THE REAL LINE

MATH 101, FALL 2018: SUPPLEMENTARY NOTES ON THE REAL LINE MATH 101, FALL 2018: SUPPLEMENTARY NOTES ON THE REAL LINE SEBASTIEN VASEY These notes describe the material for November 26, 2018 (while similar content is in Abbott s book, the presentation here is different).

More information

1. Propositions: Contrapositives and Converses

1. Propositions: Contrapositives and Converses Preliminaries 1 1. Propositions: Contrapositives and Converses Given two propositions P and Q, the statement If P, then Q is interpreted as the statement that if the proposition P is true, then the statement

More information

. Get closed expressions for the following subsequences and decide if they converge. (1) a n+1 = (2) a 2n = (3) a 2n+1 = (4) a n 2 = (5) b n+1 =

. Get closed expressions for the following subsequences and decide if they converge. (1) a n+1 = (2) a 2n = (3) a 2n+1 = (4) a n 2 = (5) b n+1 = Math 316, Intro to Analysis subsequences. Recall one of our arguments about why a n = ( 1) n diverges. Consider the subsequences a n = ( 1) n = +1. It converges to 1. On the other hand, the subsequences

More information

Induction, sequences, limits and continuity

Induction, sequences, limits and continuity Induction, sequences, limits and continuity Material covered: eclass notes on induction, Chapter 11, Section 1 and Chapter 2, Sections 2.2-2.5 Induction Principle of mathematical induction: Let P(n) be

More information

M17 MAT25-21 HOMEWORK 6

M17 MAT25-21 HOMEWORK 6 M17 MAT25-21 HOMEWORK 6 DUE 10:00AM WEDNESDAY SEPTEMBER 13TH 1. To Hand In Double Series. The exercises in this section will guide you to complete the proof of the following theorem: Theorem 1: Absolute

More information

1 Take-home exam and final exam study guide

1 Take-home exam and final exam study guide Math 215 - Introduction to Advanced Mathematics Fall 2013 1 Take-home exam and final exam study guide 1.1 Problems The following are some problems, some of which will appear on the final exam. 1.1.1 Number

More information

TAYLOR AND MACLAURIN SERIES

TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES. Introduction Last time, we were able to represent a certain restricted class of functions as power series. This leads us to the question: can we represent more general functions

More information

Math Real Analysis

Math Real Analysis 1 / 28 Math 370 - Real Analysis G.Pugh Sep 3 2013 Real Analysis 2 / 28 3 / 28 What is Real Analysis? Wikipedia: Real analysis... has its beginnings in the rigorous formulation of calculus. It is a branch

More information

MATH 409 Advanced Calculus I Lecture 9: Limit supremum and infimum. Limits of functions.

MATH 409 Advanced Calculus I Lecture 9: Limit supremum and infimum. Limits of functions. MATH 409 Advanced Calculus I Lecture 9: Limit supremum and infimum. Limits of functions. Limit points Definition. A limit point of a sequence {x n } is the limit of any convergent subsequence of {x n }.

More information

6c Lecture 14: May 14, 2014

6c Lecture 14: May 14, 2014 6c Lecture 14: May 14, 2014 11 Compactness We begin with a consequence of the completeness theorem. Suppose T is a theory. Recall that T is satisfiable if there is a model M T of T. Recall that T is consistent

More information

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6 Matthew Straughn Math 402 Homework 6 Homework 6 (p. 452) 14.3.3, 14.3.4, 14.3.5, 14.3.8 (p. 455) 14.4.3* (p. 458) 14.5.3 (p. 460) 14.6.1 (p. 472) 14.7.2* Lemma 1. If (f (n) ) converges uniformly to some

More information

Sequences: Limit Theorems

Sequences: Limit Theorems Sequences: Limit Theorems Limit Theorems Philippe B. Laval KSU Today Philippe B. Laval (KSU) Limit Theorems Today 1 / 20 Introduction These limit theorems fall in two categories. 1 The first category deals

