The Fueter Theorem and Dirac symmetries

Size: px
Start display at page:

Download "The Fueter Theorem and Dirac symmetries"

Transcription

1 The Fueter Theorem and Dirac symmetries David Eelbode Departement of Mathematics and Computer Science University of Antwerp (partially joint work with V. Souček and P. Van Lancker)

2 General overview of lecture Define differential operators on R m (multivariate analysis) Generate solutions of a special form (the Fueter theorem) Proof by means of (Lie) symmetries of the operator Explore the underlying algebraic framework Find connections with special functions

3 Quaternionic analysis in H: notations Regularity in quaternionic analysis D q f = 0 with f : R 4 H : (t; x, y, z) f (t; x, y, z), where f = f 0 + if 1 + jf 2 + kf 3 (and i 2 = j 2 = k 2 = 1) The Fueter-operator on H-valued functions: D q := t + i x + j y + k z Quaternions can be written in polar form as q := t + (ix + jy + kz) = t + ρω (ω S 2 R 3 ) where ρ 2 = x 2 + y 2 + z 2 (Euclidean spatial squared norm)

4 Recent interest in quaternionic analysis Applications in theoretical physics (Frenkel - Libine) Schrödinger model for minimal representations of O(3, 3) Quaternionic analysis, representation theory and physics Functional calculus and spectral analysis (Alpay - Colombo - Sabadini - Struppa -...) Quaternionic Fourier transforms (Bujack - De Bie - Hitzer - Sangwine - Scheuermann) Relation with the conformal algebra: R 1,3 = M 2 2 (H)

5 Fueter s original result (1935) Construction of regular functions from holomorphic ones: F : ker z ker D q Input: a holomorphic function on Ω C f (z) = u(x, y) + iv(x, y) ker( x + i y ) Output: a q-regular function (solution for D q ) F (t; x, y, z) = F[f ] := 4 ( u(t, ρ) + ωv(t, ρ) ) the map F combines substitution + Laplace operator

6 Clifford analysis in a nutshell Inspired by the (massless) Dirac equation on R 1,3 : i γ µ µ ψ(t; x) = 0 matrices γ µ generate the Clifford algebra R 1,3 Clifford algebras exist in greater generality: (p, q) Z + Z + R p,q R p,q C = C p+q := C m Natural question: study the corresponding Dirac operator m R p,q = Alg(e 1,..., e m ) x := e j xj j=1

7 Defining relations for C m (similar for R p,q ): e a e b + e b e a = {e a, e b } = 2δ ab m anti-commuting complex (or hyperbolic) units Clifford analysis thus refines harmonic analysis: 2 x = (e 1 x e m xm ) 2 = m Study of functions with values in (subset of) C m typical example: a real subalgebra such as R 0,m best choice (algebraically speaking): a spinor space

8 Clifford analysis generalises complex analysis algebra isomorphism R 0,1 = C Dirac operator on R 2 factorises 2 analogue of Cauchy formula available (for all m) Clifford analysis generalises quaternionic analysis algebra isomorphism R 0,2 = H Dirac operator on R 4 factorises 4 Obvious question 1: how to generalise Fueter s theorem? (i.e. special Dirac solutions from holomorphic functions) Obvious question 2: do they have a special meaning?

9 Answers can be found in... Work done by Sommen-Tao-Kou F : ker z ker x first in odd dimensions m ( obvious generalisation) later in even dimensions m (Fourier multipliers) further generalisations ( shifted versions ) Essentially also substitution + Laplace operator F[f ](x 1,..., x m ) = m 1 [ 2 m u(ρ, xm ) + ωe m v(ρ, x m ) ] with j x je j = ρω + x m e m R m 1 R (branched splitting)

10 Plan for the lecture Give an alternative proof using symmetries for x We are interested in an algebraic approach: easier to see the link with special functions allows a generalisation to other invariant operators possible connection with other quadratic algebras possible connection with slice regularity

11 Symmetries for a differential operator Consider a differential operator D : C (R m, V) C (R m, V) One says: δ 1 End C (R m, V) is a generalised symmetry if there also exists an operator δ 2 End C (R m, V) such that Dδ 1 = δ 2 D δ 1 End ker D Special case: δ 1 = δ 2 a classical symmetry for D First order (generalised) symmetries span a Lie algebra [Miller]

12 Generalised symmetries for the Dirac operator (obvious) translation symmetry operators: [ xj, x ] = 0 rotational symmetry operators: [dl(e ij ), x ] = 0 ( dl(e ij )f (x) := x i xj x j xi 1 ) 2 e ij f (x), where e ij generates a rotation ( anti-symmetric matrix ) generalised Euler symmetry (E x = r r = j x j xj ): x (2E x + m 1) = (2E x + m + 1) x So far: symmetries belonging to ( so(m) R ) R m (you may recognise a parabolic Lie algebra/euclidean motions)

