Fuzzy Description Logics

Size: px
Start display at page:

Download "Fuzzy Description Logics"

Transcription

1 Fuzzy Description Logics 1. Introduction to Description Logics Rafael Peñaloza Rende, January 2016

2 Literature Description Logics Baader, Calvanese, McGuinness, Nardi, Patel-Schneider (eds.) The Description Logics Handbook Cambridge University Press Fuzzy Logic Hájek Metamathematics of Fuzzy Logic Kluwer Academic Publishers January 2016 Description Logics 2

3 Knowledge Representation Desired properties: formal: well-defined, clear syntax, and formal semantics high-level: only relevant aspects are represented reasoning: implicit knowledge can be infered from represented knowledge effective: practical reasoning tools and efficient implementations January 2016 Description Logics 3

4 Terminological Knowledge relevant names from the domain classes (concepts) Hero, Villain, relations (roles) fights, helps, objects (individuals) Batman, Hulk, Wonderwoman constraints on these names heroes fight villains only heroes help heroes Batman is a hero deduce consequences subclasses instances Batman fights villains January 2016 Description Logics 4

5 Description Logics Family of formalisms tailored to represent terminological knowledge Knowledge Base TBox class terminology Language Reasoning ABox facts constructors formal semantics trade-off implicit knowledge algorithms January 2016 Description Logics 5

6 Description Language (ALC) Basic Terminology N C, N R disjoint sets: concept names and role names (ALC-)Concept Descriptions Built by induction every A N C is a concept description if C, D are concept descriptions and r N R then C D (conjunction) C D (disjunction) C (negation) r.c (existential restriction) r.c (value restriction) are concept descriptions := A A := A A (bottom) (top) January 2016 Description Logics 6

7 Examples Hero u Female fights.mutant Rich t Human fights. Human January 2016 Description Logics 7

8 Semantics Based on interpretations I = ( I, I) consisting of a non-empty domain I and an interpretation function I where A I I for all A N C r I I I for all r N R (concepts interpreted as sets) (roles interpreted as binary relations) The function is extended to concept descriptions as follows: (C D) I := C I D I (C D) I := C I D I ( C) I := I \ C I ( r.c) I := {d I there is e I with (d, e) r I and e C I } ( r.c) I := {d I for all e I : (d, e) r I implies e C I } January 2016 Description Logics 8

9 Interpretation Example Hero R helps Hero B Hero S Hero,Female W fights fights fights fights fights Rich,Human,Female helps Human Female Rich,Human ( Hero fights.human ) I = {B,S} ( Hero fights.(rich Human) ) I = {R,S,W} ( helps.human ) I = I \ {R} January 2016 Description Logics 9

10 DL vs FOL ALC is a fragment of First-order Logic concept names are unary predicates role names are binary predicates concept descriptions are formulas with one free variable Syntactic translation C τ x(c) τ x(a) := A(x) for A N C τ x(c D) := τ x(c) τ x(d) τ x(c D) := τ x(c) τ x(d) τ x( C) := τ x(c) τ x( r.c) := y.(r(x, y) τ yc) τ x( r.c) := y.(r(x, y) τ yc) y new variable different from x τ x( r.(a s.b)) = y.(r(x, y) τ y(a s.b)) = y.(r(x, y) (A(y) z.(s(y, z) B(z)))) January 2016 Description Logics 10

11 Equivalence and Decidability C (as a DL concept description) and τ x(c) (as FO-formula) have the same semantics C I = {d I I = τ x(c)[x d]} The formulas τ x(c) belong to decidable subclasses of FOL two-variable fragment guarded fragment January 2016 Description Logics 11

12 DL vs Modal Logic ALC is a syntactic variant of multimodal K concept names are propositional variables role names are transition relations Concept descriptions C yield modal formulas Θ(C) Θ(A) := A(x) for A N C Θ(C D) := Θ(C) Θ(D) Θ(C D) := Θ(C) Θ(D) Θ( C) := Θ(C) Θ( r.c) := [r]θ(c) Θ( r.c) := r Θ(C) C and Θ(C) have the same semantics: I is a Kripke structure C I is the set of worlds that make Θ(C) true in I. January 2016 Description Logics 12

13 More Expressivity ALC is only one of many description logics that have been studied many other constructors exist and can be used for KR Number Restrictions ( n r.c) I := {d I {e (d, e) r I, e C I } n} at least n r-successors that belong to C ( n r.c) I := {d I {e (d, e) r I, e C I } n} at most n r-successors that belong to C A hero that fights at least two villains, of which at most one is a sidekick Hero ( 2 fights.villain) ( 1 fights.( helps.villain)) January 2016 Description Logics 13

14 More Expressivity ALC is only one of many description logics that have been studied many other constructors exist and can be used for KR Inverse Roles for a role name r, r 1 denotes the inverse: (r 1 ) I := {(e, d) (d, e) r I } A hero that only fights villains with female sidekicks Hero fights.(villain helps 1.Female) January 2016 Description Logics 13

15 Defining Complex Concepts A concept definition is of the form A C where A N C C is a concept description An acyclic TBox is a finite set of concept definitions that does not contain multiple definitions A C A D does not contain cyclic definitions (directly or indirectly) A r.b B C C s.a Interpretation I is a model of an acyclic TBox T if A I = C I for all A C T January 2016 Description Logics 14

16 Example Heroin Hero Female Sidekick helps. Criminal fights.hero MutantCriminal Criminal fights.mutant Superhero Hero (Rich Human haspower.superpower) Overlord ( 3 helps 1.Criminal) January 2016 Description Logics 15

17 Beyond Definitions A general concept inclusion (GCI) is of the form C D with C, D concept descriptions A general TBox is a finite set of GCIs I is a model of the general TBox T if C I D I for all C D T Hero helps 1.Hero Villain Hero Notice: A C can be expressed by A C, C A January 2016 Description Logics 16

18 Facts About Individuals Facts are expressed with the help of assertions C(a) (concept assertion) r(a, b) (role assertion) with C a concept description, r a role, and a, b elements from a set N I of individual names An ABox is a finite set of assertions I assigns elements of I to individuals in N I I is a model of the ABox A if it satisfies all the assertions: a I C I for all C(a) A (a I, b I ) r I for all r(a, b) A (Rich Hero)(Batman) ( helps.villain)(harley) ( Human)(Superman) helps(robin,batman) fights(batman,joker) January 2016 Description Logics 17