More information

Infinite Limits. By Tuesday J. Johnson

Infinite Limits. By Tuesday J. Johnson Infinite Limits By Tuesday J. Johnson Suggested Review Topics Algebra skills reviews suggested: Evaluating functions Graphing functions Working with inequalities Working with absolute values Trigonometric

More information

MATH 301 INTRO TO ANALYSIS FALL 2016

MATH 301 INTRO TO ANALYSIS FALL 2016 MATH 301 INTRO TO ANALYSIS FALL 016 Homework 04 Professional Problem Consider the recursive sequence defined by x 1 = 3 and +1 = 1 4 for n 1. (a) Prove that ( ) converges. (Hint: show that ( ) is decreasing

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Chapter 1. Logic and Proof

Chapter 1. Logic and Proof Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known

More information

Hence, (f(x) f(x 0 )) 2 + (g(x) g(x 0 )) 2 < ɛ

Hence, (f(x) f(x 0 )) 2 + (g(x) g(x 0 )) 2 < ɛ Matthew Straughn Math 402 Homework 5 Homework 5 (p. 429) 13.3.5, 13.3.6 (p. 432) 13.4.1, 13.4.2, 13.4.7*, 13.4.9 (p. 448-449) 14.2.1, 14.2.2 Exercise 13.3.5. Let (X, d X ) be a metric space, and let f

More information

Calculus (Math 1A) Lecture 5

Calculus (Math 1A) Lecture 5 Calculus (Math 1A) Lecture 5 Vivek Shende September 5, 2017 Hello and welcome to class! Hello and welcome to class! Last time Hello and welcome to class! Last time We discussed composition, inverses, exponentials,

More information

Math 209B Homework 2

Math 209B Homework 2 Math 29B Homework 2 Edward Burkard Note: All vector spaces are over the field F = R or C 4.6. Two Compactness Theorems. 4. Point Set Topology Exercise 6 The product of countably many sequentally compact

More information

Sequences of Real Numbers

Sequences of Real Numbers Chapter 8 Sequences of Real Numbers In this chapter, we assume the existence of the ordered field of real numbers, though we do not yet discuss or use the completeness of the real numbers. In the next

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

MA 301 Test 4, Spring 2007

MA 301 Test 4, Spring 2007 MA 0 Test 4, Spring 007 hours, calculator allowed, no notes. Provide paper for the students to do work on. Students should not write answers on test sheet. TA Grades, 5, 6, 7 All answers must be justified.

More information

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges.

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges. 2..2(a) lim a n = 0. Homework 4, 5, 6 Solutions Proof. Let ɛ > 0. Then for n n = 2+ 2ɛ we have 2n 3 4+ ɛ 3 > ɛ > 0, so 0 < 2n 3 < ɛ, and thus a n 0 = 2n 3 < ɛ. 2..2(g) lim ( n + n) = 0. Proof. Let ɛ >

More information

Contribution of Problems

Contribution of Problems Exam topics 1. Basic structures: sets, lists, functions (a) Sets { }: write all elements, or define by condition (b) Set operations: A B, A B, A\B, A c (c) Lists ( ): Cartesian product A B (d) Functions

More information

In case (1) 1 = 0. Then using and from Friday,

In case (1) 1 = 0. Then using and from Friday, Math 316, Intro to Analysis The order of the real numbers. The field axioms are not enough to give R, as an extra credit problem will show. Definition 1. An ordered field F is a field together with a nonempty

More information

Solutions Manual. Selected odd-numbers problems from. Chapter 3. Proof: Introduction to Higher Mathematics. Seventh Edition

Solutions Manual. Selected odd-numbers problems from. Chapter 3. Proof: Introduction to Higher Mathematics. Seventh Edition Solutions Manual Selected odd-numbers problems from Chapter 3 of Proof: Introduction to Higher Mathematics Seventh Edition Warren W. Esty and Norah C. Esty 5 4 3 2 1 2 Section 3.1. Inequalities Chapter

More information

In case (1) 1 = 0. Then using and from the previous lecture,

In case (1) 1 = 0. Then using and from the previous lecture, Math 316, Intro to Analysis The order of the real numbers. The field axioms are not enough to give R, as an extra credit problem will show. Definition 1. An ordered field F is a field together with a nonempty

More information

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions.