13 More symmetries available! Definition The (monogenic) Klein inversion operator is defined by means of I : ker x ker x : f (x) I[f ](x) := x ( ) x x m f x 2 easily verified that the following operator equality holds: I x I = x 2 x x I = I x 2 x = ( I x 2 I ) I x gives rise to another class of generalised symmetries: x (I xj I) = 1 x 2 (I x j I) x 2 x (1 j m)

14 The full conformal picture We have found the following Lie algebra of symmetries: Alg ( I xj I ) ( Alg ( dl(e ij ) ) ) R(2E x + m 1) Alg( xj ) Defines a realisation for the algebra so(1, m + 1) e.g. [ xj, I xk I] = δ jk (2E x + m 1) dl(e jk ) explains where the conformal weight (m 1) comes from in abstract form: R m ( so(m) R ) R m (1-graded)

15 Intermezzo: the Lie algebra sl(2) Classical matrix definition: sl(2) := {M C 2 2 : trace(m) = 0} Well-known vector space basis {X, Y, H} given by {( ) ( ) ( )} ,, Defines a Lie algebra for [A, B] := AB BA with [X, Y ] = H [H, X ] = +2X [H, Y ] = 2Y

16 Verma modules Take a highest weight vector v h in ker X Repeated action of Y sl(2) creates a vector space := Y j [v h ] V λ j=0 (provided we have that Y j [v h ] 0 for all j Z + ) Each of these vectors is an eigenvector for H sl(2) Result: a Verma module V λ H [ Y j [v h ] ] = (λ 2j)Y j [v h ] with λ C (with restrictions)

17 Specific subalgebra plays a crucial role Lemma The Lie algebra sl(2) can be realised as sl(2) = Alg( xj, I xj I, 1 m 2E x ) = Alg(X, Y, H) Arbitrary polynomial in (x 1,..., x m 1 ) generates a Verma module: V 1 m 2k := ( 1) j (I xm I) j P k (x 1,..., x m 1 ) j=0 weight spaces expressed in terms of Gegenbauer polynomials these Verma modules will serve as images of the Fueter map

18 Slightly deformed version of previous slide Definition The (poly-monogenic) inversion operator is defined by means of I α : f (x) I α [f ](x) := x ( ) x x m+α f x 2 (α C) typical case of interest: α = 2l with l Z + mapping properties differ from Klein inversion (α = 0) I 2l : ker x 2l+1 ker x 2l+1 indeed: f (x) x 2l I[f ](x) (extra factor x 2l to be killed)

19 Still a copy of sl(2) available Lemma The Lie algebra sl(2) can be realised as sl(2) = Alg( xj, I α xj I α, 1 m α 2E x ) Explicit formula for the creation operator : I α xm I α = x 2 xm + x m (2E x + α + m 1) + x e m In order to get a Fueter theorem we need two ingredients: a substitution map z = x + iy? the action of a Laplace power

20 The substitution map Earlier results based on the following: u + iv u + (ωe m )v = scalar + (ωe m )scalar We know that in the Clifford algebra one has that This suggests the following: (vector) (vector) = scalar + bivector z = x + iy (ē m x) = e m m j=1 m 1 e j x j = x m + e j e m x j j=1

21 Invoking the conformal symmetries The following can now easily be proved: ( x 2 xm + x m (2E x + 1) + x e m ) (ēm x) k = (k + 1)(ē m x) k+1 This leads to (choose the appropriate α C): (I 2 m xm I 2 m ) k [1] = k!(ē m x) k we have that I 2 m = I 2l l = m 2 2 (for m even) the operator I 3 m then preserves solutions for x 1+2l so does the creation operator I 2 m xm I 2 m = m 1 x

22 Fueter s theorem We have now shown (for odd dimensions m): ( ) x m 1 (ē m x) k = ( 1) m 2 1 x m 2 1 x (ē m x) k = 0 As this holds for all k, the result for holomorphic f (z) follows: f (z) ker z m 1 2 m f (ē m x) ker x Explicit expressions for Fueter images available: F[z k+m 1 ] (I 0 xm I 0 ) k [1] π m ( x k C m 2 1 with t = cos θ = xm x [ 1, +1] fixed by the choice of e m k ) (t)

23 The monogenic projection operator π m Complex case: 2 = 4 z z, so 2 f (z) = 0 f (z) = f 0 (z) + zf 1 (z) π 2 f0 (z) with z f 0 (z) = z f 1 (z) = 0 We know that 2 x = m, so x f (x) = 0 f (x) = f 0 (x) + xf 1 (x) π m f0 (x) with x f 0 (x) = x f 1 (x) = 0

24 The role of the Gegenbauer polynomials In a sense, Fueter s theorem does the following: ( c k z k π m C k,m x k + D ) k,m x k+m 2 C m 2 1 k (t) k Z k=0 Gegenbauers arise as a consequence of branching rules (both for harmonics and monogenics on R m ) k P k (R m, C m ) ker x = P j (R m 1, C m ) ker x j=0 Special role for j = 0: these are the Gegegenbauers