19 Restricting Roles A role inclusion axiom (RI) is of the form r t or r s t with r, s, t role names An RBox is a finite set of RIs I is a model of the RBox R if r I t I for all r t R r I s I t I for all r s t R helps fights fights January 2016 Description Logics 18

20 Reasoning Make the implicit knowledge explicit Subsumption: is C a subconcept of D? C T D iff C I D I for all models I of T polynomial reductions Satisfiability: is C non-contradictory? C is satisfiable w.r.t. T iff C I for some model I of T Consistency: is A non-contradictory? A is consistent w.r.t. T iff A has a model that is also a model of T Instantiation: is e an instance of C? A = T C(e) iff e I C I for all models I of T and A negation needed January 2016 Description Logics 19

21 Reductions subsumption satisfiability C T D iff C D is unsatisfiable w.r.t. T satisfiability subsumption C is satisfiable w.r.t. T iff C T satisfiability consistency C is satisfiable w.r.t. T iff {C(a)} is consistent w.r.t. T consistency instantiation A is consistent w.r.t. T iff a is not an instance of w.r.t. T and A instantiation consistency a is an instance of C w.r.t. T and A iff A { C(a)} is inconsistent w.r.t T January 2016 Description Logics 20

22 Removing Acyclic TBoxes Due to acyclicity, concepts can be expanded to contain only primitive concepts For an acyclic TBox T and concept description C, the expansion C T T is obtained from C by replacing every defined concept by its definition until no defined concepts appear of C w.r.t. Sidekick helps. Criminal fights.hero MutantCriminal Criminal fights.mutant Sidekick MutantCriminal expands to helps. fights.hero fights.mutant January 2016 Description Logics 21

23 Exponential Reduction Acyclicity ensures that expansion is correct and terminates However, it might be exponential on the size of T A 0 r.a 1 s.a 1 A 1 r.a 2 s.a 2. A n 1 r.a n s.a n T has n axioms but A T 0 contains An 2n times Reasoning w.r.t. acyclic TBoxes reducible to reasoning w.r.t. empty TBox (but with exponential blowup) January 2016 Description Logics 22

24 Classification Computing the subsumption relations between all concept names in T Heroin Hero Female MaleHero Hero Female MutantHeroin Heroin Mutant Elite Rich Human Superhero Hero Elite Elite Hero Female Mutant Rich SuperHero MaleHero Human Heroin MutantHeroin January 2016 Description Logics 23

25 Realization Computing the most specific names to which an individual belongs Heroin Hero Female MaleHero Hero Female MutantHeroin Heroin Mutant Elite Rich Human Superhero Hero Elite Hero(Superman) Superman is an instance of Hero, MaleHero, Elite, Superhero January 2016 Description Logics 24

26 ... and many other non-standard inferences Axiom-pinpointing explain why some consequences follow Generalization compute the concept description that best describes an individual compute the concept description that best generalizes two given concepts... January 2016 Description Logics 25

27 Reasoning Procedures A decision procedure must be sound: all positive answers are correct complete: all negative answers are correct terminating: always gives an answer after finite time Additional desiderata: efficient: should match as much as possible the complexity of the problem practical: easy to implement and optimize, well-behaved in practice Recall that DLs are between propositional and first-order logic January 2016 Description Logics 26

28 Tableau Algorithm for ALC We first describe an algorithm for consistency of ABoxes with empty TBox: satisfiability, subsumption, instance are reducible to consistency acyclic TBoxes can be eliminated (we will see how to deal with general TBoxes later) Idea: construct a finite model of A start with A expand using tableau rules check for obvious contradictions A complete (cannot be further expanded) ABox without contradictions is a model January 2016 Description Logics 27

29 Example T : Heroin Hero Female Subsumption: helps.hero helps.female? T helps.heroin Reduction to satisfiability: is the following concept unsatisfiable w.r.t. T? helps.hero helps.female helps.heroin Reduction to consistency: is the following ABox inconsistent w.r.t. T? {( helps.hero helps.female helps.heroin)(a)} Expansion: is the following ABox inconsistent? {( helps.hero helps.female helps.(hero Female))(a)} NNF: is the following ABox inconsistent? {( helps.hero helps.female helps.( Hero Female))(a)} January 2016 Description Logics 28

30 Expansion Deciding inconsistency of {( helps.hero helps.female helps.( Hero Female))(a)} a h.h h.f h( H F) h.h, h.f, h( H F) h h b H H F H F c F H F H This is a complete, open ABox model of input ABox It is consistent, subsumption does not hold January 2016 Description Logics 29

31 Formal Algorithm Input An ABox A 0 Output yes if A 0 is consistent, no otherwise Preprocessing: transform all concept descriptions of A 0 to negation normal form (C D) C D (C D) C D C C ( r.c) r. C ( r.c) r. C NNF transformation in polynomial time, is semantics invariant January 2016 Description Logics 30

32 Formal Algorithm (2) Data Structure: finite set of ABoxes. Initialized to {A 0 } Rule applications: tableau rules replace one ABox from the set by finitely many new ABoxes Termination: when no rule can be applied to any ABox in the set ABox is complete if no rule applies to it Return: yes if the set contains an open A is open if contains no obvious contradiction of the form A(a), A(a) no otherwise January 2016 Description Logics 31

33 Tableau Rules There is one rule for each constructor (except negation) -rule -rule -rule -rule Condition A contains (C D)(a) but not both C(a) and D(a) Action A := A {C(a), D(a)} Condition A contains (C D)(a) but neither C(a) nor D(a) Action A := A {C(a)} and A := A {D(a)} Condition A contains ( r.c)(a) but there is no b with {r(a, b), C(b)} A Action A := A {r(a, b), C(b)} where b is a new individual name Condition A contains ( r.c)(a) and r(a, b) not C(b) Action A := A {C(b)} January 2016 Description Logics 32

34 Local Correctness All rules are consistency-preserving -rule Condition A contains ( r.c)(a) but there is no b with {r(a, b), C(b)} A Action A := A {r(a, b), C(b)} where b is a new individual name A has a model iff A has a model: Let I be a model of A As ( r.c)(a) A, there is d I with (a I, d) r I and d C I I is identical to I but b I = d I is a model of A, because b does not appear in A I is also a model of {r(a, b), C(b)} (by definition) I is a model of A Trivial because A A January 2016 Description Logics 33

