Logic and Reasoning in the Semantic Web (part II OWL)

Size: px
Start display at page:

Download "Logic and Reasoning in the Semantic Web (part II OWL)"

Transcription

1 Logic and Reasoning in the Semantic Web (part II OWL) Fulvio Corno, Laura Farinetti Politecnico di Torino Dipartimento di Automatica e Informatica e-lite Research Group

2 Outline Reasoning in Semantic Web Knowledge Bases RDF/RDFS Semantics and Entailments OWL Semantics Pellet Part II F. Corno, L. Farinetti - Politecnico di Torino 2

3 Outline Reasoning in Semantic Web Knowledge Bases RDF/RDFS Semantics and Entailments OWL Semantics Pellet F. Corno, L. Farinetti - Politecnico di Torino 3

4 OWL supports Superset of RDF/RDFS Fact stating facilities from RDF Class property structuring from RDF Schema New logical operators Boolean operators Property hierarchies Properties can be defined transitive, functional, inverse... Individuals can be defined instances Equivalence and disjointness statements on classes Equivalence statements on properties Equality and inequality can be asserted between individuals F. Corno, L. Farinetti - Politecnico di Torino 4

5 OWL keywords F. Corno, L. Farinetti - Politecnico di Torino 5

6 RDFS vs OWL In RDFS you can: declare classes like Artist, Museum or Paintings state that Painter is a subclass of Artist state that rembrandt is an instances of class Painter state that haspainted is a property, with domain Painter and range Painting. state that rembrand is an instance of Dutchman with deathdate value F. Corno, L. Farinetti - Politecnico di Torino 6

7 RDFS vs OWL In OWL you can also: state that Country and Person are disjoint classes state that the nl and england are distinct individuals of the class Country declare haspainted as inverse property of paintedby state that the class stateless is defined as those members of the class Person that have no values for the property nationality state that the class Canadian is defined as those members of the class Person that have canada as a value of the property nationality state that age is a functional property. F. Corno, L. Farinetti - Politecnico di Torino 7

8 And now? OWL comes with 2 formal reasoning systems OWL-Lite with 1st-order logic OWL-DL with Description Logic We can reason by combining Available ontologies Available facts F. Corno, L. Farinetti - Politecnico di Torino 8

9 The ingredients Ontology (e.g., in OWL-DL) Facts (e.g., objects and instances) A reasoning algorithm (for DL) A reasoning engine A way to express queries A way to present results F. Corno, L. Farinetti - Politecnico di Torino 9

10 Description logic F. Corno, L. Farinetti - Politecnico di Torino 10

11 OWL-DL Semantics The semantics of OWL-DL constructs is derived by the corresponding Description Logic operators. The formal definition is extremely concise not so straightforward to understand! F. Corno, L. Farinetti - Politecnico di Torino 11

12 F. Corno, L. Farinetti - Politecnico di Torino 12

13 F. Corno, L. Farinetti - Politecnico di Torino 13

14 OWL Formal semantics Ingredients: Vocabularies Vxx Mapping functions (which provide meaning ) EC, ER Interpretation of syntax constructs Interpretation of axioms and facts

15 Interpretation of constructs Abstract Syntax Interpretation (value of EC) complementof(c) O - EC(c) unionof(c 1 c n ) EC(c 1 ) EC(c n ) intersectionof(c 1 c n ) EC(c 1 ) EC(c n ) oneof(i 1 i n ), for i j individual IDs {S(i 1 ),, S(i n )} oneof(v 1 v n ), for v j literals {S(v 1 ),, S(v n )} restriction(p x 1 x n ), for n > 1 EC(restriction(p x 1 )) EC(restriction(p x n )) restriction(p allvaluesfrom(r)) restriction(p somevaluesfrom(e)) restriction(p value(i)), for i an individual ID restriction(p value(v)), for v a literal {x O <x,y> ER(p) implies y EC(r)} {x O <x,y> ER(p) y EC(e)} {x O <x,s(i)> ER(p)} {x O <x,s(v)> ER(p)} restriction(p mincardinality(n)) {x O card({y O LV : <x,y> ER(p)}) n} restriction(p maxcardinality(n)) {x O card({y O LV : <x,y> ER(p)}) n} restriction(p cardinality(n)) {x O card({y O LV : <x,y> ER(p)}) = n} Individual(annotation(p 1 o 1 ) annotation(p k o k ) type(c 1 ) type(c m ) pv 1 pv n ) Individual(i annotation(p 1 o 1 ) annotation(p k o k ) type(c 1 ) type(c m ) pv 1 pv n ) value(p Individual( )) EC(annotation(p 1 o 1 )) EC(annotation(p k o k )) EC(c 1 ) EC(c m ) EC(pv 1 ) EC(pv n ) value(p id) for id an individual ID {x O <x,s(id)> ER(p) } value(p v) for v a literal {x O <x,s(v)> ER(p) } annotation(p o) for o a URI reference {x R <x,s(o)> ER(p) } {S(i)} EC(annotation(p 1 o 1 )) EC(annotation(p k o k )) EC(c 1 ) EC(c m ) EC(pv 1 ) EC(pv n ) {x O y EC(Individual( )) : <x,y> ER(p)} annotation(p Individual( )) {x R y EC(Individual( )) : <x,y> ER(p) }

16 Interpretation of axioms and facts I Directive Conditions on interpretations Class(c complete S(c) EC(annotation(p 1 o 1 )) S(c) annotation(p 1 o 1 ) annotation(p k o k ) EC(annotation(p k o k )) descr 1 descr n ) EC(c) = EC(descr 1 ) EC(descr n ) Class(c partial S(c) EC(annotation(p 1 o 1 )) S(c) annotation(p 1 o 1 ) annotation(p k o k ) EC(annotation(p k o k )) descr 1 descr n ) EC(c) EC(descr 1 ) EC(descr n ) EnumeratedClass(c S(c) EC(annotation(p 1 o 1 )) S(c) annotation(p 1 o 1 ) annotation(p k o k ) EC(annotation(p k o k )) i 1 i n ) EC(c) = { S(i 1 ),, S(i n ) } Datatype(c S(c) EC(annotation(p 1 o 1 )) S(c) annotation(p 1 o 1 ) annotation(p k o k ) ) EC(annotation(p k o k )) EC(c) LV DisjointClasses(d 1 d n ) EC(d i ) EC(d j ) = { } for 1 i < j n EquivalentClasses(d 1 d n ) EC(d i ) = EC(d j ) for 1 i < j n SubClassOf(d 1 d 2 ) EC(d 1 ) EC(d 2 ) DatatypeProperty(p S(p) EC(annotation(p 1 o 1 )) S(p) annotation(p 1 o 1 ) annotation(p k o k ) EC(annotation(p k o k )) super(s 1 ) super(s n ) ER(p) O LV ER(s 1 ) ER(s n ) domain(d 1 ) domain(d n ) range(r 1 ) range( EC(d 1 ) LV EC(d n ) LV O EC(r 1 ) r n ) O EC(r n ) [Functional]) [ER(p) is functional]

