Lecture 23: Analysis of Boolean Functions

Size: px
Start display at page:

Download "Lecture 23: Analysis of Boolean Functions"

Transcription

1 CCI-B609: A Theorist s Toolkit, Fall 016 Nov 9 Lecture 3: Analysis of Boolean Functions Lecturer: Yuan Zhou cribe: Haoyu Zhang 1 Introduction In this lecture, we will talk about boolean function f : {0, 1} n {0, 1} that maps n bits into a single bit. We will find that the boolean function is an abstract of all functions we use in computer science, since all computers are implemented by circuits which have on/off(0/1 two states. For our convenience, we use another represent of f, which is f : { 1, 1} n { 1, 1}, and in some more general cases f : { 1, 1} n R. Here are eamples of boolean functions. Majority function Majority function over 3 bits is defined as: maj 3 ( 1,, 3 = sgn( = { 1 if < 0 1 otherwise. Parity function Parity function over 3 bits is defined as: parity( 1,, 3 = 1 3. Note that, we could rewrite the majority function over 3 bits as maj 3 ( 1,, 3 = 1 ( ( ( ( ( 1 1 ( ( 1 1 (

2 Lecture 3: Analysis of Boolean Functions Epanding it out, we have maj 3 ( 1,, 3 = This is also called interpolation. In fact, we could epress all f : { 1, 1} n { 1, 1} in this way, which we will discuss later. Fourier Analysis for boolean functions We first define several notations we will use later. Definition 1. For each subset [n, let χ ( = i. i Definition. Inner product f, g { 1, 1} n R, let f, g = E f(g(. { 1,1} n Then, we will have the following lemma. Lemma 1. For, T [n, we have χ (, χ T ( = Proof. By our definition of inner product, { 0 if T 1 otherwise. χ (, χ T ( χ (χ T ( { 1,1} [ n i i i i T i [ i i T i T i T i, where T denotes their symmetric difference.

3 Lecture 3: Analysis of Boolean Functions 3 When = T, T =, so χ (, χ T ( = 1. When T, j T, such that E [ i T i [ i T,i j i E j [ j = 0. By the lemma, we know that χ ( for all [n are orthonormal basis, and we could represent any boolean function with the basis. Fact 1. All functions f { 1, 1} n R can be epressed in the following form uniquely f = [n f(χ (, where f( = f, χ (. The epression of f is called Fourier transform of f, and f( is called inner Fourier transform. With the Fourier transform, we could proof the following lemma. Lemma. (Parseval Identity For all, T [n, we have f( [f( = 1. [n Proof. E[f( f(χ ( f(t χ T ( [n T [n f( f(t χ (χ T ( =,T [n,t [n = f(. [n f( f(t E [χ (χ T (

4 Inf i (f = 1 [1 + i = 1 [ Lecture 3: Analysis of Boolean Functions 4 Net, we talk about a new concept. Definition 3. The influence of the variable i on the function f : { 1, 1} n { 1, 1} is Inf i (f = P r [f( f( i, where the i denotes the vector after a value change on the i-th bit of. Here are some eamples: Inf i (maj = Θ( 1 n, Inf i (parity = 1. Using the Fourier transform, we could epress the influence function into analytical form. Lemma 3. Inf i (f =, i f( Proof. 1 f(f( i Inf i (f = 1 1 E [f(f( i. Using the Fourier transform, we have E[f(f( i f(χ ( f(t χ T ( i [n T [n = f( f(t [ E χ (χ T ( i,t [n = f( + f(. i i Then we finally get f( i f( f( + i f( i f( =, i f(. Definition 4. Average sensitivity A(f = avginf i (f = [n n f(.

5 =,T,U Lecture 3: Analysis of Boolean Functions 5 3 Application: Property testing Now we consider an application of the Fourier transform of boolean functions. The property testing problem is, given a boolean function f : { 1, 1} n { 1, 1}, we want to test if it has a property P. Our goal is: find an algorithm, given f, the algorithm make q queries of f. If f has property P, the algorithm outputs accept with probability 1(completeness; the algorithm outputs reject with probability δ > 0 if f is ɛ-far from all g P (soundness. Here we define function f is ɛ-far from g, if dist(f, g = { : f( g(} n > ɛ. More specifically, we consider the problem of linearity testing, where P = {χ [n}. The algorithm in [BLR90 for linearity testing is: 1. Generate, y { 1, 1} n randomly.. If f(f(yf(y = 1, return accept. 3. Otherwise, return reject. We have 3 queries in this algorithm. The completeness of the algorithm is obvious: if f = χ, then χ (χ (yχ (y = 1. For the soundness, we have the following claim. Claim 1. If f is ɛ-far from all g P, Pr[ reject ɛ using algorithm in [BLR90 for linearity testing. Proof. Pr[ reject = Pr[f(f(yf(y = 1 1 f(f(yf(y,y = 1 1 E [f(f(yf(y,,y where [ E [f(f(yf(y,y,y,y [,T,U f(χ ( f(t χ T (y f(uχ U (y T U f( f(t f(uχ (χ T (yχ U (χ U (y f( f(t f(u E [χ (χ U ( E y [χ T (yχ U (y = f( 3.