35 Local Correctness - Non-determinism -rule Condition A contains (C D)(a) but neither C(a) nor D(a) Action A := A {C(a)} and A := A {D(a)} A has a model iff A has a model or A has a model: Let I be a model of A As (C D)(a) A, a I (C D) I = C I D I If a I C I, then I is a model of A If a I D I, then I is a model of A Trivial because A A and A A January 2016 Description Logics 34

36 Termination Every sequence of rule applications terminates: 1. every application of a rule adds assertions to an individual monotonic 2. concepts in assertions are subconcepts of those appearing in A 0 finitely many rule applications per individual 3. a given individual can have at most as many new successors as there are existential restrictions in A 0 4. the length of a chain of new successors is bounded by the maximal nesting of quantifiers in A 0 : every new individual x has a unique predecessor y the maximal quantifier depth of assertions for x is strictly smaller than that for y finitely many individuals January 2016 Description Logics 35

37 Soundness Every complete, open ABox has a model Let A be complete and open. We build the interpretation I A : I A := {x x is an individual in A} x I A := x for all individual names appearing in A A I A := {x A(x) A} for all A N C r I A := {(x, y) r(x, y) A} for all r N R I A is a model of A: for every C(x) A, x I A C I A (induction) C = A with A N C trivial by definition C = A since A is open, A(x) / A and hence x / A I A C = C 1 C 2 since A is complete, C 1 (x), C 2 (x) A thus x C I A 1 C I A 2 = C I A the other constructors can be treated in a similar way (Exercise!) January 2016 Description Logics 36

38 Completeness ABoxes that are not open do not have a model Trivial: A not open means A(x), A(x) A No interpretation can satisfy both restrictions January 2016 Description Logics 37

39 Adding GCIs A general TBox can be encoded into a single GCI C: {C 1 D 1,..., C n D n} { ( C 1 D 1 )... ( C n D n)} If there is a GCI C with C in NNF, we can use the rule GCI-rule for C Condition A contains the individual a but not C(a) Action A := A {C(a)} local correctness, soundness, and completeness follow analogously what about termination? January 2016 Description Logics 38

40 Blocking Consistency of {P(a)} w.r.t. GCI r.p a r r r a a P, r.p P, r.p P, r.p Solution: blocking node y is blocked by (direct or indirect) predecessor x if all assertions for y exist also for x [C(y) A C(x) A] -rule not applicable to blocked nodes local correctness, termination, and completeness are easy to show soundness by cyclic model: successors of blocked individuals are successors of blocking individuals January 2016 Description Logics 39

Phase 1. Phase 2. Phase 3. History. implementation of systems based on incomplete structural subsumption algorithms

Phase 1. Phase 2. Phase 3. History. implementation of systems based on incomplete structural subsumption algorithms History Phase 1 implementation of systems based on incomplete structural subsumption algorithms Phase 2 tableau-based algorithms and complexity results first tableau-based systems (Kris, Crack) first formal

More information

Relations to first order logic

Relations to first order logic An Introduction to Description Logic IV Relations to first order logic Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, November 6 th 2014 Marco

More information

On the Decidability Status of Fuzzy ALC with General Concept Inclusions

On the Decidability Status of Fuzzy ALC with General Concept Inclusions J Philos Logic manuscript No. (will be inserted by the editor) On the Decidability Status of Fuzzy ALC with General Concept Inclusions Franz Baader Stefan Borgwardt Rafael Peñaloza Received: date / Accepted:

More information

Chapter 2 Background. 2.1 A Basic Description Logic

Chapter 2 Background. 2.1 A Basic Description Logic Chapter 2 Background Abstract Description Logics is a family of knowledge representation formalisms used to represent knowledge of a domain, usually called world. For that, it first defines the relevant

More information

Nonmonotonic Reasoning in Description Logic by Tableaux Algorithm with Blocking

Nonmonotonic Reasoning in Description Logic by Tableaux Algorithm with Blocking Nonmonotonic Reasoning in Description Logic by Tableaux Algorithm with Blocking Jaromír Malenko and Petr Štěpánek Charles University, Malostranske namesti 25, 11800 Prague, Czech Republic, Jaromir.Malenko@mff.cuni.cz,

More information

Description Logics: an Introductory Course on a Nice Family of Logics. Day 2: Tableau Algorithms. Uli Sattler

Description Logics: an Introductory Course on a Nice Family of Logics. Day 2: Tableau Algorithms. Uli Sattler Description Logics: an Introductory Course on a Nice Family of Logics Day 2: Tableau Algorithms Uli Sattler 1 Warm up Which of the following subsumptions hold? r some (A and B) is subsumed by r some A

More information

High Performance Absorption Algorithms for Terminological Reasoning

High Performance Absorption Algorithms for Terminological Reasoning High Performance Absorption Algorithms for Terminological Reasoning Ming Zuo and Volker Haarslev Concordia University, Montreal, Quebec, Canada {ming zuo haarslev}@cse.concordia.ca Abstract When reasoning

More information

An Introduction to Description Logics: Techniques, Properties, and Applications. NASSLLI, Day 2, Part 2. Reasoning via Tableau Algorithms.

An Introduction to Description Logics: Techniques, Properties, and Applications. NASSLLI, Day 2, Part 2. Reasoning via Tableau Algorithms. An Introduction to Description Logics: Techniques, Properties, and Applications NASSLLI, Day 2, Part 2 Reasoning via Tableau Algorithms Uli Sattler 1 Today relationship between standard DL reasoning problems

More information

An Introduction to Description Logics

An Introduction to Description Logics An Introduction to Description Logics Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, 21.11.2013 Marco Cerami (UPOL) Description Logics 21.11.2013

More information

Logics for Data and Knowledge Representation

Logics for Data and Knowledge Representation Logics for Data and Knowledge Representation 4. Introduction to Description Logics - ALC Luciano Serafini FBK-irst, Trento, Italy October 9, 2012 Origins of Description Logics Description Logics stem from

More information

Description logics. Description Logics. Applications. Outline. Syntax - AL. Tbox and Abox

Description logics. Description Logics. Applications. Outline. Syntax - AL. Tbox and Abox Description Logics Description logics A family of KR formalisms, based on FOPL decidable, supported by automatic reasoning systems Used for modelling of application domains Classification of concepts and

More information

Role-depth Bounded Least Common Subsumers by Completion for EL- and Prob-EL-TBoxes