17 Interpretation of axioms and facts II Directive Conditions on interpretations ObjectProperty(p S(p) EC(annotation(p 1 o 1 )) S(p) annotation(p 1 o 1 ) annotation(p k o k ) EC(annotation(p k o k )) super(s 1 ) super(s n ) ER(p) O O ER(s 1 ) ER(s n ) domain(d 1 ) domain(d n ) range(r 1 ) range( EC(d 1 ) O EC(d n ) O O EC(r 1 ) r n ) O EC(r n ) [inverse(i)] [Symmetric] [ER(p) is the inverse of ER(i)] [ER(p) is [Functional] [ InverseFunctional] symmetric] [Transitive]) [ER(p) is functional] [ER(p) is inverse functional] [ER(p) is transitive] AnnotationProperty(p annotation(p 1 o 1 ) annot S(p) EC(annotation(p 1 o 1 )) S(p) ation(p k o k )) EC(annotation(p k o k )) OntologyProperty(p annotation(p 1 o 1 ) annotat S(p) EC(annotation(p 1 o 1 )) S(p) ion(p k o k )) EC(annotation(p k o k )) EquivalentProperties(p 1 p n ) ER(p i ) = ER(p j ) for 1 i < j n SubPropertyOf(p 1 p 2 ) ER(p 1 ) ER(p 2 ) SameIndividual(i 1 i n ) S(i j ) = S(i k ) for 1 j < k n DifferentIndividuals(i 1 i n ) S(i j ) S(i k ) for 1 j < k n Individual([i] annotation(p 1 o 1 ) annotation(p k o EC(Individual([i] annotation(p 1 o 1 ) annotation( k) p k o k ) type(c 1 ) type(c m ) pv 1 pv n ) type(c 1 ) type(c m ) pv 1 pv n )) is nonempty

18 Definitions (I) Let D be a datatype map. An Abstract OWL interpretation, I, with respect to D with vocabulary consisting of V L, V C, V D, V I, V DP, V IP, V AP, V O, satisfies an OWL ontology, O, iff each URI reference in O used as a class ID (datatype ID, individual ID, data-valued property ID, individual-valued property ID, annotation property ID, annotation ID, ontology ID) belongs to V C (V D, V I, V DP, V IP, V AP, V O, respectively); each literal in O belongs to V L ; I satisfies each directive in O, except for Ontology Annotations; there is some o R with <o,s(owl:ontology)> ER(rdf:type) such that for each Ontology Annotation of the form Annotation(p v), <o,s(v)> ER(p) and that if O has name n, then S(n) = o; I satisfies each ontology mentioned in an owl:imports annotation directive of O.

19 Definitions (II) A collection of abstract OWL ontologies and axioms and facts is consistent with respect to datatype map D iff there is some interpretation I with respect to D such that I satisfies each ontology and axiom and fact in the collection. A collection O of abstract OWL ontologies and axioms and facts entails an abstract OWL ontology or axiom or fact O' with respect to a datatype map D if each interpretation with respect to map D that satisfies each ontology and axiom and fact in O also satisfies O'.

20 Reasoning With the definition of the semantics, we may now define some reasoning metods Reasoning on the structure of the ontology Reasoning on relationships among classes Reasoning on instances

21 F. Corno, L. Farinetti - Politecnico di Torino 21

22 F. Corno, L. Farinetti - Politecnico di Torino 22

23 F. Corno, L. Farinetti - Politecnico di Torino 23

24 Is this applicable? Logic = Perfect reasoning under perfect conditions therefore unlimited time homogeneous knowledge correct and consistent knowledge F. Corno, L. Farinetti - Politecnico di Torino 24

25 Is Logic good? Pro Strong theoretical basis Well known properties Well known implementation techniques Con Strict (no good enough answers) Abrupt (no intermediate answers) Inefficient (no time/quality trade-off) F. Corno, L. Farinetti - Politecnico di Torino 25

26 Practical limitations Terminologies will be sloppy Made by non-experts Made by machines Inference rules break! No standard vocabulary Communication problems Need approximate equivalence Computational explosion F. Corno, L. Farinetti - Politecnico di Torino 26

27 Outline Reasoning in Semantic Web Knowledge Bases RDF/RDFS Semantics and Entailments OWL Semantics Pellet F. Corno, L. Farinetti - Politecnico di Torino 27

28 Pellet: an OWL-DL Reasoner Pellet is a complete and feature-rich reasoner for OWL-DL Available open-source at Available standalone, or integrated with the major ontology development environments (including Protégé) F. Corno, L. Farinetti - Politecnico di Torino 28

29 What is an OWL-DL reasoner The official normative definition: An OWL consistency checker takes a document as input, and returns one word being Consistent, Inconsistent, or Unknown. [J. J. Carroll, J. D. Roo, OWL Web Ontology Language Test Cases, W3C Recommendation (2004).] Rather restrictive... and not very useful for ontology development, debug and querying F. Corno, L. Farinetti - Politecnico di Torino 29

30 Practical Description Logics Most theoretical works on Description Logics are concerned with the upper part of the ontology (classes, relationships) Object Instances are equally important, if not more, in the Semantic Web Reasoning over instances is easier, but their number may be far larger that the number of classes F. Corno, L. Farinetti - Politecnico di Torino 30