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions. Concepts: Horizontal Asymptotes, Vertical Asymptotes, Slant (Oblique) Asymptotes, Transforming Reciprocal Function, Sketching Rational Functions, Solving Inequalities using Sign Charts. Rational Function

More information

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities 1 MATH 1 REVIEW SOLVING AN ABSOLUTE VALUE EQUATION Absolute value is a measure of distance; how far a number is from zero. In practice,

More information

Places of Number Fields and Function Fields MATH 681, Spring 2018

Places of Number Fields and Function Fields MATH 681, Spring 2018 Places of Number Fields and Function Fields MATH 681, Spring 2018 From now on we will denote the field Z/pZ for a prime p more compactly by F p. More generally, for q a power of a prime p, F q will denote

More information

A Few Examples of Limit Proofs

A Few Examples of Limit Proofs A Few Examples of Limit Proofs x (7x 4) = 10 SCRATCH WORK First, we need to find a way of relating x < δ and (7x 4) 10 < ɛ. We will use algebraic manipulation to get this relationship. Remember that the

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

MAT137 - Term 2, Week 2

MAT137 - Term 2, Week 2 MAT137 - Term 2, Week 2 This lecture will assume you have watched all of the videos on the definition of the integral (but will remind you about some things). Today we re talking about: More on the definition

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 2.6.3, 2.7.4, 2.7.5, 2.7.2,

More information

1 Lecture 25: Extreme values

1 Lecture 25: Extreme values 1 Lecture 25: Extreme values 1.1 Outline Absolute maximum and minimum. Existence on closed, bounded intervals. Local extrema, critical points, Fermat s theorem Extreme values on a closed interval Rolle

More information

Introduction to Proofs

Introduction to Proofs Introduction to Proofs Notes by Dr. Lynne H. Walling and Dr. Steffi Zegowitz September 018 The Introduction to Proofs course is organised into the following nine sections. 1. Introduction: sets and functions

More information

Proof Terminology. Technique #1: Direct Proof. Learning objectives. Proof Techniques (Rosen, Sections ) Direct Proof:

Proof Terminology. Technique #1: Direct Proof. Learning objectives. Proof Techniques (Rosen, Sections ) Direct Proof: Proof Terminology Proof Techniques (Rosen, Sections 1.7 1.8) TOPICS Direct Proofs Proof by Contrapositive Proof by Contradiction Proof by Cases Theorem: statement that can be shown to be true Proof: a

More information

Proof by contrapositive, contradiction

Proof by contrapositive, contradiction Proof by contrapositive, contradiction Margaret M. Fleck 9 September 2009 This lecture covers proof by contradiction and proof by contrapositive (section 1.6 of Rosen). 1 Announcements The first quiz will

More information

Math Exam Jam Concise. Contents. 1 Algebra Review 2. 2 Functions and Graphs 2. 3 Exponents and Radicals 3. 4 Quadratic Functions and Equations 4

Math Exam Jam Concise. Contents. 1 Algebra Review 2. 2 Functions and Graphs 2. 3 Exponents and Radicals 3. 4 Quadratic Functions and Equations 4 Contents 1 Algebra Review 2 2 Functions and Graphs 2 3 Exponents and Radicals 3 4 Quadratic Functions and Equations 4 5 Exponential and Logarithmic Functions 5 6 Systems of Linear Equations 6 7 Inequalities

More information

Lecture 4: Constructing the Integers, Rationals and Reals

Lecture 4: Constructing the Integers, Rationals and Reals Math/CS 20: Intro. to Math Professor: Padraic Bartlett Lecture 4: Constructing the Integers, Rationals and Reals Week 5 UCSB 204 The Integers Normally, using the natural numbers, you can easily define