6 Lecture 3: Analysis of Boolean Functions 6 If f is ɛ-far from all g P, assume Pr[ reject < ɛ, then we have ɛ > Pr[ reject = 1 1 f( 3, which indicates f( 3 > 1 ɛ. On the other hand, f( 3 f( ma { f(} = ma { f(}. Then we know that, =, such that f( > 1 ɛ. If we consider χ, 1 dist(f, f(χ = 1 1 f, χ = 1 1 f( < ɛ. This contradicts with the f is ɛ-far from all g P. Note that, we could boost the probability to high probability by repeating the algorithm O( 1 ɛ times. References [BLR90 Blum M, Luby M, Rubinfeld R. elf-testing/correcting with applications to numerical problems. Proceedings of the twenty-second annual ACM symposium on Theory of computing (TOC, 1990:

Lecture 8: Linearity and Assignment Testing

Lecture 8: Linearity and Assignment Testing CE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005) Lecture 8: Linearity and Assignment Testing 26 October 2005 Lecturer: Venkat Guruswami cribe: Paul Pham & Venkat Guruswami 1 Recap In

More information

Learning and Fourier Analysis

Learning and Fourier Analysis Learning and Fourier Analysis Grigory Yaroslavtsev http://grigory.us CIS 625: Computational Learning Theory Fourier Analysis and Learning Powerful tool for PAC-style learning under uniform distribution

More information

Sublinear Algorithms Lecture 3

Sublinear Algorithms Lecture 3 Sublinear Algorithms Lecture 3 Sofya Raskhodnikova Penn State University Thanks to Madhav Jha (Penn State) for help with creating these slides. Tentative Plan Lecture. Background. Testing properties of

More information

Lecture 4: LMN Learning (Part 2)

Lecture 4: LMN Learning (Part 2) CS 294-114 Fine-Grained Compleity and Algorithms Sept 8, 2015 Lecture 4: LMN Learning (Part 2) Instructor: Russell Impagliazzo Scribe: Preetum Nakkiran 1 Overview Continuing from last lecture, we will

More information

Lecture 22. m n c (k) i,j x i x j = c (k) k=1

Lecture 22. m n c (k) i,j x i x j = c (k) k=1 Notes on Complexity Theory Last updated: June, 2014 Jonathan Katz Lecture 22 1 N P PCP(poly, 1) We show here a probabilistically checkable proof for N P in which the verifier reads only a constant number

More information

Notes for Lecture 14 v0.9

Notes for Lecture 14 v0.9 U.C. Berkeley CS27: Computational Complexity Handout N14 v0.9 Professor Luca Trevisan 10/25/2002 Notes for Lecture 14 v0.9 These notes are in a draft version. Please give me any comments you may have,

More information

Lecture 5: Derandomization (Part II)

Lecture 5: Derandomization (Part II) CS369E: Expanders May 1, 005 Lecture 5: Derandomization (Part II) Lecturer: Prahladh Harsha Scribe: Adam Barth Today we will use expanders to derandomize the algorithm for linearity test. Before presenting

More information

2 Completing the Hardness of approximation of Set Cover

2 Completing the Hardness of approximation of Set Cover CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005) Lecture 15: Set Cover hardness and testing Long Codes Nov. 21, 2005 Lecturer: Venkat Guruswami Scribe: Atri Rudra 1 Recap We will first

More information

Lec. 11: Håstad s 3-bit PCP

Lec. 11: Håstad s 3-bit PCP Limits of Approximation Algorithms 15 April, 2010 (TIFR) Lec. 11: Håstad s 3-bit PCP Lecturer: Prahladh Harsha cribe: Bodhayan Roy & Prahladh Harsha In last lecture, we proved the hardness of label cover

More information

Testing Low-Degree Polynomials over GF (2)

Testing Low-Degree Polynomials over GF (2) Testing Low-Degree Polynomials over GF (2) Noga Alon Tali Kaufman Michael Krivelevich Simon Litsyn Dana Ron July 9, 2003 Abstract We describe an efficient randomized algorithm to test if a given binary

More information

Notes for Lecture 15

Notes for Lecture 15 U.C. Berkeley CS278: Computational Complexity Handout N15 Professor Luca Trevisan 10/27/2004 Notes for Lecture 15 Notes written 12/07/04 Learning Decision Trees In these notes it will be convenient to

More information

3 Finish learning monotone Boolean functions

3 Finish learning monotone Boolean functions COMS 6998-3: Sub-Linear Algorithms in Learning and Testing Lecturer: Rocco Servedio Lecture 5: 02/19/2014 Spring 2014 Scribes: Dimitris Paidarakis 1 Last time Finished KM algorithm; Applications of KM

More information

How Low Can Approximate Degree and Quantum Query Complexity be for Total Boolean Functions?