Role-depth Bounded Least Common Subsumers by Completion for EL- and Prob-EL-TBoxes Role-depth Bounded Least Common Subsumers by Completion for EL- and Prob-EL-TBoxes Rafael Peñaloza and Anni-Yasmin Turhan TU Dresden, Institute for Theoretical Computer Science Abstract. The least common

More information

Week 4. COMP62342 Sean Bechhofer, Uli Sattler

Week 4. COMP62342 Sean Bechhofer, Uli Sattler Week 4 COMP62342 Sean Bechhofer, Uli Sattler sean.bechhofer@manchester.ac.uk, uli.sattler@manchester.ac.uk Today Some clarifications from last week s coursework More on reasoning: extension of the tableau

More information

Description Logics. an introduction into its basic ideas

Description Logics. an introduction into its basic ideas Description Logics an introduction into its basic ideas A. Heußner WS 2003/2004 Preview: Basic Idea: from Network Based Structures to DL AL : Syntax / Semantics Enhancements of AL Terminologies (TBox)

More information

A Description Logic with Concrete Domains and a Role-forming Predicate Operator

A Description Logic with Concrete Domains and a Role-forming Predicate Operator A Description Logic with Concrete Domains and a Role-forming Predicate Operator Volker Haarslev University of Hamburg, Computer Science Department Vogt-Kölln-Str. 30, 22527 Hamburg, Germany http://kogs-www.informatik.uni-hamburg.de/~haarslev/

More information

DESCRIPTION LOGICS. Paula Severi. October 12, University of Leicester

DESCRIPTION LOGICS. Paula Severi. October 12, University of Leicester DESCRIPTION LOGICS Paula Severi University of Leicester October 12, 2009 Description Logics Outline Introduction: main principle, why the name description logic, application to semantic web. Syntax and

More information

Structured Descriptions & Tradeoff Between Expressiveness and Tractability

Structured Descriptions & Tradeoff Between Expressiveness and Tractability 5. Structured Descriptions & Tradeoff Between Expressiveness and Tractability Outline Review Expressiveness & Tractability Tradeoff Modern Description Logics Object Oriented Representations Key Representation

More information

On Axiomatic Rejection for the Description Logic ALC

On Axiomatic Rejection for the Description Logic ALC On Axiomatic Rejection for the Description Logic ALC Hans Tompits Vienna University of Technology Institute of Information Systems Knowledge-Based Systems Group Joint work with Gerald Berger Context The

More information

Inverting Proof Systems for Secrecy under OWA

Inverting Proof Systems for Secrecy under OWA Inverting Proof Systems for Secrecy under OWA Giora Slutzki Department of Computer Science Iowa State University Ames, Iowa 50010 slutzki@cs.iastate.edu May 9th, 2010 Jointly with Jia Tao and Vasant Honavar

More information

A Tableau Algorithm for Fuzzy Description Logics over Residuated De Morgan Lattices

A Tableau Algorithm for Fuzzy Description Logics over Residuated De Morgan Lattices A Tableau Algorithm for Fuzzy Description Logics over Residuated De Morgan Lattices Stefan Borgwardt and Rafael Peñaloza Theoretical Computer Science, TU Dresden, Germany {stefborg,penaloza}@tcs.inf.tu-dresden.de

More information

The Complexity of Lattice-Based Fuzzy Description Logics

The Complexity of Lattice-Based Fuzzy Description Logics Noname manuscript No (will be inserted by the editor) The Complexity of Lattice-Based Fuzzy Description Logics From ALC to SHI Stefan Borgwardt Rafael Peñaloza the date of receipt and acceptance should

More information

A MILP-based decision procedure for the (Fuzzy) Description Logic ALCB

A MILP-based decision procedure for the (Fuzzy) Description Logic ALCB A MILP-based decision procedure for the (Fuzzy) Description Logic ALCB Fernando Bobillo 1 and Umberto Straccia 2 1 Dpt. of Computer Science & Systems Engineering, University of Zaragoza, Spain 2 Istituto

More information

Computing Least Common Subsumers in Description Logics with Existential Restrictions*

Computing Least Common Subsumers in Description Logics with Existential Restrictions* Computing Least Common Subsumers in Description Logics with Existential Restrictions* Franz Baader, Ralf Kiisters, Ralf Molitor LuFg Theoretische Informatik, RWTH Aachen email: {baader,kuesters,molitor}@infonnatik.rwth-aachcn.dc

More information

Completing Description Logic Knowledge Bases using Formal Concept Analysis

Completing Description Logic Knowledge Bases using Formal Concept Analysis Completing Description Logic Knowledge Bases using Formal Concept Analysis Franz Baader 1, Bernhard Ganter 1, Ulrike Sattler 2 and Barış Sertkaya 1 1 TU Dresden, Germany 2 The University of Manchester,

More information

Non-Gödel Negation Makes Unwitnessed Consistency Undecidable

Non-Gödel Negation Makes Unwitnessed Consistency Undecidable Non-Gödel Negation Makes Unwitnessed Consistency Undecidable Stefan Borgwardt and Rafael Peñaloza {stefborg,penaloza}@tcs.inf.tu-dresden.de Theoretical Computer Science, TU Dresden, Germany Abstract. Recent

More information

The Bayesian Ontology Language BEL

The Bayesian Ontology Language BEL Journal of Automated Reasoning manuscript No. (will be inserted by the editor) The Bayesian Ontology Language BEL İsmail İlkan Ceylan Rafael Peñaloza Received: date / Accepted: date Abstract We introduce

More information

Gödel Negation Makes Unwitnessed Consistency Crisp

Gödel Negation Makes Unwitnessed Consistency Crisp Gödel Negation Makes Unwitnessed Consistency Crisp Stefan Borgwardt, Felix Distel, and Rafael Peñaloza Faculty of Computer Science TU Dresden, Dresden, Germany [stefborg,felix,penaloza]@tcs.inf.tu-dresden.de

More information

Complexity of Subsumption in the EL Family of Description Logics: Acyclic and Cyclic TBoxes

Complexity of Subsumption in the EL Family of Description Logics: Acyclic and Cyclic TBoxes Complexity of Subsumption in the EL Family of Description Logics: Acyclic and Cyclic TBoxes Christoph Haase 1 and Carsten Lutz 2 Abstract. We perform an exhaustive study of the complexity of subsumption