More information

Proof Techniques (Review of Math 271)

Proof Techniques (Review of Math 271) Chapter 2 Proof Techniques (Review of Math 271) 2.1 Overview This chapter reviews proof techniques that were probably introduced in Math 271 and that may also have been used in a different way in Phil

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 4.3.5, 4.3.7, 4.3.8, 4.3.9,

More information

Math 10850, fall 2017, University of Notre Dame

Math 10850, fall 2017, University of Notre Dame Math 10850, fall 2017, University of Notre Dame Notes on first exam September 22, 2017 The key facts The first midterm will be on Thursday, September 28, 6.15pm-7.45pm in Hayes-Healy 127. What you need

More information

Jane and Joe are measuring the circumference of a dime with a string. Jane' s result is: 55 mm Joe's result is: 58 mm

Jane and Joe are measuring the circumference of a dime with a string. Jane' s result is: 55 mm Joe's result is: 58 mm A LESSON ON ABSOLUTE VALUE Jane and Joe are measuring the circumference of a dime with a string. Jane' s result is: 55 mm Joe's result is: 58 mm Tom knows the true length of the circumference: 56 mm. He

More information

COMP Intro to Logic for Computer Scientists. Lecture 15

COMP Intro to Logic for Computer Scientists. Lecture 15 COMP 1002 Intro to Logic for Computer Scientists Lecture 15 B 5 2 J Types of proofs Direct proof of x F x Show that F x holds for arbitrary x, then use universal generalization. Often, F x is of the form

More information

The following techniques for methods of proofs are discussed in our text: - Vacuous proof - Trivial proof

The following techniques for methods of proofs are discussed in our text: - Vacuous proof - Trivial proof Ch. 1.6 Introduction to Proofs The following techniques for methods of proofs are discussed in our text - Vacuous proof - Trivial proof - Direct proof - Indirect proof (our book calls this by contraposition)

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or

More information

Evaluating Limits Analytically. By Tuesday J. Johnson

Evaluating Limits Analytically. By Tuesday J. Johnson Evaluating Limits Analytically By Tuesday J. Johnson Suggested Review Topics Algebra skills reviews suggested: Evaluating functions Rationalizing numerators and/or denominators Trigonometric skills reviews

More information

Evaluating Integrals (Section 5.3) and the Fundamental Theorem of Calculus (Section 1 / 15 (5.4

Evaluating Integrals (Section 5.3) and the Fundamental Theorem of Calculus (Section 1 / 15 (5.4 Evaluating Integrals (Section 5.3) and the Fundamental Theorem of Calculus (Section (5.4) Evaluating Integrals (Section 5.3) and the Fundamental Theorem of Calculus (Section 1 / 15 (5.4 Intro to 5.3 Today

More information

2.4 The Extreme Value Theorem and Some of its Consequences

2.4 The Extreme Value Theorem and Some of its Consequences 2.4 The Extreme Value Theorem and Some of its Consequences The Extreme Value Theorem deals with the question of when we can be sure that for a given function f, (1) the values f (x) don t get too big or

More information

x 1 + x 2 2 x 1 x 2 1 x 2 2 min 3x 1 + 2x 2

x 1 + x 2 2 x 1 x 2 1 x 2 2 min 3x 1 + 2x 2 Lecture 1 LPs: Algebraic View 1.1 Introduction to Linear Programming Linear programs began to get a lot of attention in 1940 s, when people were interested in minimizing costs of various systems while

More information

PROBLEM SET 3: PROOF TECHNIQUES

PROBLEM SET 3: PROOF TECHNIQUES PROBLEM SET 3: PROOF TECHNIQUES CS 198-087: INTRODUCTION TO MATHEMATICAL THINKING UC BERKELEY EECS FALL 2018 This homework is due on Monday, September 24th, at 6:30PM, on Gradescope. As usual, this homework