31 DL Jargon Abbr. Stands for Meaning ABox TBox KB Assertional Box Component that contains assertions about individuals, i.e. OWL facts such as type, propertyvalue, equality or inequality assertions. Terminological Box Knowledge Base Component that contains axioms about classes, i.e. OWL axioms such as subclass, equivalent class or disjointness axioms. A combination of an ABox and a TBox, i.e. a complete OWL ontology. F. Corno, L. Farinetti - Politecnico di Torino 31

32 Classical Types of Logic Inference Consistency checking, which ensures that an ontology does not contain any contradictory facts. The OWL Abstract Syntax & Semantics document [S&AS] provides a formal definition of ontology consistency that Pellet uses. In DL terminology, this is the operation to check the consistency of an ABox with respect to a Tbox. Equivalent to OWL Consistency Checking F. Corno, L. Farinetti - Politecnico di Torino 32

33 Classical Types of Logic Inference Concept satisfiability, which checks if it is possible for a class to have any instances. If class is unsatisfiable, then defining an instance of the class will cause the whole ontology to be inconsistent. F. Corno, L. Farinetti - Politecnico di Torino 33

34 Classical Types of Logic Inference Classification, which computes the subclass relations between every named class to create the complete class hierarchy. The class hierarchy can be used to answer queries such as getting all or only the direct subclasses of a class. F. Corno, L. Farinetti - Politecnico di Torino 34

35 Classical Types of Logic Inference Realization, which finds the most specific classes that an individual belongs to; or in other words, computes the direct types for each of the individuals. Realization can only be performed after classification since direct types are defined with F. Corno, L. Farinetti - Politecnico di Torino 35

36 Pellet architecture F. Corno, L. Farinetti - Politecnico di Torino 36

37 Launching Pellet F. Corno, L. Farinetti - Politecnico di Torino 37

38 Using Pellet in Protégé F. Corno, L. Farinetti - Politecnico di Torino 38

39 Using Pellet in Protégé F. Corno, L. Farinetti - Politecnico di Torino 39

40 Activating Inference steps F. Corno, L. Farinetti - Politecnico di Torino 40

41 Consistency checking F. Corno, L. Farinetti - Politecnico di Torino 41

42 Consistency checking usually F. Corno, L. Farinetti - Politecnico di Torino 42

43 Consistency checking usually F. Corno, L. Farinetti - Politecnico di Torino 43

44 References Course material for Practical Reasoning for the Semantic Web course at the 17th European Summer School in Logic, Language and Information (ESSLLI) E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, "Pellet: A practical owl-dl reasoner," Web Semantics: Science, Services and Agents on the World Wide Web, vol. 5, no. 2, pp , June [Online]. Available: F. Corno, L. Farinetti - Politecnico di Torino 44

45 References OWL Web Ontology Language: Semantics and Abstract Syntax W3C Recommendation 10 February 2004 [S&AS] F. Corno, L. Farinetti - Politecnico di Torino 45

46 References F. Corno, L. Farinetti - Politecnico di Torino 46

47 License This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. F. Corno, L. Farinetti - Politecnico di Torino 47

Semantics and Inference for Probabilistic Ontologies

Semantics and Inference for Probabilistic Ontologies Semantics and Inference for Probabilistic Ontologies Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, and Riccardo Zese ENDIF University of Ferrara, Italy, email: {fabrizio.riguzzi, elena.bellodi, evelina.lamma}@unife.it,

More information

OWL Semantics COMP Sean Bechhofer Uli Sattler

OWL Semantics COMP Sean Bechhofer Uli Sattler OWL Semantics COMP62342 Sean Bechhofer sean.bechhofer@manchester.ac.uk Uli Sattler uli.sattler@manchester.ac.uk 1 Toward Knowledge Formalization Acquisition Process Elicit tacit knowledge A set of terms/concepts

More information

Completing Description Logic Knowledge Bases using Formal Concept Analysis

Completing Description Logic Knowledge Bases using Formal Concept Analysis Completing Description Logic Knowledge Bases using Formal Concept Analysis Franz Baader 1, Bernhard Ganter 1, Ulrike Sattler 2 and Barış Sertkaya 1 1 TU Dresden, Germany 2 The University of Manchester,

More information

Phase 1. Phase 2. Phase 3. History. implementation of systems based on incomplete structural subsumption algorithms

Phase 1. Phase 2. Phase 3. History. implementation of systems based on incomplete structural subsumption algorithms History Phase 1 implementation of systems based on incomplete structural subsumption algorithms Phase 2 tableau-based algorithms and complexity results first tableau-based systems (Kris, Crack) first formal

More information

A Survey of Temporal Knowledge Representations

A Survey of Temporal Knowledge Representations A Survey of Temporal Knowledge Representations Advisor: Professor Abdullah Tansel Second Exam Presentation Knowledge Representations logic-based logic-base formalisms formalisms more complex and difficult

More information

Translating SWRL FOL, SWRL, and OWL DL to the Universal Policy Logic

Translating SWRL FOL, SWRL, and OWL DL to the Universal Policy Logic Translating SWRL FOL, SWRL, and OWL DL to the Universal Policy Logic Version 0.1 ICS-16763-TR-07-004 SRI Project No. 16763 Contract No. FA8750-05-C-0230 Prepared by Daniel Elenius SRI International 333

More information

ALC Concept Learning with Refinement Operators

ALC Concept Learning with Refinement Operators ALC Concept Learning with Refinement Operators Jens Lehmann Pascal Hitzler June 17, 2007 Outline 1 Introduction to Description Logics and OWL 2 The Learning Problem 3 Refinement Operators and Their Properties

More information

An Introduction to Description Logics

An Introduction to Description Logics An Introduction to Description Logics Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, 21.11.2013 Marco Cerami (UPOL) Description Logics 21.11.2013

More information

Revision of DL-Lite Knowledge Bases

Revision of DL-Lite Knowledge Bases Revision of DL-Lite Knowledge Bases Zhe Wang, Kewen Wang, and Rodney Topor Griffith University, Australia Abstract. We address the revision problem for knowledge bases (KBs) in Description Logics (DLs).