25 Different interpretation for Fueter s theorem Complex powers z k are mapped to special components for the restriction of homogeneous solutions for x on R m to R m 1 The result is a slice monogenic function (Colombo et al.) Obvious question: can one restrict from R m to R m p (p > 1) leads to bi-axial Fueter theorems (Jacobi polynomials) may lead to refinements of the slice theorems

26 Thank you for your attention!

Hendrik De Bie. Hong Kong, March 2011

Hendrik De Bie. Hong Kong, March 2011 A Ghent University (joint work with B. Ørsted, P. Somberg and V. Soucek) Hong Kong, March 2011 A Classical FT New realizations of sl 2 in harmonic analysis A Outline Classical FT New realizations of sl

More information

RESEARCH ARTICLE. Gegenbauer polynomials and the Fueter theorem

RESEARCH ARTICLE. Gegenbauer polynomials and the Fueter theorem Comple Variables and Elliptic Equations Vol. 00, No. 00, January 008, 1 15 RESEARCH ARTICLE Gegenbauer polynomials and the Fueter theorem David Eelbode a, V. Souček b and P. Van Lancker c a Antwerp University,

More information

Recent results in discrete Clifford analysis

Recent results in discrete Clifford analysis Recent results in discrete Clifford analysis Hilde De Ridder joint work with F. Sommen Department of Mathematical Analysis, Ghent University Mathematical Optics, Image Modelling and Algorithms 2016 0 /

More information

f k j M k j Among them we recognize the gradient operator on polynomial-valued functions which is part of the complete gradient (see [9]) u j xj.

f k j M k j Among them we recognize the gradient operator on polynomial-valued functions which is part of the complete gradient (see [9]) u j xj. Advances in Applied Clifford Algebras 4, No. 1 (1994) 65 FUNCTIONS OF TWO VECTOR VARIABLES F. Sommen* and N. Van Acker Department of Mathematical Analysis, University of Gent, Galglaan 2 B-9000 Gent, Belgium

More information

arxiv: v2 [math.cv] 17 Nov 2017

arxiv: v2 [math.cv] 17 Nov 2017 FISCHER DECOMPOSITION FOR SPINOR VALUED POLYNOMIALS IN SEVERAL VARIABLES R. LÁVIČKA AND V. SOUČEK arxiv:1708.01426v2 [math.cv] 17 Nov 2017 Abstract. It is well-known that polynomials decompose into spherical

More information

Models for Irreducible Representations of Spin(m)

Models for Irreducible Representations of Spin(m) 17 Models for Irreducible Representations of Spin(m) This is page 271 Printer: Opaque this P. Van Lancker, F. Sommen and D. Constales ABSTRACT In this paper we consider harmonic and monogenic polynomials

More information

Polynomial solutions for arbitrary higher spin Dirac operators

Polynomial solutions for arbitrary higher spin Dirac operators Polynomial solutions for arbitrary higher spin Dirac operators D Eelbode T Raeymaekers Abstract In a series of recent papers, we have introduced higher spin Dirac operators, which are far-reaching generalisations

More information

The Monogenic Fischer Decomposition: Two Vector Variables

The Monogenic Fischer Decomposition: Two Vector Variables The Monogenic Fischer Decomposition: Two Vector Variables P. Van Lancker May 8, 2011 Abstract In this paper we will present two proofs of the monogenic Fischer decomposition in two vector variables. The

More information

Lecture 11: Clifford algebras

Lecture 11: Clifford algebras Lecture 11: Clifford algebras In this lecture we introduce Clifford algebras, which will play an important role in the rest of the class. The link with K-theory is the Atiyah-Bott-Shapiro construction

More information

THE HOWE DUALITY FOR HODGE SYSTEMS

THE HOWE DUALITY FOR HODGE SYSTEMS 18 th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering K. Gürlebeck and C. Könke (eds.) Weimar, Germany, 07 09 July 009 THE HOWE DUALITY

More information

The Spinor Representation

The Spinor Representation The Spinor Representation Math G4344, Spring 2012 As we have seen, the groups Spin(n) have a representation on R n given by identifying v R n as an element of the Clifford algebra C(n) and having g Spin(n)

More information

The Cauchy Kovalevskaya Extension Theorem in Hermitean Clifford Analysis

The Cauchy Kovalevskaya Extension Theorem in Hermitean Clifford Analysis The Cauchy Kovalevskaya Extension Theorem in Hermitean Clifford Analysis F Brackx, H De Schepper, R Lávička & V Souček Clifford Research Group, Faculty of Engineering, Ghent University Building S22, Galglaan

More information

On primitives and conjugate harmonic pairs in Hermitean Clifford analysis

On primitives and conjugate harmonic pairs in Hermitean Clifford analysis On primitives and conjugate harmonic pairs in Hermitean Clifford analysis F. Brackx, H. De Schepper, R. Lávička & V. Souček Clifford Research Group, Department of Mathematical Analysis, Faculty of Engineering