More information

CS 124 Math Review Section January 29, 2018

CS 124 Math Review Section January 29, 2018 CS 124 Math Review Section CS 124 is more math intensive than most of the introductory courses in the department. You re going to need to be able to do two things: 1. Perform some clever calculations to

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the claim, derive a contradiction or give a counter-example). (a) (10

More information

Adam Blank Spring 2017 CSE 311. Foundations of Computing I

Adam Blank Spring 2017 CSE 311. Foundations of Computing I Adam Blank Spring 2017 CSE 311 Foundations of Computing I Pre-Lecture Problem Suppose that p, and p (q r) are true. Is q true? Can you prove it with equivalences? CSE 311: Foundations of Computing Lecture

More information

Lecture 31: Reductions

Lecture 31: Reductions Lecture 31: Page 1 of 10 Aims: To discuss the idea of a reduction and reducibility; To discuss the idea of polynomial-time reductions, and to see what we can learn from them; To see what we can learn from

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

DOUBLE SERIES AND PRODUCTS OF SERIES

DOUBLE SERIES AND PRODUCTS OF SERIES DOUBLE SERIES AND PRODUCTS OF SERIES KENT MERRYFIELD. Various ways to add up a doubly-indexed series: Let be a sequence of numbers depending on the two variables j and k. I will assume that 0 j < and 0

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. (a) (10 points) State the formal definition of a Cauchy sequence of real numbers. A sequence, {a n } n N, of real numbers, is Cauchy if and only if for every ɛ > 0,

More information

Argument. whenever all the assumptions are true, then the conclusion is true. If today is Wednesday, then yesterday is Tuesday. Today is Wednesday.

Argument. whenever all the assumptions are true, then the conclusion is true. If today is Wednesday, then yesterday is Tuesday. Today is Wednesday. Logic and Proof Argument An argument is a sequence of statements. All statements but the first one are called assumptions or hypothesis. The final statement is called the conclusion. An argument is valid

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Today's learning goals Evaluate which proof technique(s) is appropriate for a given proposition Direct proof Proofs by contraposition

More information

MA 123 (Calculus I) Lecture 3: September 12, 2017 Section A2. Professor Jennifer Balakrishnan,

MA 123 (Calculus I) Lecture 3: September 12, 2017 Section A2. Professor Jennifer Balakrishnan, What is on today Professor Jennifer Balakrishnan, jbala@bu.edu 1 Techniques for computing limits 1 1.1 Limit laws..................................... 1 1.2 One-sided limits..................................

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information

Chapter 1 Limits and Their Properties

Chapter 1 Limits and Their Properties Chapter 1 Limits and Their Properties Calculus: Chapter P Section P.2, P.3 Chapter P (briefly) WARM-UP 1. Evaluate: cot 6 2. Find the domain of the function: f( x) 3x 3 2 x 4 g f ( x) f ( x) x 5 3. Find

More information

Proving Things. Why prove things? Proof by Substitution, within Logic. Rules of Inference: applying Logic. Using Assumptions.

Proving Things. Why prove things? Proof by Substitution, within Logic. Rules of Inference: applying Logic. Using Assumptions. 1 Proving Things Why prove things? Proof by Substitution, within Logic Rules of Inference: applying Logic Using Assumptions Proof Strategies 2 Why Proofs? Knowledge is power. Where do we get it? direct

More information

µ (X) := inf l(i k ) where X k=1 I k, I k an open interval Notice that is a map from subsets of R to non-negative number together with infinity

µ (X) := inf l(i k ) where X k=1 I k, I k an open interval Notice that is a map from subsets of R to non-negative number together with infinity A crash course in Lebesgue measure theory, Math 317, Intro to Analysis II These lecture notes are inspired by the third edition of Royden s Real analysis. The Jordan content is an attempt to extend the

More information

Compound Propositions

Compound Propositions Discrete Structures Compound Propositions Producing new propositions from existing propositions. Logical Operators or Connectives 1. Not 2. And 3. Or 4. Exclusive or 5. Implication 6. Biconditional Truth