More information

Description Logics (DLs)

Description Logics (DLs) OWL Three species of OWL OWL full is union of OWL syntax and RDF (Undecidable) OWL DL restricted to FOL fragment (decidable in NEXPTIME) OWL Lite is easier to implement subset of OWL DL (decidable in EXPTIME)

More information

Web Ontology Language (OWL)

Web Ontology Language (OWL) Web Ontology Language (OWL) Need meaning beyond an object-oriented type system RDF (with RDFS) captures the basics, approximating an object-oriented type system OWL provides some of the rest OWL standardizes

More information

Completing Description Logic Knowledge Bases using Formal Concept Analysis

Completing Description Logic Knowledge Bases using Formal Concept Analysis Completing Description Logic Knowledge Bases using Formal Concept Analysis Franz Baader, 1 Bernhard Ganter, 1 Barış Sertkaya, 1 and Ulrike Sattler 2 1 TU Dresden, Germany and 2 The University of Manchester,

More information

OntoRevision: A Plug-in System for Ontology Revision in

OntoRevision: A Plug-in System for Ontology Revision in OntoRevision: A Plug-in System for Ontology Revision in Protégé Nathan Cobby 1, Kewen Wang 1, Zhe Wang 2, and Marco Sotomayor 1 1 Griffith University, Australia 2 Oxford University, UK Abstract. Ontologies

More information

Structured Descriptions & Tradeoff Between Expressiveness and Tractability

Structured Descriptions & Tradeoff Between Expressiveness and Tractability 5. Structured Descriptions & Tradeoff Between Expressiveness and Tractability Outline Review Expressiveness & Tractability Tradeoff Modern Description Logics Object Oriented Representations Key Representation

More information

Logic Programming Techniques for Reasoning with Probabilistic Ontologies

Logic Programming Techniques for Reasoning with Probabilistic Ontologies Logic Programming Techniques for Reasoning with Probabilistic Ontologies Riccardo Zese, Elena Bellodi, Evelina Lamma and Fabrizio Riguzzi University of Ferrara, Italy riccardo.zese@unife.it Zese, Bellodi,

More information

OntoMerge: A System for Merging DL-Lite Ontologies

OntoMerge: A System for Merging DL-Lite Ontologies OntoMerge: A System for Merging DL-Lite Ontologies Zhe Wang 1, Kewen Wang 2, Yifan Jin 2, and Guilin Qi 3,4 1 University of Oxford, United Kingdom 2 Griffith University, Australia 3 Southeast University,

More information

Probabilistic Ontologies: Logical Approach

Probabilistic Ontologies: Logical Approach Probabilistic Ontologies: Logical Approach Pavel Klinov Applied Artificial Intelligence Lab ECE Department University of Cincinnati Agenda Why do we study ontologies? Uncertainty Probabilistic ontologies

More information

A Zadeh-Norm Fuzzy Description Logic for Handling Uncertainty: Reasoning Algorithms and the Reasoning System

A Zadeh-Norm Fuzzy Description Logic for Handling Uncertainty: Reasoning Algorithms and the Reasoning System 1 / 31 A Zadeh-Norm Fuzzy Description Logic for Handling Uncertainty: Reasoning Algorithms and the Reasoning System Judy Zhao 1, Harold Boley 2, Weichang Du 1 1. Faculty of Computer Science, University

More information

Root Justifications for Ontology Repair

Root Justifications for Ontology Repair Root Justifications for Ontology Repair Kodylan Moodley 1,2, Thomas Meyer 1,2, and Ivan José Varzinczak 1,2 1 CSIR Meraka Institute, Pretoria, South Africa {kmoodley, tmeyer, ivarzinczak}@csir.co.za 2

More information

Modular Reuse of Ontologies: Theory and Practice

Modular Reuse of Ontologies: Theory and Practice Journal of Artificial Intelligence Research 31 (2008) 273-318 Submitted 07/07; published 02/08 Modular Reuse of Ontologies: Theory and Practice Bernardo Cuenca Grau Ian Horrocks Yevgeny Kazakov Oxford

More information

Revising General Knowledge Bases in Description Logics

Revising General Knowledge Bases in Description Logics Revising General Knowledge Bases in Description Logics Zhe Wang and Kewen Wang and Rodney Topor Griffith University, Australia Abstract Revising knowledge bases (KBs) in description logics (DLs) in a syntax-independent

More information

Quasi-Classical Semantics for Expressive Description Logics

Quasi-Classical Semantics for Expressive Description Logics Quasi-Classical Semantics for Expressive Description Logics Xiaowang Zhang 1,4, Guilin Qi 2, Yue Ma 3 and Zuoquan Lin 1 1 School of Mathematical Sciences, Peking University, Beijing 100871, China 2 Institute

More information

Week 4. COMP62342 Sean Bechhofer, Uli Sattler

Week 4. COMP62342 Sean Bechhofer, Uli Sattler Week 4 COMP62342 Sean Bechhofer, Uli Sattler sean.bechhofer@manchester.ac.uk, uli.sattler@manchester.ac.uk Today Some clarifications from last week s coursework More on reasoning: extension of the tableau

More information

OntoMerge: A System for Merging DL-Lite Ontologies

OntoMerge: A System for Merging DL-Lite Ontologies OntoMerge: A System for Merging DL-Lite Ontologies Zhe Wang 1, Kewen Wang 1, Yifan Jin 1, and Guilin Qi 23 1 School of ICT, Griffith University, Nathan, QLD 4111, Australia 2 School of CSE, Southeast University,

More information

Representability in DL-Lite R Knowledge Base Exchange

Representability in DL-Lite R Knowledge Base Exchange epresentability in DL-Lite Knowledge Base Exchange M. Arenas 1, E. Botoeva 2, D. Calvanese 2, V. yzhikov 2, and E. Sherkhonov 3 1 Dept. of Computer Science, PUC Chile marenas@ing.puc.cl 2 KDB esearch Centre,

More information

A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions

A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions Fernando Bobillo Miguel Delgado Juan Gómez-Romero Department of Computer Science and Artificial Intelligence University

More information

Epistemic and Statistical Probabilistic Ontologies

Epistemic and Statistical Probabilistic Ontologies Epistemic and Statistical Probabilistic Ontologies Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, Riccardo Zese ENDIF University of Ferrara, Italy fabrizio.riguzzi@unife.it, elena.bellodi@unife.it, evelina.lamma@unife.it,