More information

Quasi-Classical Semantics for Expressive Description Logics

Quasi-Classical Semantics for Expressive Description Logics Quasi-Classical Semantics for Expressive Description Logics Xiaowang Zhang 1,4, Guilin Qi 2, Yue Ma 3 and Zuoquan Lin 1 1 School of Mathematical Sciences, Peking University, Beijing 100871, China 2 Institute

More information

A Goal-Oriented Algorithm for Unification in EL w.r.t. Cycle-Restricted TBoxes

A Goal-Oriented Algorithm for Unification in EL w.r.t. Cycle-Restricted TBoxes A Goal-Oriented Algorithm for Unification in EL w.r.t. Cycle-Restricted TBoxes Franz Baader, Stefan Borgwardt, and Barbara Morawska {baader,stefborg,morawska}@tcs.inf.tu-dresden.de Theoretical Computer

More information

Description Logics. Glossary. Definition

Description Logics. Glossary. Definition Title: Description Logics Authors: Adila Krisnadhi, Pascal Hitzler Affil./Addr.: Wright State University, Kno.e.sis Center 377 Joshi Research Center, 3640 Colonel Glenn Highway, Dayton OH 45435, USA Phone:

More information

Dismatching and Local Disunification in EL

Dismatching and Local Disunification in EL Dismatching and Local Disunification in EL (Extended Abstract) Franz Baader, Stefan Borgwardt, and Barbara Morawska Theoretical Computer Science, TU Dresden, Germany {baader,stefborg,morawska}@tcs.inf.tu-dresden.de

More information

arxiv: v2 [cs.lo] 21 Jul 2014

arxiv: v2 [cs.lo] 21 Jul 2014 ExpTime Tableaux with Global Caching for the Description Logic SHOQ Linh Anh Nguyen 1,2 and Joanna Golińska-Pilarek 3 1 Institute of Informatics, University of Warsaw Banacha 2, 02-097 Warsaw, Poland nguyen@mimuw.edu.pl

More information

Fuzzy Ontologies over Lattices with T-norms

Fuzzy Ontologies over Lattices with T-norms Fuzzy Ontologies over Lattices with T-norms Stefan Borgwardt and Rafael Peñaloza Theoretical Computer Science, TU Dresden, Germany {stefborg,penaloza}@tcs.inf.tu-dresden.de 1 Introduction In some knowledge

More information

ALC Concept Learning with Refinement Operators

ALC Concept Learning with Refinement Operators ALC Concept Learning with Refinement Operators Jens Lehmann Pascal Hitzler June 17, 2007 Outline 1 Introduction to Description Logics and OWL 2 The Learning Problem 3 Refinement Operators and Their Properties

More information

Principles of Knowledge Representation and Reasoning

Principles of Knowledge Representation and Reasoning Principles of Knowledge Representation and Semantic Networks and Description Logics II: Description Logics Terminology and Notation Bernhard Nebel, Felix Lindner, and Thorsten Engesser November 23, 2015

More information

Teil III: Wissensrepräsentation und Inferenz. Kap.11: Beschreibungslogiken

Teil III: Wissensrepräsentation und Inferenz. Kap.11: Beschreibungslogiken Vorlesung Künstliche Intelligenz Wintersemester 2006/07 Teil III: Wissensrepräsentation und Inferenz Kap.11: Beschreibungslogiken Mit Material von Carsten Lutz, Uli Sattler: http://www.computationallogic.org/content/events/iccl-ss-

More information

Expressive number restrictions in Description Logics

Expressive number restrictions in Description Logics Expressive number restrictions in Description Logics Franz Baader and Ulrike Sattler August 12, 1999 Abstract Number restrictions are concept constructors that are available in almost all implemented Description

More information

A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions

A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions Fernando Bobillo Miguel Delgado Juan Gómez-Romero Department of Computer Science and Artificial Intelligence University

More information

Least Common Subsumers and Most Specific Concepts in a Description Logic with Existential Restrictions and Terminological Cycles*

Least Common Subsumers and Most Specific Concepts in a Description Logic with Existential Restrictions and Terminological Cycles* Least Common Subsumers and Most Specific Concepts in a Description Logic with Existential Restrictions and Terminological Cycles* Franz Baader Theoretical Computer Science TU Dresden D-01062 Dresden, Germany

More information

2. A tableau algorithm for ALC with TBoxes, number restrictions, and inverse roles. Extend ALC-tableau algorithm from first session with

2. A tableau algorithm for ALC with TBoxes, number restrictions, and inverse roles. Extend ALC-tableau algorithm from first session with 2. A tableau algorithm for ALC with TBoxes, number restrictions, and inverse roles Extend ALC-tableau algorithm from first session with 1 general TBoxes 2 inverse roles 3 number restrictions Goal: Design

More information

FOUNDATIONS OF SEMANTIC WEB TECHNOLOGIES

FOUNDATIONS OF SEMANTIC WEB TECHNOLOGIES FOUNDATIONS OF SEMANTIC WEB TECHNOLOGIES OWL & Description Logics Markus Krötzsch Dresden, 16 May 2014 Content Overview & XML Introduction into RDF RDFS Syntax & Intuition Tutorial 1 RDFS Semantics RDFS

More information

Tractable Extensions of the Description Logic EL with Numerical Datatypes

Tractable Extensions of the Description Logic EL with Numerical Datatypes Tractable Extensions of the Description Logic EL with Numerical Datatypes Despoina Magka, Yevgeny Kazakov, and Ian Horrocks Oxford University Computing Laboratory Wolfson Building, Parks Road, OXFORD,

More information

Knowledge Bases in Description Logics

Knowledge Bases in Description Logics (1/23) Description Logics Knowledge Bases in Description Logics Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/23) Understanding

More information

A Survey of Temporal Knowledge Representations

A Survey of Temporal Knowledge Representations A Survey of Temporal Knowledge Representations Advisor: Professor Abdullah Tansel Second Exam Presentation Knowledge Representations logic-based logic-base formalisms formalisms more complex and difficult

More information

Adding ternary complex roles to ALCRP(D)

Adding ternary complex roles to ALCRP(D) Adding ternary complex roles to ALCRP(D) A.Kaplunova, V. Haarslev, R.Möller University of Hamburg, Computer Science Department Vogt-Kölln-Str. 30, 22527 Hamburg, Germany Abstract The goal of this paper