More information

Operator Exponentials for the Clifford Fourier Transform on Multivector Fields

Operator Exponentials for the Clifford Fourier Transform on Multivector Fields Operator Exponentials for the Clifford Fourier Transform on Multivector Fields David Eelbode and Echard Hitzer Mathematics Subject Classification 000). Primary 4A38; Secondary 15A66,34L40. Keywords. Fourier

More information

QUATERNIONS AND ROTATIONS

QUATERNIONS AND ROTATIONS QUATERNIONS AND ROTATIONS SVANTE JANSON 1. Introduction The purpose of this note is to show some well-known relations between quaternions and the Lie groups SO(3) and SO(4) (rotations in R 3 and R 4 )

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

Archiv der Mathematik Holomorphic approximation of L2-functions on the unit sphere in R^3

Archiv der Mathematik Holomorphic approximation of L2-functions on the unit sphere in R^3 Manuscript Number: Archiv der Mathematik Holomorphic approximation of L-functions on the unit sphere in R^ --Manuscript Draft-- Full Title: Article Type: Corresponding Author: Holomorphic approximation

More information

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups A Lie group is a special smooth manifold on which there is a group structure, and moreover, the two structures are compatible. Lie groups are

More information

Hypermonogenic solutions and plane waves of the Dirac operator in R p R q

Hypermonogenic solutions and plane waves of the Dirac operator in R p R q Hypermonogenic solutions and plane waves of the Dirac operator in R p R q Alí Guzmán Adán, Heikki Orelma, Franciscus Sommen September 9, 07 arxiv:709.05846v [math.ap] 8 Sep 07 Abstract In this paper we

More information

Dunkl operators and Clifford algebras II

Dunkl operators and Clifford algebras II Translation operator for the Clifford Research Group Department of Mathematical Analysis Ghent University Hong Kong, March, 2011 Translation operator for the Hermite polynomials Translation operator for

More information

ALGEBRAIC ANALYSIS OF THE RARITA SCHWINGER SYSTEM IN REAL DIMENSION THREE

ALGEBRAIC ANALYSIS OF THE RARITA SCHWINGER SYSTEM IN REAL DIMENSION THREE ARCHIVUM MATHEMATICUM (BRNO) Tomus 42 (2006), Supplement, 197 211 ALGEBRAIC ANALYSIS OF THE RARITA SCHWINGER SYSTEM IN REAL DIMENSION THREE ALBERTO DAMIANO Abstract. In this paper we use the explicit description

More information

Cauchy-Kowalevski extensions and monogenic. plane waves using spherical monogenics

Cauchy-Kowalevski extensions and monogenic. plane waves using spherical monogenics Cauchy-Kowalevski extensions and monogenic plane waves using spherical monogenics N. De Schepper a, F. Sommen a a Clifford Research Group, Ghent University, Department of Mathematical Analysis, Faculty

More information

Clifford Analysis on Super-Space

Clifford Analysis on Super-Space 18 Clifford Analysis on Super-Space This is page 291 Printer: Opaque this F. Sommen University of Gent, Department of Mathematical Analysis Galglaan 2, B-9000 Gent, Belgium ABSTRACT In this paper we further

More information

Tutorial 5 Clifford Algebra and so(n)

Tutorial 5 Clifford Algebra and so(n) Tutorial 5 Clifford Algebra and so(n) 1 Definition of Clifford Algebra A set of N Hermitian matrices γ 1, γ,..., γ N obeying the anti-commutator γ i, γ j } = δ ij I (1) is the basis for an algebra called

More information

Clifford Algebras and Spin Groups

Clifford Algebras and Spin Groups Clifford Algebras and Spin Groups Math G4344, Spring 2012 We ll now turn from the general theory to examine a specific class class of groups: the orthogonal groups. Recall that O(n, R) is the group of

More information

INTRODUCTION TO LIE ALGEBRAS. LECTURE 2.

INTRODUCTION TO LIE ALGEBRAS. LECTURE 2. INTRODUCTION TO LIE ALGEBRAS. LECTURE 2. 2. More examples. Ideals. Direct products. 2.1. More examples. 2.1.1. Let k = R, L = R 3. Define [x, y] = x y the cross-product. Recall that the latter is defined

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Motivation towards Clifford Analysis: The classical Cauchy s Integral Theorem from a Clifford perspective

Motivation towards Clifford Analysis: The classical Cauchy s Integral Theorem from a Clifford perspective Motivation towards Clifford Analysis: The classical Cauchy s Integral Theorem from a Clifford perspective Lashi Bandara November 26, 29 Abstract Clifford Algebras generalise complex variables algebraically

More information

AN INTEGRAL FORMULA OF HYPERBOLIC TYPE FOR SOLUTIONS OF THE DIRAC EQUATION ON MINKOWSKI SPACE WITH INITIAL CONDITIONS ON A HYPERBOLOID.