How Low Can Approximate Degree and Quantum Query Complexity be for Total Boolean Functions? How Low Can Approximate Degree and Quantum Query Complexity be for Total Boolean Functions? Andris Ambainis Ronald de Wolf Abstract It has long been known that any Boolean function that depends on n input

More information

1 Last time and today

1 Last time and today COMS 6253: Advanced Computational Learning Spring 2012 Theory Lecture 12: April 12, 2012 Lecturer: Rocco Servedio 1 Last time and today Scribe: Dean Alderucci Previously: Started the BKW algorithm for

More information

Lecture 13: Lower Bounds using the Adversary Method. 2 The Super-Basic Adversary Method [Amb02]

Lecture 13: Lower Bounds using the Adversary Method. 2 The Super-Basic Adversary Method [Amb02] Quantum Computation (CMU 18-859BB, Fall 015) Lecture 13: Lower Bounds using the Adversary Method October 1, 015 Lecturer: Ryan O Donnell Scribe: Kumail Jaffer 1 Introduction There are a number of known

More information

ANALYSIS OF BOOLEAN FUNCTIONS

ANALYSIS OF BOOLEAN FUNCTIONS ANALYSIS OF BOOLEAN FUNCTIONS draft version 0.2 (chapters 1 3) analysisofbooleanfunctions.org Ryan O Donnell Contents List of Notation Chapter 1. Boolean functions and the Fourier expansion 7 1.1. On

More information

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak; Topics in Theoretical Computer Science April 18, 2016 Lecturer: Ola Svensson Lecture 8 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Lecture 20: LP Relaxation and Approximation Algorithms. 1 Introduction. 2 Vertex Cover problem. CSCI-B609: A Theorist s Toolkit, Fall 2016 Nov 8

Lecture 20: LP Relaxation and Approximation Algorithms. 1 Introduction. 2 Vertex Cover problem. CSCI-B609: A Theorist s Toolkit, Fall 2016 Nov 8 CSCI-B609: A Theorist s Toolkit, Fall 2016 Nov 8 Lecture 20: LP Relaxation and Approximation Algorithms Lecturer: Yuan Zhou Scribe: Syed Mahbub Hafiz 1 Introduction When variables of constraints of an

More information

Proclaiming Dictators and Juntas or Testing Boolean Formulae

Proclaiming Dictators and Juntas or Testing Boolean Formulae Proclaiming Dictators and Juntas or Testing Boolean Formulae Michal Parnas The Academic College of Tel-Aviv-Yaffo Tel-Aviv, ISRAEL michalp@mta.ac.il Dana Ron Department of EE Systems Tel-Aviv University

More information

Quantum boolean functions

Quantum boolean functions Quantum boolean functions Ashley Montanaro 1 and Tobias Osborne 2 1 Department of Computer Science 2 Department of Mathematics University of Bristol Royal Holloway, University of London Bristol, UK London,

More information

Lecture 10: Learning DNF, AC 0, Juntas. 1 Learning DNF in Almost Polynomial Time

Lecture 10: Learning DNF, AC 0, Juntas. 1 Learning DNF in Almost Polynomial Time Analysis of Boolean Functions (CMU 8-859S, Spring 2007) Lecture 0: Learning DNF, AC 0, Juntas Feb 5, 2007 Lecturer: Ryan O Donnell Scribe: Elaine Shi Learning DNF in Almost Polynomial Time From previous

More information

Lecture 19: Simple Applications of Fourier Analysis & Convolution. Fourier Analysis

Lecture 19: Simple Applications of Fourier Analysis & Convolution. Fourier Analysis Lecture 19: Simple Applications of & Convolution Recall I Let f : {0, 1} n R be a function Let = 2 n Inner product of two functions is defined as follows f, g := 1 f (x)g(x) For S {0, 1} n, define the

More information

Lecture 3: Boolean Functions and the Walsh Hadamard Code 1

Lecture 3: Boolean Functions and the Walsh Hadamard Code 1 CS-E4550 Advanced Combinatorics in Computer Science Autumn 2016: Selected Topics in Complexity Theory Lecture 3: Boolean Functions and the Walsh Hadamard Code 1 1. Introduction The present lecture develops

More information

Lecture 7: ɛ-biased and almost k-wise independent spaces

Lecture 7: ɛ-biased and almost k-wise independent spaces Lecture 7: ɛ-biased and almost k-wise independent spaces Topics in Complexity Theory and Pseudorandomness (pring 203) Rutgers University wastik Kopparty cribes: Ben Lund, Tim Naumovitz Today we will see

More information

Learning and Fourier Analysis

Learning and Fourier Analysis Learning and Fourier Analysis Grigory Yaroslavtsev http://grigory.us Slides at http://grigory.us/cis625/lecture2.pdf CIS 625: Computational Learning Theory Fourier Analysis and Learning Powerful tool for

More information

CS369E: Communication Complexity (for Algorithm Designers) Lecture #8: Lower Bounds in Property Testing