More information

Hybrid Unification in the Description Logic EL

Hybrid Unification in the Description Logic EL Hybrid Unification in the Description Logic EL Franz Baader, Oliver Fernández Gil, and Barbara Morawska {baader,morawska}@tcs.inf.tu-dresden.de, fernandez@informatik.uni-leipzig.de Theoretical Computer

More information

Description Logics. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca

Description Logics. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca Description Logics Adrian Groza Department of Computer Science Technical University of Cluj-Napoca Outline 1 The World as a Graph 2 Description Logics Family Ontology Description Logics How far can we

More information

LTCS Report. Decidability and Complexity of Threshold Description Logics Induced by Concept Similarity Measures. LTCS-Report 16-07

LTCS Report. Decidability and Complexity of Threshold Description Logics Induced by Concept Similarity Measures. LTCS-Report 16-07 Technische Universität Dresden Institute for Theoretical Computer Science Chair for Automata Theory LTCS Report Decidability and Complexity of Threshold Description Logics Induced by Concept Similarity

More information

An Introduction to Description Logics: Techniques, Properties, and Applications. NASSLLI, Day 3, Part 2. Computational Complexity.

An Introduction to Description Logics: Techniques, Properties, and Applications. NASSLLI, Day 3, Part 2. Computational Complexity. An Introduction to Description Logics: Techniques, Properties, and Applications NASSLLI, Day 3, Part 2 Computational Complexity Uli Sattler 1 Today We will discuss basic notions of computational complexity

More information

Reasoning in Expressive Gödel Description Logics

Reasoning in Expressive Gödel Description Logics Reasoning in Expressive Gödel Description Logics Stefan Borgwardt 1 and Rafael Peñaloza 2 1 Chair for Automata Theory, Theoretical Computer Science, TU Dresden, Germany stefan.borgwardt@tu-dresden.de 2

More information

Knowledge Compilation for Description Logics

Knowledge Compilation for Description Logics Knowledge Compilation for Description Logics Ulrich Furbach and Claudia Obermaier Universität Koblenz-Landau D56070 Koblenz, Germany {uli,obermaie}@uni-koblenz.de 1 Introduction Knowledge compilation is

More information

Prime Implicate Normal Form for ALC Concepts

Prime Implicate Normal Form for ALC Concepts Prime Implicate Normal Form for ALC Concepts Meghyn Bienvenu IRIT-UPS, 118 route de Narbonne, 31062 Toulouse Cedex, France IRIT Research Report IRIT/RR 2008-6 FR April 2008 Abstract In this paper, we present

More information

Knowledge Representation for the Semantic Web Lecture 2: Description Logics I

Knowledge Representation for the Semantic Web Lecture 2: Description Logics I Knowledge Representation for the Semantic Web Lecture 2: Description Logics I Daria Stepanova slides based on Reasoning Web 2011 tutorial Foundations of Description Logics and OWL by S. Rudolph Max Planck

More information

Description Logics (DLs)

Description Logics (DLs) OWL Three species of OWL OWL full is union of OWL syntax and RDF (Undecidable) OWL DL restricted to FOL fragment (decidable in NEXPTIME) OWL Lite is easier to implement subset of OWL DL (decidable in EXPTIME)

More information

Adaptive ALE-TBox for Extending Terminological Knowledge

Adaptive ALE-TBox for Extending Terminological Knowledge Adaptive ALE-TBox for Extending Terminological Knowledge Ekaterina Ovchinnikova 1 and Kai-Uwe Kühnberger 2 1 University of Tübingen, Seminar für Sprachwissenschaft e.ovchinnikova@gmail.com 2 University

More information

From Tableaux to Automata for Description Logics

From Tableaux to Automata for Description Logics From Tableaux to Automata for Description Logics Franz Baader 1, Jan Hladik 1, Carsten Lutz 1, and Frank Wolter 2 1 Theoretical Computer Science, TU Dresden, D-01062 Dresden, Germany, {baader,hladik,lutz}@tcs.inf.tu-dresden.de

More information

Completing Description Logic Knowledge Bases using Formal Concept Analysis

Completing Description Logic Knowledge Bases using Formal Concept Analysis Completing Description Logic Knowledge Bases using Formal Concept Analysis Franz Baader, 1 Bernhard Ganter, 1 Barış Sertkaya, 1 and Ulrike Sattler 2 1 TU Dresden, Germany and 2 The University of Manchester,

More information

An Introduction to Modal Logic III

An Introduction to Modal Logic III An Introduction to Modal Logic III Soundness of Normal Modal Logics Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, October 24 th 2013 Marco Cerami

More information

LTCS Report. Exploring finite models in the Description Logic EL gfp. Franz Baader, Felix Distel. LTCS-Report 08-05

LTCS Report. Exploring finite models in the Description Logic EL gfp. Franz Baader, Felix Distel. LTCS-Report 08-05 Dresden University of Technology Institute for Theoretical Computer Science Chair for Automata Theory LTCS Report Exploring finite models in the Description Logic EL gfp Franz Baader, Felix Distel LTCS-Report

More information

DL-Lite Contraction and Revision

DL-Lite Contraction and Revision Journal of Artificial Intelligence Research 56 (2016) 329-378 Submitted 12/15; published 06/16 DL-Lite Contraction and Revision Zhiqiang Zhuang Institute for Integrated and Intelligent Systems Griffith

More information

A RESOLUTION DECISION PROCEDURE FOR SHOIQ

A RESOLUTION DECISION PROCEDURE FOR SHOIQ A RESOLUTION DECISION PROCEDURE FOR SHOIQ Yevgeny Kazakov and Boris Motik The University of Manchester August 20, 2006 SHOIQ IS A DESCRIPTION LOGIC! Yevgeny Kazakov and Boris Motik A Resolution Decision

More information

A Tableaux-based calculus for Abduction in Expressive Description Logics: Preliminary Results

A Tableaux-based calculus for Abduction in Expressive Description Logics: Preliminary Results A Tableaux-based calculus for Abduction in Expressive Description Logics: Preliminary Results Tommaso Di Noia (1), Eugenio Di Sciascio (1), Francesco M. Donini (2) (1) SisInfLab, Politecnico di Bari, Bari,

More information

Reasoning with Annotated Description Logic Ontologies

Reasoning with Annotated Description Logic Ontologies Reasoning with Annotated Description Logic Ontologies an Stelle einer Habilitationsschrift vorgelegt an der Technischen Universität Dresden Fakultät Informatik eingereicht von Dr. rer. nat. Rafael Peñaloza