AN INTEGRAL FORMULA OF HYPERBOLIC TYPE FOR SOLUTIONS OF THE DIRAC EQUATION ON MINKOWSKI SPACE WITH INITIAL CONDITIONS ON A HYPERBOLOID. ARCHIVUM MATHEMATICUM BRNO) Tomus 46 010), 363 376 AN INTEGRAL FORMULA OF HYPERBOLIC TYPE FOR SOLUTIONS OF THE DIRAC EQUATION ON MINKOWSKI SPACE WITH INITIAL CONDITIONS ON A HYPERBOLOID Martin Sikora Abstract.

More information

YAO LIU. f(x t) + f(x + t)

YAO LIU. f(x t) + f(x + t) DUNKL WAVE EQUATION & REPRESENTATION THEORY OF SL() YAO LIU The classical wave equation u tt = u in n + 1 dimensions, and its various modifications, have been studied for centuries, and one of the most

More information

Polynomial Harmonic Decompositions

Polynomial Harmonic Decompositions DOI: 10.1515/auom-2017-0002 An. Şt. Univ. Ovidius Constanţa Vol. 25(1),2017, 25 32 Polynomial Harmonic Decompositions Nicolae Anghel Abstract For real polynomials in two indeterminates a classical polynomial

More information

arxiv: v1 [math.ca] 18 Nov 2016

arxiv: v1 [math.ca] 18 Nov 2016 BEURLING S THEOREM FOR THE CLIFFORD-FOURIER TRANSFORM arxiv:1611.06017v1 [math.ca] 18 Nov 016 RIM JDAY AND JAMEL EL KAMEL Abstract. We give a generalization of Beurling s theorem for the Clifford-Fourier

More information

The Dirac-Ramond operator and vertex algebras

The Dirac-Ramond operator and vertex algebras The Dirac-Ramond operator and vertex algebras Westfälische Wilhelms-Universität Münster cvoigt@math.uni-muenster.de http://wwwmath.uni-muenster.de/reine/u/cvoigt/ Vanderbilt May 11, 2011 Kasparov theory

More information

Higher symmetries of the system /D

Higher symmetries of the system /D Higher symmetries of the system /D Jean-Philippe Michel (Université de Liège) joint work with Josef ilhan (Masaryk University) 34 rd Winter school in Geometry and Physics Jean-Philippe MICHEL (ULg) 34

More information

The Cylindrical Fourier Transform

The Cylindrical Fourier Transform The Cylindrical Fourier Transform Fred Brackx, Nele De Schepper, and Frank Sommen Abstract In this paper we devise a so-called cylindrical Fourier transform within the Clifford analysis context. The idea

More information

Some Rarita-Schwinger Type Operators

Some Rarita-Schwinger Type Operators Some Rarita-Schwinger Type Operators Junxia Li University of Arkansas April 7-9, 2011 36th University of Arkansas Spring Lecture Series joint work with John Ryan, Charles Dunkl and Peter Van Lancker A

More information

Connecting spatial and frequency domains for the quaternion Fourier transform

Connecting spatial and frequency domains for the quaternion Fourier transform Connecting spatial and frequency domains for the quaternion Fourier transform Ghent University (joint work with N. De Schepper, T. Ell, K. Rubrecht and S. Sangwine) MOIMA, Hannover, June, 2016 Direct formulas

More information

e j = Ad(f i ) 1 2a ij/a ii

e j = Ad(f i ) 1 2a ij/a ii A characterization of generalized Kac-Moody algebras. J. Algebra 174, 1073-1079 (1995). Richard E. Borcherds, D.P.M.M.S., 16 Mill Lane, Cambridge CB2 1SB, England. Generalized Kac-Moody algebras can be

More information

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients.

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients. EXERCISES IN MODULAR FORMS I (MATH 726) EYAL GOREN, MCGILL UNIVERSITY, FALL 2007 (1) We define a (full) lattice L in R n to be a discrete subgroup of R n that contains a basis for R n. Prove that L is

More information

Fractional Fischer decomposition, the ternary case

Fractional Fischer decomposition, the ternary case Fractional Fischer decomposition, the ternary case Aurineide Fonseca Department of Mathematics, University of Aveiro, Portugal & Federal University of Piauí, Brazil aurineidefonseca@ufpi.edu.br MOIMA06-06/06/

More information

INTRODUCTION TO LIE ALGEBRAS. LECTURE 1.