More information

DESCRIPTION LOGICS. Paula Severi. October 12, University of Leicester

DESCRIPTION LOGICS. Paula Severi. October 12, University of Leicester DESCRIPTION LOGICS Paula Severi University of Leicester October 12, 2009 Description Logics Outline Introduction: main principle, why the name description logic, application to semantic web. Syntax and

More information

A New Approach to Knowledge Base Revision in DL-Lite

A New Approach to Knowledge Base Revision in DL-Lite A New Approach to Knowledge Base Revision in DL-Lite Zhe Wang and Kewen Wang and Rodney Topor School of ICT, Griffith University Nathan, QLD 4111, Australia Abstract Revising knowledge bases (KBs) in description

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

Knowledge Representation and Description Logic Part 2

Knowledge Representation and Description Logic Part 2 Knowledge Representation and Description Logic Part 2 Renata Wassermann renata@ime.usp.br Computer Science Department University of São Paulo September 2014 IAOA School Vitória Renata Wassermann Knowledge

More information

How to Contract Ontologies

How to Contract Ontologies How to Contract Ontologies Statement of Interest Bernardo Cuenca Grau 1, Evgeny Kharlamov 2, and Dmitriy Zheleznyakov 2 1 Department of Computer Science, University of Oxford bernardo.cuenca.grau@cs.ox.ac.uk

More information

Description logics. Description Logics. Applications. Outline. Syntax - AL. Tbox and Abox

Description logics. Description Logics. Applications. Outline. Syntax - AL. Tbox and Abox Description Logics Description logics A family of KR formalisms, based on FOPL decidable, supported by automatic reasoning systems Used for modelling of application domains Classification of concepts and

More information

An Introduction to Description Logic III

An Introduction to Description Logic III An Introduction to Description Logic III Knowledge Bases and Reasoning Tasks Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, November 6 th 2014

More information

Interactive ontology debugging: two query strategies for efficient fault localization

Interactive ontology debugging: two query strategies for efficient fault localization Interactive ontology debugging: two query strategies for efficient fault localization Kostyantyn Shchekotykhin a,, Gerhard Friedrich a, Philipp Fleiss a,1, Patrick Rodler a,1 a Alpen-Adria Universität,

More information

Semantic Import: An Approach for Partial Ontology Reuse ( )

Semantic Import: An Approach for Partial Ontology Reuse ( ) Semantic Import: An Approach for Partial Ontology Reuse ( ) Jeff Z. Pan 1, Luciano Serafini 2 and Yuting Zhao 2 1 University of Aberdeen, UK jpan@csd.abdn.ac.uk 2 ITC-IRST, Povo 38100 Trento, Italy {yzhao,serafini}@itc.it

More information

Extending Logic Programs with Description Logic Expressions for the Semantic Web

Extending Logic Programs with Description Logic Expressions for the Semantic Web Extending Logic Programs with Description Logic Expressions for the Semantic Web Yi-Dong Shen 1 and Kewen Wang 2 1 State Key Laboratory of Computer Science, Institute of Software Chinese Academy of Sciences,

More information

INTEGRITY CONSTRAINTS FOR THE SEMANTIC WEB: AN OWL 2 DL EXTENSION

INTEGRITY CONSTRAINTS FOR THE SEMANTIC WEB: AN OWL 2 DL EXTENSION INTEGRITY CONSTRAINTS FOR THE SEMANTIC WEB: AN OWL 2 DL EXTENSION By Jiao Tao A Thesis Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute in Partial Fulfillment of the Requirements for

More information

Closed World Reasoning for OWL2 with Negation As Failure

Closed World Reasoning for OWL2 with Negation As Failure Closed World Reasoning for OWL2 with Negation As Failure Yuan Ren Department of Computing Science University of Aberdeen Aberdeen, UK y.ren@abdn.ac.uk Jeff Z. Pan Department of Computing Science University

More information

Fuzzy Description Logics

Fuzzy Description Logics Fuzzy Description Logics 1. Introduction to Description Logics Rafael Peñaloza Rende, January 2016 Literature Description Logics Baader, Calvanese, McGuinness, Nardi, Patel-Schneider (eds.) The Description

More information

From OWL to Description Logics. U. Straccia (ISTI - CNR) DLs & SW / 170

From OWL to Description Logics. U. Straccia (ISTI - CNR) DLs & SW / 170 From OWL to Description Logics U. Straccia (ISTI - CNR) DLs & SW 2007 67 / 170 What Are Description Logics? (http://dl.kr.org/) A family of logic-based knowledge representation formalisms Descendants of

More information

VARIABLE-STRENGTH CONDITIONAL PREFERENCES FOR RANKING OBJECTS IN ONTOLOGIES

VARIABLE-STRENGTH CONDITIONAL PREFERENCES FOR RANKING OBJECTS IN ONTOLOGIES I N F S Y S R E S E A R C H R E P O R T INSTITUT FÜR INFORMATIONSSYSTEME ARBEITSBEREICH WISSENSBASIERTE SYSTEME VARIABLE-STRENGTH CONDITIONAL PREFERENCES FOR RANKING OBJECTS IN ONTOLOGIES THOMAS LUKASIEWICZ

More information

Extracting Modules from Ontologies: A Logic-based Approach

Extracting Modules from Ontologies: A Logic-based Approach Extracting Modules from Ontologies: A Logic-based Approach Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov and Ulrike Sattler The University of Manchester School of Computer Science Manchester, M13

More information

Verifying Reasoner Correctness - A Justification Based Method

Verifying Reasoner Correctness - A Justification Based Method Verifying Reasoner Correctness - A Justification Based Method Michael Lee, Nico Matentzoglu, Bijan Parsia, and Uli Sattler The University of Manchester Oxford Road, Manchester, M13 9PL, UK {michael.lee-5,nicolas.matentzoglu,bijan.parsia,uli.sattler}@manchester.