More information

Complexity Sources in Fuzzy Description Logic

Complexity Sources in Fuzzy Description Logic Complexity Sources in Fuzzy Description Logic Marco Cerami 1, and Umberto Straccia 2 1 Palacký University in Olomouc, Czech Republic marco.cerami@upol.cz 2 ISTI-CNR, Pisa, Italy umberto.straccia@isti.cnr.it

More information

An Introduction to Description Logic III

An Introduction to Description Logic III An Introduction to Description Logic III Knowledge Bases and Reasoning Tasks Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, November 6 th 2014

More information

Augmenting Subsumption Propagation in Distributed Description Logics

Augmenting Subsumption Propagation in Distributed Description Logics Augmenting Subsumption Propagation in Distributed Description Logics Martin Homola 1,2 and Luciano Serafini 2 1 Comenius University, Faculty of Mathematics, Physics and nformatics Mlynská dolina, 84248

More information

Axiom Pinpointing in General Tableaux

Axiom Pinpointing in General Tableaux Axiom Pinpointing in General Tableaux FRANZ BAADER, Theoretical Computer Science, TU Dresden, Germany. E-mail: baader@inf.tu-dresden.de RAFAEL PEÑALOZA, Intelligent Systems, University of Leipzig, Germany.

More information

Modal logics: an introduction

Modal logics: an introduction Modal logics: an introduction Valentin Goranko DTU Informatics October 2010 Outline Non-classical logics in AI. Variety of modal logics. Brief historical remarks. Basic generic modal logic: syntax and

More information

A Refined Tableau Calculus with Controlled Blocking for the Description Logic SHOI

A Refined Tableau Calculus with Controlled Blocking for the Description Logic SHOI A Refined Tableau Calculus with Controlled Blocking for the Description Logic Mohammad Khodadadi, Renate A. Schmidt, and Dmitry Tishkovsky School of Computer Science, The University of Manchester, UK Abstract

More information

A PSpace Algorithm for Acyclic Epistemic DL ALCS5 m

A PSpace Algorithm for Acyclic Epistemic DL ALCS5 m Journal of Automated Reasoning manuscript No. (will be inserted by the editor) A PSpace Algorithm for Acyclic Epistemic DL ALCS5 m Jia Tao Received: date / Accepted: date Abstract We study the description

More information

Optimisation of Terminological Reasoning

Optimisation of Terminological Reasoning Optimisation of Terminological Reasoning Ian Horrocks Department of Computer Science University of Manchester, UK horrocks@cs.man.ac.uk Stephan Tobies LuFG Theoretical Computer Science RWTH Aachen, Germany

More information

The Description Logic ABox Update Problem Revisited

The Description Logic ABox Update Problem Revisited Dresden University of Technology Department of Computer Science Institute for Theoretical Computer Science Master s Thesis on The Description Logic ABox Update Problem Revisited by Yusri Bong born on February

More information

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30)

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30) Computational Logic Davide Martinenghi Free University of Bozen-Bolzano Spring 2010 Computational Logic Davide Martinenghi (1/30) Propositional Logic - sequent calculus To overcome the problems of natural

More information

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig First-Order Logic First-Order Theories Roopsha Samanta Partly based on slides by Aaron Bradley and Isil Dillig Roadmap Review: propositional logic Syntax and semantics of first-order logic (FOL) Semantic

More information

Uncertainty in Description Logics: a Lattice-based Approach

Uncertainty in Description Logics: a Lattice-based Approach Uncertainty in Description Logics: a Lattice-based Approach Umberto Straccia ISTI-CNR Via G. Moruzzi 1, I-56124 Pisa ITALY Umberto.Straccia@isti.cnr.it Abstract It is generally accepted that knowledge

More information

Modular Reuse of Ontologies: Theory and Practice

Modular Reuse of Ontologies: Theory and Practice Journal of Artificial Intelligence Research 31 (2008) 273-318 Submitted 07/07; published 02/08 Modular Reuse of Ontologies: Theory and Practice Bernardo Cuenca Grau Ian Horrocks Yevgeny Kazakov Oxford

More information

Semantic Web Uncertainty Management

Semantic Web Uncertainty Management 1 Semantic Web Uncertainty Management Volker Haarslev Concordia University, Canada S Hsueh-leng Pai Concordia University, Canada Nematollaah Shiri Concordia University, Canada INTRODUCTION Since the introduction

More information

Decomposing Modal Logic

Decomposing Modal Logic Decomposing Modal Logic Gabriel G. Infante-Lopez Carlos Areces Maarten de Rijke Language & Inference Technology Group, ILLC, U. of Amsterdam Nieuwe Achtergracht 166, 1018 WV Amsterdam Email: {infante,carlos,mdr}@science.uva.nl

More information

A note on constructive semantics for description logics

A note on constructive semantics for description logics A note on constructive semantics for description logics Loris Bozzato, Mauro Ferrari, and Paola Villa Dipartimento di Informatica e Comunicazione Università degli Studi dell Insubria Via Mazzini 5, 21100,

More information

Motivation. CS389L: Automated Logical Reasoning. Lecture 10: Overview of First-Order Theories. Signature and Axioms of First-Order Theory

Motivation. CS389L: Automated Logical Reasoning. Lecture 10: Overview of First-Order Theories. Signature and Axioms of First-Order Theory Motivation CS389L: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories Işıl Dillig Last few lectures: Full first-order logic In FOL, functions/predicates are uninterpreted (i.e., structure

More information

LTCS Report. Blocking and Pinpointing in Forest Tableaux. LTCS-Report 08-02

LTCS Report. Blocking and Pinpointing in Forest Tableaux. LTCS-Report 08-02 Dresden University of Technology Institute for Theoretical Computer Science Chair for Automata Theory LTCS Report Blocking and Pinpointing in Forest Tableaux Franz Baader Rafael Peñaloza LTCS-Report 08-02

More information

An Introduction to Description Logic IX Tableau-based algorithm

An Introduction to Description Logic IX Tableau-based algorithm An Introduction to Description Logic IX Tableau-based algorithm Marco Cerami Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic Olomouc, March 26 th 2015 Marco Cerami

More information

Lightweight Description Logics: DL-Lite A and EL ++

Lightweight Description Logics: DL-Lite A and EL ++ Lightweight Description Logics: DL-Lite A and EL ++ Elena Botoeva 1 KRDB Research Centre Free University of Bozen-Bolzano January 13, 2011 Departamento de Ciencias de la Computación Universidad de Chile,