CS369E: Communication Complexity (for Algorithm Designers) Lecture #8: Lower Bounds in Property Testing CS369E: Communication Complexity (for Algorithm Designers) Lecture #8: Lower Bounds in Property Testing Tim Roughgarden March 12, 2015 1 Property Testing We begin in this section with a brief introduction

More information

Lecture 1: 01/22/2014

Lecture 1: 01/22/2014 COMS 6998-3: Sub-Linear Algorithms in Learning and Testing Lecturer: Rocco Servedio Lecture 1: 01/22/2014 Spring 2014 Scribes: Clément Canonne and Richard Stark 1 Today High-level overview Administrative

More information

1 Lecture 6-7, Scribe: Willy Quach

1 Lecture 6-7, Scribe: Willy Quach Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola 1 Lecture 6-7, Scribe: Willy Quach In these lectures, we introduce k-wise indistinguishability and link this notion to the approximate

More information

6.842 Randomness and Computation April 2, Lecture 14

6.842 Randomness and Computation April 2, Lecture 14 6.84 Randomness and Computation April, 0 Lecture 4 Lecturer: Ronitt Rubinfeld Scribe: Aaron Sidford Review In the last class we saw an algorithm to learn a function where very little of the Fourier coeffecient

More information

Lecture 1: Introduction to Fourier Analysis. Lecture 2: Introduction to Some Convergence Theorems

Lecture 1: Introduction to Fourier Analysis. Lecture 2: Introduction to Some Convergence Theorems Lecture : Introduction to Fourier Analysis p.2, line 6: we now at a new instead of we now look at an new p.2, line -: Maybe X C instead of X C p.3, line 2: An is missing in the denominator, i.e. < χ j,χ

More information

CS 6815: Lecture 4. September 4, 2018

CS 6815: Lecture 4. September 4, 2018 XS = X s... X st CS 685: Lecture 4 Instructor: Eshan Chattopadhyay Scribe: Makis Arsenis and Ayush Sekhari September 4, 208 In this lecture, we will first see an algorithm to construct ɛ-biased spaces.

More information

Introduction Long transparent proofs The real PCP theorem. Real Number PCPs. Klaus Meer. Brandenburg University of Technology, Cottbus, Germany

Introduction Long transparent proofs The real PCP theorem. Real Number PCPs. Klaus Meer. Brandenburg University of Technology, Cottbus, Germany Santaló s Summer School, Part 3, July, 2012 joint work with Martijn Baartse (work supported by DFG, GZ:ME 1424/7-1) Outline 1 Introduction 2 Long transparent proofs for NP R 3 The real PCP theorem First

More information

A New Lower Bound Technique for Quantum Circuits without Ancillæ

A New Lower Bound Technique for Quantum Circuits without Ancillæ A New Lower Bound Technique for Quantum Circuits without Ancillæ Debajyoti Bera Abstract We present a technique to derive depth lower bounds for quantum circuits. The technique is based on the observation

More information

COS598D Lecture 3 Pseudorandom generators from one-way functions

COS598D Lecture 3 Pseudorandom generators from one-way functions COS598D Lecture 3 Pseudorandom generators from one-way functions Scribe: Moritz Hardt, Srdjan Krstic February 22, 2008 In this lecture we prove the existence of pseudorandom-generators assuming that oneway

More information

Analysis of Boolean Functions

Analysis of Boolean Functions Analysis of Boolean Functions Kavish Gandhi and Noah Golowich Mentor: Yufei Zhao 5th Annual MIT-PRIMES Conference Analysis of Boolean Functions, Ryan O Donnell May 16, 2015 1 Kavish Gandhi and Noah Golowich

More information

Property Testing Bounds for Linear and Quadratic Functions via Parity Decision Trees

Property Testing Bounds for Linear and Quadratic Functions via Parity Decision Trees Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 142 (2013) Property Testing Bounds for Linear and Quadratic Functions via Parity Decision Trees Abhishek Bhrushundi 1, Sourav

More information

CSCI-B609: A Theorist s Toolkit, Fall 2016 Oct 4. Theorem 1. A non-zero, univariate polynomial with degree d has at most d roots.

CSCI-B609: A Theorist s Toolkit, Fall 2016 Oct 4. Theorem 1. A non-zero, univariate polynomial with degree d has at most d roots. CSCI-B609: A Theorist s Toolkit, Fall 2016 Oct 4 Lecture 14: Schwartz-Zippel Lemma and Intro to Coding Theory Lecturer: Yuan Zhou Scribe: Haoyu Zhang 1 Roots of polynomials Theorem 1. A non-zero, univariate

More information

6.895 Randomness and Computation March 19, Lecture Last Lecture: Boosting Weak Learners Into Strong Learners

6.895 Randomness and Computation March 19, Lecture Last Lecture: Boosting Weak Learners Into Strong Learners 6.895 Randomness and Computation March 9, 2008 Lecture 3 Lecturer: Ronitt Rubinfeld Scribe: Edwin Chen Overview. Last Lecture: Boosting Weak Learners Into Strong Learners In the last two lectures, we showed