INTRODUCTION TO LIE ALGEBRAS. LECTURE 1. INTRODUCTION TO LIE ALGEBRAS. LECTURE 1. 1. Algebras. Derivations. Definition of Lie algebra 1.1. Algebras. Let k be a field. An algebra over k (or k-algebra) is a vector space A endowed with a bilinear

More information

Quaternionic Complexes

Quaternionic Complexes Quaternionic Complexes Andreas Čap University of Vienna Berlin, March 2007 Andreas Čap (University of Vienna) Quaternionic Complexes Berlin, March 2007 1 / 19 based on the joint article math.dg/0508534

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

arxiv: v2 [math.cv] 31 Jul 2014

arxiv: v2 [math.cv] 31 Jul 2014 LAGRANGE POLYNOMIALS OVER CLIFFORD NUMBERS RICCARDO GHILONI AND ALESSANDRO PEROTTI arxiv:1404.7782v2 [math.cv] 31 Jul 2014 Abstract. We construct Lagrange interpolating polynomials for a set of points

More information

7. Baker-Campbell-Hausdorff formula

7. Baker-Campbell-Hausdorff formula 7. Baker-Campbell-Hausdorff formula 7.1. Formulation. Let G GL(n,R) be a matrix Lie group and let g = Lie(G). The exponential map is an analytic diffeomorphim of a neighborhood of 0 in g with a neighborhood

More information

msqm 2011/8/14 21:35 page 189 #197

msqm 2011/8/14 21:35 page 189 #197 msqm 2011/8/14 21:35 page 189 #197 Bibliography Dirac, P. A. M., The Principles of Quantum Mechanics, 4th Edition, (Oxford University Press, London, 1958). Feynman, R. P. and A. P. Hibbs, Quantum Mechanics

More information

Conformal geometry and twistor theory

Conformal geometry and twistor theory Third Frontiers Lecture at Texas A&M p. 1/17 Conformal geometry and twistor theory Higher symmetries of the Laplacian Michael Eastwood Australian National University Third Frontiers Lecture at Texas A&M

More information

1 Fields and vector spaces

1 Fields and vector spaces 1 Fields and vector spaces In this section we revise some algebraic preliminaries and establish notation. 1.1 Division rings and fields A division ring, or skew field, is a structure F with two binary

More information

Math 108b: Notes on the Spectral Theorem

Math 108b: Notes on the Spectral Theorem Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T is defined as the unique linear operator

More information

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Justin Campbell August 3, 2017 1 Representations of SU 2 and SO 3 (R) 1.1 The following observation is long overdue. Proposition

More information

As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing).

As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing). An Interlude on Curvature and Hermitian Yang Mills As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing). Suppose we wanted

More information

Introduction to the Baum-Connes conjecture

Introduction to the Baum-Connes conjecture Introduction to the Baum-Connes conjecture Nigel Higson, John Roe PSU NCGOA07 Nigel Higson, John Roe (PSU) Introduction to the Baum-Connes conjecture NCGOA07 1 / 15 History of the BC conjecture Lecture

More information

LECTURE 5: SURFACES IN PROJECTIVE SPACE. 1. Projective space

LECTURE 5: SURFACES IN PROJECTIVE SPACE. 1. Projective space LECTURE 5: SURFACES IN PROJECTIVE SPACE. Projective space Definition: The n-dimensional projective space P n is the set of lines through the origin in the vector space R n+. P n may be thought of as the

More information

Modern Geometric Structures and Fields

Modern Geometric Structures and Fields Modern Geometric Structures and Fields S. P. Novikov I.A.TaJmanov Translated by Dmitry Chibisov Graduate Studies in Mathematics Volume 71 American Mathematical Society Providence, Rhode Island Preface

More information

Math Linear Algebra II. 1. Inner Products and Norms

Math Linear Algebra II. 1. Inner Products and Norms Math 342 - Linear Algebra II Notes 1. Inner Products and Norms One knows from a basic introduction to vectors in R n Math 254 at OSU) that the length of a vector x = x 1 x 2... x n ) T R n, denoted x,

More information

Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space

Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY VOLUME 12 NO. 1 PAGE 1 (2019) Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space Murat Bekar (Communicated by Levent Kula ) ABSTRACT In this paper, a one-to-one

More information

Fischer decomposition by inframonogenic functions

Fischer decomposition by inframonogenic functions CUBO A Mathematical Journal Vol.12, N ō 02, 189 197. June 2010 Fischer decomposition by inframonogenic functions Helmuth R. Malonek 1, Dixan Peña Peña 2 Department of Mathematics, Aveiro University, 3810-193

More information

Holography of BGG-Solutions

Holography of BGG-Solutions Matthias Hammerl University of Greifswald January 2016 - Srní Winter School Geometry and Physics Joint work with Travis Willse (University of Vienna) Introductory picture: Holography of solutions Let M

More information

BRST and Dirac Cohomology

BRST and Dirac Cohomology BRST and Dirac Cohomology Peter Woit Columbia University Dartmouth Math Dept., October 23, 2008 Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 1 / 23 Outline 1 Introduction 2 Representation

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

A relative version of Kostant s theorem

A relative version of Kostant s theorem A relative version of Kostant s theorem 1 University of Vienna Faculty of Mathematics Srni, January 2015 1 supported by project P27072 N25 of the Austrian Science Fund (FWF) This talk reports on joint