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

Some Review Problems for Exam 1: Solutions

Some Review Problems for Exam 1: Solutions Math 3355 Fall 2018 Some Review Problems for Exam 1: Solutions Here is my quick review of proof techniques. I will focus exclusively on propositions of the form p q, or more properly, x P (x) Q(x) or x

More information

Selected solutions for Homework 9

Selected solutions for Homework 9 Math 424 B / 574 B Due Wednesday, Dec 09 Autumn 2015 Selected solutions for Homework 9 This file includes solutions only to those problems we did not have time to cover in class. We need the following

More information

Limit Theorems. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Limit Theorems

Limit Theorems. MATH 464/506, Real Analysis. J. Robert Buchanan. Summer Department of Mathematics. J. Robert Buchanan Limit Theorems Limit s MATH 464/506, Real Analysis J. Robert Buchanan Department of Mathematics Summer 2007 Bounded Functions Definition Let A R, let f : A R, and let c R be a cluster point of A. We say that f is bounded

More information

MATH 409 Advanced Calculus I Lecture 7: Monotone sequences. The Bolzano-Weierstrass theorem.

MATH 409 Advanced Calculus I Lecture 7: Monotone sequences. The Bolzano-Weierstrass theorem. MATH 409 Advanced Calculus I Lecture 7: Monotone sequences. The Bolzano-Weierstrass theorem. Limit of a sequence Definition. Sequence {x n } of real numbers is said to converge to a real number a if for

More information

LAGRANGE MULTIPLIERS

LAGRANGE MULTIPLIERS LAGRANGE MULTIPLIERS MATH 195, SECTION 59 (VIPUL NAIK) Corresponding material in the book: Section 14.8 What students should definitely get: The Lagrange multiplier condition (one constraint, two constraints

More information

Structural Induction

Structural Induction Structural Induction In this lecture we ll extend the applicability of induction to many universes, ones where we can define certain kinds of objects by induction, in addition to proving their properties

More information

We last time we began introducing equivalency laws.

We last time we began introducing equivalency laws. Monday, January 14 MAD2104 Discrete Math 1 Course website: www/mathfsuedu/~wooland/mad2104 Today we will continue in Course Notes Chapter 22 We last time we began introducing equivalency laws Today we

More information

Lecture 6: Finite Fields

Lecture 6: Finite Fields CCS Discrete Math I Professor: Padraic Bartlett Lecture 6: Finite Fields Week 6 UCSB 2014 It ain t what they call you, it s what you answer to. W. C. Fields 1 Fields In the next two weeks, we re going

More information

Math Lecture 4 Limit Laws

Math Lecture 4 Limit Laws Math 1060 Lecture 4 Limit Laws Outline Summary of last lecture Limit laws Motivation Limits of constants and the identity function Limits of sums and differences Limits of products Limits of polynomials

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Distinguish between a theorem, an axiom, lemma, a corollary, and a conjecture. Recognize direct proofs

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Having completed our study of Lebesgue measure, we are now ready to consider the Lebesgue integral. Before diving into the details of its construction, though, we would like to give

More information

- involve reasoning to a contradiction. 1. Emerson is the tallest. On the assumption that the second statement is the true one, we get: 2. 3.

- involve reasoning to a contradiction. 1. Emerson is the tallest. On the assumption that the second statement is the true one, we get: 2. 3. Math 61 Section 3.1 Indirect Proof A series of lessons in a subject that contradicted each other would make that subject very confusing. Yet, in reasoning deductively in geometry, it is sometimes helpful

More information

MATH 3283W L A TEX project template

MATH 3283W L A TEX project template MATH 3283W L A TEX project template Your Name Spring 208 Section Title The odds are that you won t need sections in your writing project, but this template includes a few section headers, so that you can

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 6 B) 14 C) 10 D) Does not exist

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 6 B) 14 C) 10 D) Does not exist Assn 3.1-3.3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the limit, if it exists. 1) Find: lim x -1 6x + 5 5x - 6 A) -11 B) - 1 11 C)

More information