More information

Notes for Lecture 25

Notes for Lecture 25 U.C. Berkeley CS278: Computational Complexity Handout N25 ofessor Luca Trevisan 12/1/2004 Notes for Lecture 25 Circuit Lower Bounds for Parity Using Polynomials In this lecture we prove a lower bound on

More information

CS359G Lecture 5: Characters of Abelian Groups

CS359G Lecture 5: Characters of Abelian Groups 4/25/2011 CS359G Lecture 5: Characters of Abelia in theory "Marge, I agree with you - in theory. In theory, communism works. In theory." -- Homer Simpson CS359G Lecture 5: Characters of Abelian Groups

More information

Lecture 9: March 26, 2014

Lecture 9: March 26, 2014 COMS 6998-3: Sub-Linear Algorithms in Learning and Testing Lecturer: Rocco Servedio Lecture 9: March 26, 204 Spring 204 Scriber: Keith Nichols Overview. Last Time Finished analysis of O ( n ɛ ) -query

More information

Unconditional Lower Bounds for Learning Intersections of Halfspaces

Unconditional Lower Bounds for Learning Intersections of Halfspaces Unconditional Lower Bounds for Learning Intersections of Halfspaces Adam R. Klivans Alexander A. Sherstov The University of Texas at Austin Department of Computer Sciences Austin, TX 78712 USA {klivans,sherstov}@cs.utexas.edu

More information

CS Foundations of Communication Complexity

CS Foundations of Communication Complexity CS 49 - Foundations of Communication Complexity Lecturer: Toniann Pitassi 1 The Discrepancy Method Cont d In the previous lecture we ve outlined the discrepancy method, which is a method for getting lower

More information

Testing by Implicit Learning

Testing by Implicit Learning Testing by Implicit Learning Rocco Servedio Columbia University ITCS Property Testing Workshop Beijing January 2010 What this talk is about 1. Testing by Implicit Learning: method for testing classes of

More information

Math 31A Discussion Session Week 1 Notes January 5 and 7, 2016

Math 31A Discussion Session Week 1 Notes January 5 and 7, 2016 Math 31A Discussion Session Week 1 Notes January 5 and 7, 2016 This week we re discussing two important topics: its and continuity. We won t give a completely rigorous definition of either, but we ll develop

More information

Yale University Department of Computer Science

Yale University Department of Computer Science Yale University Department of Computer Science Lower Bounds on Learning Random Structures with Statistical Queries Dana Angluin David Eisenstat Leonid (Aryeh) Kontorovich Lev Reyzin YALEU/DCS/TR-42 December

More information

On the Structure of Boolean Functions with Small Spectral Norm

On the Structure of Boolean Functions with Small Spectral Norm On the Structure of Boolean Functions with Small Spectral Norm Amir Shpilka Ben lee Volk Abstract In this paper we prove results regarding Boolean functions with small spectral norm (the spectral norm

More information

Lecture Notes on Linearity (Group Homomorphism) Testing

Lecture Notes on Linearity (Group Homomorphism) Testing Lecture Notes on Linearity (Group Homomorphism) Testing Oded Goldreich April 5, 2016 Summary: These notes present a linearity tester that, on input a description of two groups G,H and oracle access to

More information

Lecture 2: Basics of Harmonic Analysis. 1 Structural properties of Boolean functions (continued)

Lecture 2: Basics of Harmonic Analysis. 1 Structural properties of Boolean functions (continued) CS 880: Advanced Complexity Theory 1/25/2008 Lecture 2: Basics of Harmonic Analysis Instructor: Dieter van Melkebeek Scribe: Priyananda Shenoy In the last lecture, we mentioned one structural property

More information

Lecture 22: Hyperplane Rounding for Max-Cut SDP

Lecture 22: Hyperplane Rounding for Max-Cut SDP CSCI-B609: A Theorist s Toolkit, Fall 016 Nov 17 Lecture : Hyperplane Rounding for Max-Cut SDP Lecturer: Yuan Zhou Scribe: Adithya Vadapalli 1 Introduction In the previous lectures we had seen the max-cut

More information

: Error Correcting Codes. December 2017 Lecture 10

: Error Correcting Codes. December 2017 Lecture 10 0368307: Error Correcting Codes. December 017 Lecture 10 The Linear-Programming Bound Amnon Ta-Shma and Dean Doron 1 The LP-bound We will prove the Linear-Programming bound due to [, 1], which gives an

More information

Homomorphism Testing

Homomorphism Testing Homomorphism Shpilka & Wigderson, 2006 Daniel Shahaf Tel-Aviv University January 2009 Table of Contents 1 2 3 1 / 26 Algebra Definitions 1 Algebra Definitions 2 / 26 Groups Algebra Definitions Definition

More information

Tolerant Versus Intolerant Testing for Boolean Properties

Tolerant Versus Intolerant Testing for Boolean Properties Tolerant Versus Intolerant Testing for Boolean Properties Eldar Fischer Faculty of Computer Science Technion Israel Institute of Technology Technion City, Haifa 32000, Israel. eldar@cs.technion.ac.il Lance