More information

RDF and Logic: Reasoning and Extension

RDF and Logic: Reasoning and Extension RDF and Logic: Reasoning and Extension Jos de Bruijn Faculty of Computer Science, Free University of Bozen-Bolzano, Italy debruijn@inf.unibz.it Stijn Heymans Digital Enterprise Research Institute (DERI),

More information

Description Logics. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca

Description Logics. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca Description Logics Adrian Groza Department of Computer Science Technical University of Cluj-Napoca Outline 1 The World as a Graph 2 Description Logics Family Ontology Description Logics How far can we

More information

Description Logics. an introduction into its basic ideas

Description Logics. an introduction into its basic ideas Description Logics an introduction into its basic ideas A. Heußner WS 2003/2004 Preview: Basic Idea: from Network Based Structures to DL AL : Syntax / Semantics Enhancements of AL Terminologies (TBox)

More information

Merging and Aligning Ontologies in dl-programs

Merging and Aligning Ontologies in dl-programs Merging and Aligning Ontologies in dl-programs Kewen Wang 1, Grigoris Antoniou 2, Rodney Topor 1, and Abdul Sattar 1 1 Griffith University, Australia {k.wang,r.topor,a.sattar}@griffith.edu.au 2 University

More information

Simultaneous equations 8 Introduction to advanced methods

Simultaneous equations 8 Introduction to advanced methods 1 Simultaneous equations 8 Introduction to advanced methods J A Rossiter For a neat organisation of all videos and resources http://controleducation.group.shef.ac.uk/indexwebbook.html Slides by Anthony

More information

Reasoning the FMA Ontologies with TrOWL

Reasoning the FMA Ontologies with TrOWL Reasoning the FMA Ontologies with TrOWL Jeff Z. Pan, Yuan Ren, Nophadol Jekjantuk, and Jhonatan Garcia Department of Computing Science, University of Aberdeen, Aberdeen, AB23 3UE, United Kingdom Abstract.

More information

DL-LITE R in the Light of Propositional Logic for Decentralized Data Management

DL-LITE R in the Light of Propositional Logic for Decentralized Data Management DL-LITE R in the Light of Propositional Logic for Decentralized Data Management N. Abdallah and F. Goasdoué LRI: Univ. Paris-Sud, CNRS, and INRIA {nada,fg}@lri.fr M.-C. Rousset LIG: Univ. of Grenoble,

More information

Lightweight Description Logics: DL-Lite A and EL ++

Lightweight Description Logics: DL-Lite A and EL ++ Lightweight Description Logics: DL-Lite A and EL ++ Elena Botoeva 1 KRDB Research Centre Free University of Bozen-Bolzano January 13, 2011 Departamento de Ciencias de la Computación Universidad de Chile,

More information

Chapter 2 Background. 2.1 A Basic Description Logic

Chapter 2 Background. 2.1 A Basic Description Logic Chapter 2 Background Abstract Description Logics is a family of knowledge representation formalisms used to represent knowledge of a domain, usually called world. For that, it first defines the relevant

More information

A Logical Framework for Modularity of Ontologies

A Logical Framework for Modularity of Ontologies A Logical Framework for Modularity of Ontologies Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov and Ulrike Sattler The University of Manchester School of Computer Science Manchester, M13 9PL, UK {bcg,

More information

Knowledge Base Exchange: The Case of OWL 2 QL

Knowledge Base Exchange: The Case of OWL 2 QL Knowledge Base Exchange: The Case of OWL 2 QL Marcelo Arenas Pontificia Universidad Católica de Chile, Chile Elena Botoeva, Diego Calvanese, Vladislav Ryzhikov Free University of Bozen-Bolzano, Italy Abstract

More information

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom.

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom. Knowledge representation Introduction Knowledge is the progression that starts with data which s limited utility. Data when processed become information, information when interpreted or evaluated becomes

More information

Description Logics. Glossary. Definition

Description Logics. Glossary. Definition Title: Description Logics Authors: Adila Krisnadhi, Pascal Hitzler Affil./Addr.: Wright State University, Kno.e.sis Center 377 Joshi Research Center, 3640 Colonel Glenn Highway, Dayton OH 45435, USA Phone:

More information

OWL Basics. Technologies for the Semantic Web. Building a Semantic Web. Ontology

OWL Basics. Technologies for the Semantic Web. Building a Semantic Web. Ontology Technologies for the Semantic Web OWL Basics COMP60421 Sean Bechhofer University of Manchester sean.bechhofer@manchester.ac.uk Metadata Resources are marked-up with descriptions of their content. No good

More information

Bayesian Description Logics

Bayesian Description Logics Bayesian Description Logics İsmail İlkan Ceylan1 and Rafael Peñaloza 1,2 1 Theoretical Computer Science, TU Dresden, Germany 2 Center for Advancing Electronics Dresden {ceylan,penaloza}@tcs.inf.tu-dresden.de

More information

Optimization Techniques for Fuzzy Description Logics

Optimization Techniques for Fuzzy Description Logics Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010. Optimization Techniques for Fuzzy Description Logics Nikolaos Simou 1, Theofilos Mailis 1, Giorgos Stoilos

More information

A conceptualization is a map from the problem domain into the representation. A conceptualization specifies:

A conceptualization is a map from the problem domain into the representation. A conceptualization specifies: Knowledge Sharing A conceptualization is a map from the problem domain into the representation. A conceptualization specifies: What sorts of individuals are being modeled The vocabulary for specifying

More information

Propositional Logic: Logical Agents (Part I)

Propositional Logic: Logical Agents (Part I) Propositional Logic: Logical Agents (Part I) This lecture topic: Propositional Logic (two lectures) Chapter 7.1-7.4 (this lecture, Part I) Chapter 7.5 (next lecture, Part II) Next lecture topic: First-order

More information

Mathematical Logics Description Logic: Tbox and Abox

Mathematical Logics Description Logic: Tbox and Abox Mathematical Logics Description Logic: Tbox and Abox Fausto Giunchiglia and Mattia Fumagallli University of Trento *Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and

More information

Model-theoretic Semantics

Model-theoretic Semantics Model-theoretic Semantics 1 Semantics Intro I What is the semantics of the following statement, according to RDF and according to RDFS? Ex:SpaceAccessory rdfs:subclassof ex:product 2 Semantics Intro II

More information

Complexity of Axiom Pinpointing in the DL-Lite Family

Complexity of Axiom Pinpointing in the DL-Lite Family Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010. Complexity of Axiom Pinpointing in the DL-Lite Family Rafael Peñaloza 1 and Barış Sertkaya 2 1 Theoretical

More information

Algebraic Tableau Reasoning for the Description Logic SHOQ

Algebraic Tableau Reasoning for the Description Logic SHOQ Algebraic Tableau Reasoning for the Description Logic SHOQ Jocelyne Faddoul and Volker Haarslev Department of Computer Science and Software Engineering, Concordia University, 1455 de Maisonneuve Blvd.