More information

Decidability of SHI with transitive closure of roles

Decidability of SHI with transitive closure of roles 1/20 Decidability of SHI with transitive closure of roles Chan LE DUC INRIA Grenoble Rhône-Alpes - LIG 2/20 Example : Transitive Closure in Concept Axioms Devices have as their direct part a battery :

More information

LTCS Report. A finite basis for the set of EL-implications holding in a finite model

LTCS Report. A finite basis for the set of EL-implications holding in a finite model Dresden University of Technology Institute for Theoretical Computer Science Chair for Automata Theory LTCS Report A finite basis for the set of EL-implications holding in a finite model Franz Baader, Felix

More information

Exploiting Pseudo Models for TBox and ABox Reasoning in Expressive Description Logics

Exploiting Pseudo Models for TBox and ABox Reasoning in Expressive Description Logics Exploiting Pseudo Models for TBox and ABox Reasoning in Expressive Description Logics Volker Haarslev and Ralf Möller and Anni-Yasmin Turhan University of Hamburg Computer Science Department Vogt-Kölln-Str.

More information

On the Complexity of (Restricted) ALCIr

On the Complexity of (Restricted) ALCIr On the Complexity of (Restricted ALCIr Milenko Mosurovic and Michael Zakharyaschev Communicated by Abstract. We consider a new description logic ALCIr that extends ALCI with role inclusion axioms of the

More information

Relational Reasoning in Natural Language

Relational Reasoning in Natural Language 1/67 Relational Reasoning in Natural Language Larry Moss ESSLLI 10 Course on Logics for Natural Language Inference August, 2010 Adding transitive verbs the work on R, R, and other systems is joint with

More information

Tight Complexity Bounds for Reasoning in the Description Logic BEL

Tight Complexity Bounds for Reasoning in the Description Logic BEL Tight Complexity Bounds for Reasoning in the Description Logic BEL İsmail İlkan Ceylan1 and Rafael Peñaloza 1,2 1 Theoretical Computer Science, TU Dresden, Germany 2 Center for Advancing Electronics Dresden

More information

Technische Universität Dresden. Fakultät Informatik EMCL Master s Thesis on. Hybrid Unification in the Description Logic EL

Technische Universität Dresden. Fakultät Informatik EMCL Master s Thesis on. Hybrid Unification in the Description Logic EL Technische Universität Dresden Fakultät Informatik EMCL Master s Thesis on Hybrid Unification in the Description Logic EL by Oliver Fernández Gil born on June 11 th 1982, in Pinar del Río, Cuba Supervisor

More information

Restricted role-value-maps in a description logic with existential restrictions and terminological cycles

Restricted role-value-maps in a description logic with existential restrictions and terminological cycles Restricted role-value-maps in a description logic with existential restrictions and terminological cycles Franz Baader Theoretical Computer Science, Dresden University of Technology D-01062 Dresden, Germany

More information

A Zadeh-Norm Fuzzy Description Logic for Handling Uncertainty: Reasoning Algorithms and the Reasoning System

A Zadeh-Norm Fuzzy Description Logic for Handling Uncertainty: Reasoning Algorithms and the Reasoning System 1 / 31 A Zadeh-Norm Fuzzy Description Logic for Handling Uncertainty: Reasoning Algorithms and the Reasoning System Judy Zhao 1, Harold Boley 2, Weichang Du 1 1. Faculty of Computer Science, University

More information

Knowledge Integration for Description Logics

Knowledge Integration for Description Logics Knowledge Integration for Description Logics Thomas Meyer and Kevin Lee KRR, National ICT Australia School of Computer Science and Engineering, UNSW, Sydney, Australia {tmeyer,kevinl}@cse.unsw.edu.au Richard

More information

The semantics of ALN knowledge bases is the standard model-based semantics of rst-order logic. An interpretation I contains a non-empty domain O I. It

The semantics of ALN knowledge bases is the standard model-based semantics of rst-order logic. An interpretation I contains a non-empty domain O I. It Backward Reasoning in Aboxes for Query Answering Marie-Christine Rousset L.R.I. Computer Science Laboratory C.N.R.S & University of Paris-Sud Building 490, 91405, Orsay Cedex, France mcr@lri.fr Abstract

More information

A tableaux calculus for ALC + T min R

A tableaux calculus for ALC + T min R A tableaux calculus for ALC + T min R Laura Giordano Valentina Gliozzi Adam Jalal Nicola Olivetti Gian Luca Pozzato June 12, 2013 Abstract In this report we introduce a tableau calculus for deciding query

More information

EXPLANATION AND DIAGNOSIS SERVICES FOR UNSATISFIABILITY AND INCONSISTENCY IN DESCRIPTION LOGICS

EXPLANATION AND DIAGNOSIS SERVICES FOR UNSATISFIABILITY AND INCONSISTENCY IN DESCRIPTION LOGICS EXPLANATION AND DIAGNOSIS SERVICES FOR UNSATISFIABILITY AND INCONSISTENCY IN DESCRIPTION LOGICS Xi Deng A thesis in The Department of Computer Science and Software Engineering Presented in Partial Fulfillment

More information

Finite Model Reasoning in Horn-SHIQ

Finite Model Reasoning in Horn-SHIQ Finite Model Reasoning in Horn-SHIQ Yazmín Ibañez-García 1, Carsten Lutz 2, and Thomas Schneider 2 1 KRDB Research Centre, Free Univ. of Bozen-Bolzano, Italy,{ibanezgarcia@inf.unibz.it} 2 Univ. Bremen,

More information

Decidable Description Logics of Context with Rigid Roles

Decidable Description Logics of Context with Rigid Roles Decidable Description Logics of Context with Rigid Roles Stephan Böhme and Marcel Lippmann Institute for Theoretical Computer Science, Technische Universität Dresden, {stephan.boehme,marcel.lippmann}@tu-dresden.de

More information

Towards a Paradoxical Description Logic for the Semantic Web

Towards a Paradoxical Description Logic for the Semantic Web Towards a Paradoxical Description Logic for the Semantic Web Xiaowang Zhang 1,2, Zuoquan Lin 2 and Kewen Wang 1 1 Institute for Integrated and Intelligent Systems, Griffith University, Australia 2 School

More information