More information

Analysis of Boolean Functions

Analysis of Boolean Functions Analysis of Boolean Functions Notes from a series of lectures by Ryan O Donnell Barbados Workshop on Computational Complexity February 26th March 4th, 2012 Scribe notes by Li-Yang Tan Contents 1 Linearity

More information

Approximating MAX-E3LIN is NP-Hard

Approximating MAX-E3LIN is NP-Hard Approximating MAX-E3LIN is NP-Hard Evan Chen May 4, 2016 This lecture focuses on the MAX-E3LIN problem. We prove that approximating it is NP-hard by a reduction from LABEL-COVER. 1 Introducing MAX-E3LIN

More information

Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2013) Andrew Childs, University of Waterloo LECTURE 13: Query complexity and the polynomial method

Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2013) Andrew Childs, University of Waterloo LECTURE 13: Query complexity and the polynomial method Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2013) Andrew Childs, University of Waterloo LECTURE 13: Query complexity and the polynomial method So far, we have discussed several different kinds of

More information

Tolerant Versus Intolerant Testing for Boolean Properties

Tolerant Versus Intolerant Testing for Boolean Properties Electronic Colloquium on Computational Complexity, Report No. 105 (2004) Tolerant Versus Intolerant Testing for Boolean Properties Eldar Fischer Lance Fortnow November 18, 2004 Abstract A property tester

More information

Learning DNF from Random Walks

Learning DNF from Random Walks Learning DNF from Random Walks Nader Bshouty Department of Computer Science Technion bshouty@cs.technion.ac.il Ryan O Donnell Institute for Advanced Study Princeton, NJ odonnell@theory.lcs.mit.edu Elchanan

More information

+ ɛ Hardness for Max-E3Lin

+ ɛ Hardness for Max-E3Lin Advanced Approximation Algorithms (CMU 5-854B, Spring 008) Lecture : δ vs. + ɛ Hardness for Max-E3Lin April 8, 008 Lecturer: Ryan O Donnell Scribe: Jonah Sherman Recap In this lecture, we finish the hardness

More information

Lecture 3 Small bias with respect to linear tests

Lecture 3 Small bias with respect to linear tests 03683170: Expanders, Pseudorandomness and Derandomization 3/04/16 Lecture 3 Small bias with respect to linear tests Amnon Ta-Shma and Dean Doron 1 The Fourier expansion 1.1 Over general domains Let G be

More information

Lecture 15: A Brief Look at PCP

Lecture 15: A Brief Look at PCP IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 15: A Brief Look at PCP David Mix Barrington and Alexis Maciel August 4, 2000 1. Overview

More information

The sum of d small-bias generators fools polynomials of degree d

The sum of d small-bias generators fools polynomials of degree d The sum of d small-bias generators fools polynomials of degree d Emanuele Viola April 9, 2008 Abstract We prove that the sum of d small-bias generators L : F s F n fools degree-d polynomials in n variables

More information

Lecture 7: Spectral Graph Theory II

Lecture 7: Spectral Graph Theory II A Theorist s Toolkit (CMU 18-859T, Fall 2013) Lecture 7: Spectral Graph Theory II September 30, 2013 Lecturer: Ryan O Donnell Scribe: Christian Tjandraatmadja 1 Review We spend a page to review the previous

More information

Lecture 5: February 16, 2012

Lecture 5: February 16, 2012 COMS 6253: Advanced Computational Learning Theory Lecturer: Rocco Servedio Lecture 5: February 16, 2012 Spring 2012 Scribe: Igor Carboni Oliveira 1 Last time and today Previously: Finished first unit on

More information

Self-Testing Polynomial Functions Efficiently and over Rational Domains

Self-Testing Polynomial Functions Efficiently and over Rational Domains Chapter 1 Self-Testing Polynomial Functions Efficiently and over Rational Domains Ronitt Rubinfeld Madhu Sudan Ý Abstract In this paper we give the first self-testers and checkers for polynomials over

More information

A Noisy-Influence Regularity Lemma for Boolean Functions Chris Jones

A Noisy-Influence Regularity Lemma for Boolean Functions Chris Jones A Noisy-Influence Regularity Lemma for Boolean Functions Chris Jones Abstract We present a regularity lemma for Boolean functions f : {, } n {, } based on noisy influence, a measure of how locally correlated

More information

Uniform-Distribution Attribute Noise Learnability

Uniform-Distribution Attribute Noise Learnability Uniform-Distribution Attribute Noise Learnability Nader H. Bshouty Dept. Computer Science Technion Haifa 32000, Israel bshouty@cs.technion.ac.il Jeffrey C. Jackson Math. & Comp. Science Dept. Duquesne

More information

Testing Computability by Width Two OBDDs

Testing Computability by Width Two OBDDs Testing Computability by Width Two OBDDs Dana Ron School of EE Tel-Aviv University Ramat Aviv, Israel danar@eng.tau.ac.il Gilad Tsur School of EE Tel-Aviv University Ramat Aviv, Israel giladt@post.tau.ac.il