More information

Variable-strength conditional preferences for ranking objects in ontologies

Variable-strength conditional preferences for ranking objects in ontologies Web Semantics: Science, Services and Agents on the World Wide Web 5 (2007) 180 194 Variable-strength conditional preferences for ranking objects in ontologies Thomas Lukasiewicz a,,jörg Schellhase b a

More information

DBpedia Ontology Enrichment for Inconsistency Detection and Statistical Schema Induction

DBpedia Ontology Enrichment for Inconsistency Detection and Statistical Schema Induction DBpedia Ontology Enrichment for Inconsistency Detection and Statistical Schema Induction Presentation By Tung Do 1. Statistical Schema Induction 2. DBpedia Ontology Enrichment for Inconsistency Detection

More information

Probabilistic Description Logics under the Distribution Semantics

Probabilistic Description Logics under the Distribution Semantics Semantic Web 0 (0) 1 27 1 IOS Press Probabilistic Description Logics under the Distribution Semantics Editor(s): Wolfgang Faber, University of Huddersfield, UK; Domenico Lembo, Sapienza University of Rome,

More information

TURAMBAR: An Approach to Deal with Uncertainty in Semantic Environments

TURAMBAR: An Approach to Deal with Uncertainty in Semantic Environments TURAMBAR: An Approach to Deal with Uncertainty in Semantic Environments David Ausín, Federico Castanedo and Diego López-de-Ipiña Deusto Institute of Technology, DeustoTech. University of Deusto. Avda.

More information

Instance-Driven Ontology Evolution in DL-Lite

Instance-Driven Ontology Evolution in DL-Lite Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence Instance-Driven Ontology Evolution in DL-Lite Zhe Wang and Kewen Wang and Zhiqiang Zhuang School of Information and Communication

More information

Improved Algorithms for Module Extraction and Atomic Decomposition

Improved Algorithms for Module Extraction and Atomic Decomposition Improved Algorithms for Module Extraction and Atomic Decomposition Dmitry Tsarkov tsarkov@cs.man.ac.uk School of Computer Science The University of Manchester Manchester, UK Abstract. In recent years modules

More information

Tractable Reasoning with Bayesian Description Logics

Tractable Reasoning with Bayesian Description Logics Tractable Reasoning with Bayesian Description Logics Claudia d Amato 1, Nicola Fanizzi 1, and Thomas Lukasiewicz 2, 3 1 Dipartimento di Informatica, Università degli Studi di Bari Campus Universitario,

More information

Managing Uncertainty and Vagueness in Description Logics for the Semantic Web

Managing Uncertainty and Vagueness in Description Logics for the Semantic Web Managing Uncertainty and Vagueness in Description Logics for the Semantic Web Thomas Lukasiewicz a,1 Umberto Straccia b a Dipartimento di Informatica e Sistemistica, Sapienza Università di Roma Via Ariosto

More information

Outline. Structure-Based Partitioning of Large Concept Hierarchies. Ontologies and the Semantic Web. The Case for Partitioning

Outline. Structure-Based Partitioning of Large Concept Hierarchies. Ontologies and the Semantic Web. The Case for Partitioning Outline Structure-Based Partitioning of Large Concept Hierarchies Heiner Stuckenschmidt, Michel Klein Vrije Universiteit Amsterdam Motivation: The Case for Ontology Partitioning Lots of Pictures A Partitioning

More information

Propositional Logic: Logical Agents (Part I)

Propositional Logic: Logical Agents (Part I) Propositional Logic: Logical Agents (Part I) First Lecture Today (Tue 21 Jun) Read Chapters 1 and 2 Second Lecture Today (Tue 21 Jun) Read Chapter 7.1-7.4 Next Lecture (Thu 23 Jun) Read Chapters 7.5 (optional:

More information

Inconsistencies, Negations and Changes in Ontologies

Inconsistencies, Negations and Changes in Ontologies Inconsistencies, Negations and Changes in Ontologies Giorgos Flouris 1 Zhisheng Huang 2,3 Jeff Z. Pan 4 Dimitris Plexousakis 1 Holger Wache 2 1 Institute of Computer Science, FORTH, Heraklion, Greece emails:

More information

Reasoning about Explanations for Negative Query Answers in DL-Lite

Reasoning about Explanations for Negative Query Answers in DL-Lite Journal of Artificial Intelligence Research 48 (2013) 635-669 Submitted 11/12; published 11/13 Reasoning about Explanations for Negative Query Answers in DL-Lite Diego Calvanese Free University of Bozen-Bolzano,

More information

University of Oxford. Consequence-based Datatype Reasoning in EL: Identifying the Tractable Fragments

University of Oxford. Consequence-based Datatype Reasoning in EL: Identifying the Tractable Fragments University of Oxford Consequence-based Datatype Reasoning in EL: Identifying the Tractable Fragments by Despoina Magka St. Peter s College under joint supervision by Prof. Ian Horrocks and Dr. Yevgeny

More information

Contraction and Revision over DL-Lite TBoxes

Contraction and Revision over DL-Lite TBoxes Contraction and Revision over DL-Lite TBoxes Zhiqiang Zhuang 1 Zhe Wang 1 Kewen Wang 1 Guilin Qi 2,3 1 School of Information and Communication Technology, Griffith University, Australia 2 School of Computer

More information

FOUNDATIONS OF SEMANTIC WEB TECHNOLOGIES

FOUNDATIONS OF SEMANTIC WEB TECHNOLOGIES FOUNDATIONS OF SEMANTIC WEB TECHNOLOGIES OWL & Description Logics Markus Krötzsch Dresden, 16 May 2014 Content Overview & XML Introduction into RDF RDFS Syntax & Intuition Tutorial 1 RDFS Semantics RDFS

More information

On the Complexity of Dealing with Inconsistency in Description Logic Ontologies

On the Complexity of Dealing with Inconsistency in Description Logic Ontologies Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence On the Complexity of Dealing with Inconsistency in Description Logic Ontologies Riccardo Rosati Dipartimento di