More information

Chapter 2 The Group U(1) and its Representations

Chapter 2 The Group U(1) and its Representations Chapter 2 The Group U(1) and its Representations The simplest example of a Lie group is the group of rotations of the plane, with elements parametrized by a single number, the angle of rotation θ. It is

More information

Spherical varieties and arc spaces

Spherical varieties and arc spaces Spherical varieties and arc spaces Victor Batyrev, ESI, Vienna 19, 20 January 2017 1 Lecture 1 This is a joint work with Anne Moreau. Let us begin with a few notations. We consider G a reductive connected

More information

p 2 p 3 p y p z It will not be considered in the present context; the interested reader can find more details in [05].

p 2 p 3 p y p z It will not be considered in the present context; the interested reader can find more details in [05]. 1. Geometrical vectors A geometrical vector p represents a point P in space. The point P is an abstraction that often, but not always, requires a representation. Vector representations are given wrt a

More information

1 Holomorphic functions

1 Holomorphic functions Robert Oeckl CA NOTES 1 15/09/2009 1 1 Holomorphic functions 11 The complex derivative The basic objects of complex analysis are the holomorphic functions These are functions that posses a complex derivative

More information

New Integral Formulae in Hypercomplex Analysis

New Integral Formulae in Hypercomplex Analysis Charles University in Prague Faculty of Mathematics and Physics DOCTORAL THESIS Mgr. Martin Sikora New Integral Formulae in Hypercomplex Analysis Mathematical Institute of Charles University Supervisor:

More information

Baker-Akhiezer functions and configurations of hyperplanes

Baker-Akhiezer functions and configurations of hyperplanes Baker-Akhiezer functions and configurations of hyperplanes Alexander Veselov, Loughborough University ENIGMA conference on Geometry and Integrability, Obergurgl, December 2008 Plan BA function related

More information

Quantizations and classical non-commutative non-associative algebras

Quantizations and classical non-commutative non-associative algebras Journal of Generalized Lie Theory and Applications Vol. (008), No., 35 44 Quantizations and classical non-commutative non-associative algebras Hilja Lisa HURU and Valentin LYCHAGIN Department of Mathematics,

More information

Some Rarita-Schwinger Type Operators

Some Rarita-Schwinger Type Operators Some Rarita-Schwinger Type Operators Junxia Li University of Arkansas March 17-19, 2011 University of Florida 27th South Eastern Analysis Meeting, Gainesville, FL Introduction In representation theory

More information

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Lie algebras. Let K be again an algebraically closed field. For the moment let G be an arbitrary algebraic group

More information

arxiv:alg-geom/ v1 29 Jul 1993

arxiv:alg-geom/ v1 29 Jul 1993 Hyperkähler embeddings and holomorphic symplectic geometry. Mikhail Verbitsky, verbit@math.harvard.edu arxiv:alg-geom/9307009v1 29 Jul 1993 0. ntroduction. n this paper we are studying complex analytic

More information

Some remarks on Leibniz algebras whose semisimple part related with $sl_2$

Some remarks on Leibniz algebras whose semisimple part related with $sl_2$ See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/258083926 Some remarks on Leibniz algebras whose semisimple part related with $sl_2$ Article

More information

Variable separation and second order superintegrability

Variable separation and second order superintegrability Variable separation and second order superintegrability Willard Miller (Joint with E.G.Kalnins) miller@ima.umn.edu University of Minnesota IMA Talk p.1/59 Abstract In this talk we shall first describe

More information

An Introduction to Geometric Algebra

An Introduction to Geometric Algebra An Introduction to Geometric Algebra Alan Bromborsky Army Research Lab (Retired) brombo@comcast.net November 2, 2005 Typeset by FoilTEX History Geometric algebra is the Clifford algebra of a finite dimensional

More information

A Fourier Borel transform for monogenic functionals

A Fourier Borel transform for monogenic functionals A Fourier Borel transform for monogenic functionals Irene Sabadini Politecnico di Milano Dipartimento di Matematica Via Bonardi, 9 20133 Milano, Italy irene.sabadini@polimi.it Franciscus Sommen Clifford

More information

CGAs and Invariant PDEs

CGAs and Invariant PDEs CGAs and Invariant PDEs Francesco Toppan TEO, CBPF (MCTI) Rio de Janeiro, Brazil Talk at Workshop on NCFT & G, Corfu, Sep. 2015 Francesco Toppan (CBPF) CGAs & PDEs NCFT & G, Corfu 2015 1 / 32 Based on:

More information

A spectral sequence for the homology of a finite algebraic delooping

A spectral sequence for the homology of a finite algebraic delooping A spectral sequence for the homology of a finite algebraic delooping Birgit Richter joint work in progress with Stephanie Ziegenhagen Lille, October 2012 Aim: 1) Approximate Quillen homology for E n -algebras

More information

Manifolds with holonomy. Sp(n)Sp(1) SC in SHGAP Simon Salamon Stony Brook, 9 Sep 2016