More information

Uniform-Distribution Attribute Noise Learnability

Uniform-Distribution Attribute Noise Learnability Uniform-Distribution Attribute Noise Learnability Nader H. Bshouty Technion Haifa 32000, Israel bshouty@cs.technion.ac.il Christino Tamon Clarkson University Potsdam, NY 13699-5815, U.S.A. tino@clarkson.edu

More information

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity Cell-obe oofs and Nondeterministic Cell-obe Complexity Yitong Yin Department of Computer Science, Yale University yitong.yin@yale.edu. Abstract. We study the nondeterministic cell-probe complexity of static

More information

Separating Models of Learning from Correlated and Uncorrelated Data

Separating Models of Learning from Correlated and Uncorrelated Data Separating Models of Learning from Correlated and Uncorrelated Data Ariel Elbaz, Homin K. Lee, Rocco A. Servedio, and Andrew Wan Department of Computer Science Columbia University {arielbaz,homin,rocco,atw12}@cs.columbia.edu

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

A Self-Tester for Linear Functions over the Integers with an Elementary Proof of Correctness

A Self-Tester for Linear Functions over the Integers with an Elementary Proof of Correctness A Self-Tester for Linear Functions over the Integers with an Elementary Proof of Correctness The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

Notes for Lecture 11

Notes for Lecture 11 Stanford University CS254: Computational Complexity Notes 11 Luca Trevisan 2/11/2014 Notes for Lecture 11 Circuit Lower Bounds for Parity Using Polynomials In this lecture we prove a lower bound on the

More information

Lecture 18: PCP Theorem and Hardness of Approximation I

Lecture 18: PCP Theorem and Hardness of Approximation I Lecture 18: and Hardness of Approximation I Arijit Bishnu 26.04.2010 Outline 1 Introduction to Approximation Algorithm 2 Outline 1 Introduction to Approximation Algorithm 2 Approximation Algorithm Approximation

More information

Exact and heuristic minimization of Boolean functions

Exact and heuristic minimization of Boolean functions Eact and heuristic minimization of Boolean functions Quine a McCluskey Method a) Generation of all prime implicants b) Selection of a minimum subset of prime implicants, which will represent the original

More information

Highly resilient correctors for polynomials

Highly resilient correctors for polynomials Highly resilient correctors for polynomials Peter Gemmell Madhu Sudan Abstract We consider the problem of correcting programs that compute multivariate polynomials over large finite fields and give an

More information

New Results for Random Walk Learning

New Results for Random Walk Learning Journal of Machine Learning Research 15 (2014) 3815-3846 Submitted 1/13; Revised 5/14; Published 11/14 New Results for Random Walk Learning Jeffrey C. Jackson Karl Wimmer Duquesne University 600 Forbes

More information

Frame Wavelet Sets in R d

Frame Wavelet Sets in R d Frame Wavelet Sets in R d X. DAI, Y. DIAO Department of Mathematics University of North Carolina at Charlotte Charlotte, NC 28223 xdai@uncc.edu Q. GU Department of Mathematics Each China Normal University

More information

Settling the Query Complexity of Non-Adaptive Junta Testing

Settling the Query Complexity of Non-Adaptive Junta Testing Settling the Query Complexity of Non-Adaptive Junta Testing Erik Waingarten, Columbia University Based on joint work with Xi Chen (Columbia University) Rocco Servedio (Columbia University) Li-Yang Tan

More information

COMS E F15. Lecture 22: Linearity Testing Sparse Fourier Transform

COMS E F15. Lecture 22: Linearity Testing Sparse Fourier Transform COMS E6998-9 F15 Lecture 22: Linearity Testing Sparse Fourier Transform 1 Administrivia, Plan Thu: no class. Happy Thanksgiving! Tue, Dec 1 st : Sergei Vassilvitskii (Google Research) on MapReduce model

More information

Building Assignment Testers DRAFT

Building Assignment Testers DRAFT Building Assignment Testers DRAFT Andrew Drucker University of California, San Diego Abstract In this expository paper, we show how to construct Assignment Testers using the Hadamard and quadratic encodings.

More information

Workshop on Discrete Harmonic Analysis Newton Institute, March 2011

Workshop on Discrete Harmonic Analysis Newton Institute, March 2011 High frequency criteria for Boolean functions (with an application to percolation) Christophe Garban ENS Lyon and CNRS Workshop on Discrete Harmonic Analysis Newton Institute, March 2011 C. Garban (ENS

More information

Theoretical Cryptography, Lectures 18-20

Theoretical Cryptography, Lectures 18-20 Theoretical Cryptography, Lectures 18-20 Instructor: Manuel Blum Scribes: Ryan Williams and Yinmeng Zhang March 29, 2006 1 Content of the Lectures These lectures will cover how someone can prove in zero-knowledge

More information

Lecture 3: Lower bound on statistically secure encryption, extractors

Lecture 3: Lower bound on statistically secure encryption, extractors CS 7880 Graduate Cryptography September, 015 Lecture 3: Lower bound on statistically secure encryption, extractors Lecturer: Daniel Wichs Scribe: Giorgos Zirdelis 1 Topics Covered Statistical Secrecy Randomness