More information

Towards an operator for merging taxonomies

Towards an operator for merging taxonomies Towards an operator for merging taxonomies Amélie Cordier 1 and Jean Lieber 234 and Julien Stevenot 234 Abstract. The merging of knowledge bases is a fundamental part of the collaboration in continuous

More information

Data Complexity of Query Answering in Description Logics

Data Complexity of Query Answering in Description Logics Data Complexity of Query Answering in Description Logics Diego Calvanese 1, Giuseppe De Giacomo 2, Domenico Lembo 2, Maurizio Lenzerini 2, Riccardo Rosati 2 1 Faculty of Computer Science Free University

More information

Probabilistic Description Logics under the Distribution Semantics

Probabilistic Description Logics under the Distribution Semantics Probabilistic Description Logics under the Distribution Semantics Fabrizio Riguzzi a, Elena Bellodi b, Evelina Lamma b, Riccardo Zese b a Dipartimento di Matematica e Informatica University of Ferrara,

More information

Computing OWL Ontology Decompositions Using Resolution

Computing OWL Ontology Decompositions Using Resolution Computing OWL Ontology Decompositions Using Resolution Robert Schiaffino 3, Achille Fokoue 1, Aditya Kalyanpur 1, Aaron Kershenbaum 1, Li Ma 2, Chintan Patel 4, Edith Schonberg 1, and Kavitha Srinivas

More information

Consequence-Based Reasoning for Ontology Classification

Consequence-Based Reasoning for Ontology Classification Consequence-Based Reasoning for Ontology Classification František Simančík Worcester College University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity 2013 Abstract Description

More information

Handling Inconsistency in Knowledge Bases

Handling Inconsistency in Knowledge Bases Georgia State University ScholarWorks @ Georgia State University Computer Science Dissertations Department of Computer Science 5-10-2017 Handling Inconsistency in Knowledge Bases Badrinath Jayakumar Follow

More information

Teil III: Wissensrepräsentation und Inferenz. Kap.11: Beschreibungslogiken

Teil III: Wissensrepräsentation und Inferenz. Kap.11: Beschreibungslogiken Vorlesung Künstliche Intelligenz Wintersemester 2006/07 Teil III: Wissensrepräsentation und Inferenz Kap.11: Beschreibungslogiken Mit Material von Carsten Lutz, Uli Sattler: http://www.computationallogic.org/content/events/iccl-ss-

More information

DL-Lite Contraction and Revision

DL-Lite Contraction and Revision Journal of Artificial Intelligence Research 56 (2016) 329-378 Submitted 12/15; published 06/16 DL-Lite Contraction and Revision Zhiqiang Zhuang Institute for Integrated and Intelligent Systems Griffith

More information

A Distribution Semantics for Probabilistic Ontologies

A Distribution Semantics for Probabilistic Ontologies A Distribution Semantics for Probabilistic Ontologies Elena Bellodi, Evelina Lamma, Fabrizio Riguzzi, and Simone Albani ENDIF University of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy {elena.bellodi,evelina.lamma,fabrizio.riguzzi}@unife.it

More information

PRACTICAL REASONING IN PROBABILISTIC DESCRIPTION LOGIC

PRACTICAL REASONING IN PROBABILISTIC DESCRIPTION LOGIC PRACTICAL REASONING IN PROBABILISTIC DESCRIPTION LOGIC A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2011

More information

OWL Semantics. COMP60421 Sean Bechhofer University of Manchester

OWL Semantics. COMP60421 Sean Bechhofer University of Manchester OWL Semantics COMP60421 Sean Bechhofer University of Manchester sean.bechhofer@manchester.ac.uk 1 Technologies for the Semantic Web Metadata Resources are marked-up with descriptions of their content.

More information

Efficient approximation in DL-Lite of OWL 2 ontologies

Efficient approximation in DL-Lite of OWL 2 ontologies Efficient approximation in DL-Lite of OWL 2 ontologies Marco Console, Valerio Santarelli, Domenico Fabio Savo Dipartimento di Ingegneria Informatica utomatica e Gestionale ntonio Ruberti SPIENZ Università

More information

Supporting Uncertainty and Inconsistency in Semantic Web Applications

Supporting Uncertainty and Inconsistency in Semantic Web Applications Proceedings of the Twenty-Second International FLAIRS Conference (2009) Supporting Uncertainty and Inconsistency in Semantic Web Applications Neli P. Zlatareva Department of Computer Science, Central Connecticut

More information

CEX and MEX: Logical Diff and Semantic Module Extraction in a Fragment of OWL

CEX and MEX: Logical Diff and Semantic Module Extraction in a Fragment of OWL CEX and MEX: Logical Diff and Semantic Module Extraction in a Fragment of OWL Boris Konev 1, Carsten Lutz 2, Dirk Walther 1, and Frank Wolter 1 1 University of Liverpool, UK, {konev, dwalther, wolter}@liverpool.ac.uk

More information

Reasoning About Typicality in ALC and EL

Reasoning About Typicality in ALC and EL Reasoning About Typicality in ALC and EL Laura Giordano 1, Valentina Gliozzi 2, Nicola Olivetti 3, and Gian Luca Pozzato 2 1 Dipartimento di Informatica - Università del Piemonte Orientale A. Avogadro

More information

Knowledge Sharing. A conceptualization is a map from the problem domain into the representation. A conceptualization specifies:

Knowledge Sharing. A conceptualization is a map from the problem domain into the representation. A conceptualization specifies: Knowledge Sharing A conceptualization is a map from the problem domain into the representation. A conceptualization specifies: What sorts of individuals are being modeled The vocabulary for specifying

More information

A Possibilistic Extension of Description Logics

A Possibilistic Extension of Description Logics A Possibilistic Extension of Description Logics Guilin Qi 1, Jeff Z. Pan 2, and Qiu Ji 1 1 Institute AIFB, University of Karlsruhe, Germany {gqi,qiji}@aifb.uni-karlsruhe.de 2 Department of Computing Science,

More information

Tractable Extensions of the Description Logic EL with Numerical Datatypes

Tractable Extensions of the Description Logic EL with Numerical Datatypes Tractable Extensions of the Description Logic EL with Numerical Datatypes Despoina Magka, Yevgeny Kazakov, and Ian Horrocks Oxford University Computing Laboratory Wolfson Building, Parks Road, OXFORD,

More information