More information

Testing for Concise Representations

Testing for Concise Representations Testing for Concise Representations Ilias Diakonikolas Columbia University ilias@cs.columbia.edu Ronitt Rubinfeld MIT ronitt@theory.csail.mit.edu Homin K. Lee Columbia University homin@cs.columbia.edu

More information

On the correlation of parity and small-depth circuits

On the correlation of parity and small-depth circuits Electronic Colloquium on Computational Complexity, Report No. 137 (2012) On the correlation of parity and small-depth circuits Johan Håstad KTH - Royal Institute of Technology November 1, 2012 Abstract

More information

Multi-Linearity Self-Testing with Relative Error

Multi-Linearity Self-Testing with Relative Error Theory of Computing Systems manuscript No (will be inserted by the editor) Multi-Linearity Self-Testing with Relative Error Frédéric Magniez CNRS LRI, Université Paris Sud, 91405 Orsay, France, e-mail:

More information

Lecture 6: Random Walks versus Independent Sampling

Lecture 6: Random Walks versus Independent Sampling Spectral Graph Theory and Applications WS 011/01 Lecture 6: Random Walks versus Independent Sampling Lecturer: Thomas Sauerwald & He Sun For many problems it is necessary to draw samples from some distribution

More information

6.842 Randomness and Computation March 3, Lecture 8

6.842 Randomness and Computation March 3, Lecture 8 6.84 Randomness and Computation March 3, 04 Lecture 8 Lecturer: Ronitt Rubinfeld Scribe: Daniel Grier Useful Linear Algebra Let v = (v, v,..., v n ) be a non-zero n-dimensional row vector and P an n n

More information

Upper Bounds on Fourier Entropy

Upper Bounds on Fourier Entropy Upper Bounds on Fourier Entropy Sourav Chakraborty 1, Raghav Kulkarni 2, Satyanarayana V. Lokam 3, and Nitin Saurabh 4 1 Chennai Mathematical Institute, Chennai, India sourav@cmi.ac.in 2 Centre for Quantum

More information

Lecture 1. A PCP(r, p) system for a language L is an interactive proof system between a Prover and a Verifier and is done as follows:

Lecture 1. A PCP(r, p) system for a language L is an interactive proof system between a Prover and a Verifier and is done as follows: Lectures on the PCP Theorems Lecturer: Partha Mukhopadhyay Lecture 1 Course Instructor: V. Arvind Scribe: Ramprasad Saptharishi We shall be following the notes of Venkatesan Guruswami s course titled The

More information

2. The Concept of Convergence: Ultrafilters and Nets

2. The Concept of Convergence: Ultrafilters and Nets 2. The Concept of Convergence: Ultrafilters and Nets NOTE: AS OF 2008, SOME OF THIS STUFF IS A BIT OUT- DATED AND HAS A FEW TYPOS. I WILL REVISE THIS MATE- RIAL SOMETIME. In this lecture we discuss two

More information

Tool: Linearity Testing and the Walsh-Hadamard Code

Tool: Linearity Testing and the Walsh-Hadamard Code 11.5 NP PCP(poly(n), 1): PCPfromtheWalsh-Hadamardcode 215 compute this mapping. We call reductions with these properties Levin reductions (see the proof of Theorem 2.18). It is worthwhile to observe that

More information

Testing Monotone High-Dimensional Distributions

Testing Monotone High-Dimensional Distributions Testing Monotone High-Dimensional Distributions Ronitt Rubinfeld Computer Science & Artificial Intelligence Lab. MIT Cambridge, MA 02139 ronitt@theory.lcs.mit.edu Rocco A. Servedio Department of Computer

More information

Testing Linear-Invariant Function Isomorphism

Testing Linear-Invariant Function Isomorphism Testing Linear-Invariant Function Isomorphism Karl Wimmer and Yuichi Yoshida 2 Duquesne University 2 National Institute of Informatics and Preferred Infrastructure, Inc. wimmerk@duq.edu,yyoshida@nii.ac.jp

More information

2 A Fourier Transform for Bivariate Functions

2 A Fourier Transform for Bivariate Functions Stanford University CS59Q: Quantum Computing Handout 0 Luca Trevisan October 5, 0 Lecture 0 In which we present a polynomial time quantum algorithm for the discrete logarithm problem. The Discrete Log

More information

Linear sketching for Functions over Boolean Hypercube

Linear sketching for Functions over Boolean Hypercube Linear sketching for Functions over Boolean Hypercube Grigory Yaroslavtsev (Indiana University, Bloomington) http://grigory.us with Sampath Kannan (U. Pennsylvania), Elchanan Mossel (MIT) and Swagato Sanyal

More information

An Introduction to Analysis of Boolean functions

An Introduction to Analysis of Boolean functions An Introduction to Analysis of Boolean functions Mohammad Bavarian Massachusetts Institute of Technology 1 Introduction The focus of much of harmonic analysis is the study of functions, and operators on

More information