Manifolds with holonomy. Sp(n)Sp(1) SC in SHGAP Simon Salamon Stony Brook, 9 Sep 2016 Manifolds with holonomy Sp(n)Sp(1) SC in SHGAP Simon Salamon Stony Brook, 9 Sep 2016 The list 1.1 SO(N) U( N 2 ) Sp( N 4 )Sp(1) SU( N 2 ) Sp( N 4 ) G 2 (N =7) Spin(7) (N =8) All act transitively on S N

More information

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan Wir müssen wissen, wir werden wissen. David Hilbert We now continue to study a special class of Banach spaces,

More information

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation 1 Content of the course Quantum Field Theory by M. Srednicki, Part 1. Combining QM and relativity We are going to keep all axioms of QM: 1. states are vectors (or rather rays) in Hilbert space.. observables

More information

Talk at Workshop Quantum Spacetime 16 Zakopane, Poland,

Talk at Workshop Quantum Spacetime 16 Zakopane, Poland, Talk at Workshop Quantum Spacetime 16 Zakopane, Poland, 7-11.02.2016 Invariant Differential Operators: Overview (Including Noncommutative Quantum Conformal Invariant Equations) V.K. Dobrev Invariant differential

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

Title Project Summary

Title Project Summary Title Project Summary The aim of the project is an estimation theory of those special functions of analysis called zeta functions after the zeta function of Euler (1730). The desired estimates generalize

More information

LOGARITHMIC UNCERTAINTY PRINCIPLE FOR QUATERNION LINEAR CANONICAL TRANSFORM

LOGARITHMIC UNCERTAINTY PRINCIPLE FOR QUATERNION LINEAR CANONICAL TRANSFORM Proceedings of the 06 International Conference on Wavelet Analysis and Pattern Recognition Jeju South Korea 0-3 July LOGARITHMIC UNCERTAINTY PRINCIPLE FOR QUATERNION LINEAR CANONICAL TRANSFORM MAWARDI

More information

Hyperkähler geometry lecture 3

Hyperkähler geometry lecture 3 Hyperkähler geometry lecture 3 Misha Verbitsky Cohomology in Mathematics and Physics Euler Institute, September 25, 2013, St. Petersburg 1 Broom Bridge Here as he walked by on the 16th of October 1843

More information

Lecture Introduction

Lecture Introduction Lecture 1 1.1 Introduction The theory of Partial Differential Equations (PDEs) is central to mathematics, both pure and applied. The main difference between the theory of PDEs and the theory of Ordinary

More information

Induced Representations and Frobenius Reciprocity. 1 Generalities about Induced Representations

Induced Representations and Frobenius Reciprocity. 1 Generalities about Induced Representations Induced Representations Frobenius Reciprocity Math G4344, Spring 2012 1 Generalities about Induced Representations For any group G subgroup H, we get a restriction functor Res G H : Rep(G) Rep(H) that

More information

Group Actions and Cohomology in the Calculus of Variations

Group Actions and Cohomology in the Calculus of Variations Group Actions and Cohomology in the Calculus of Variations JUHA POHJANPELTO Oregon State and Aalto Universities Focused Research Workshop on Exterior Differential Systems and Lie Theory Fields Institute,

More information

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F is R or C. Definition 1. A linear operator

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

Nilpotents and Idempotents in 2D and 3D Euclidean Geometric Algebra

Nilpotents and Idempotents in 2D and 3D Euclidean Geometric Algebra Nilpotents and Idempotents in D and D Euclidean Geometric Algebra Kurt Nalty July 11, 015 Abstract I present general homework level formulas for nilpotents (non-zero expressions which square to zero) and

More information

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.)

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.) 4 Vector fields Last updated: November 26, 2009. (Under construction.) 4.1 Tangent vectors as derivations After we have introduced topological notions, we can come back to analysis on manifolds. Let M

More information

Generalizations of Fueter s Theorem

Generalizations of Fueter s Theorem Generalizations of Fueter s Theorem K.I. Kou, T. Qian and F. Sommen Abstract In relation to the solution of the Vekua system for aial type monogenic functions, generalizations of Fueter s Theorem are discussed.

More information

arxiv: v2 [math.cv] 2 Nov 2017

arxiv: v2 [math.cv] 2 Nov 2017 Segal-Bargmann-Fock modules of monogenic functions arxiv:608.06790v [math.cv] Nov 07 Dixan Peña Peña Dipartimento di Matematica Politecnico di Milano Via E. Bonardi 9 033 Milano, Italy e-mail: dixanpena@gmail.com

More information

Equivalence, Invariants, and Symmetry

Equivalence, Invariants, and Symmetry Equivalence, Invariants, and Symmetry PETER J. OLVER University of Minnesota CAMBRIDGE UNIVERSITY PRESS Contents Preface xi Acknowledgments xv Introduction 1 1. Geometric Foundations 7 Manifolds 7 Functions

More information

Equivariant cohomology of infinite-dimensional Grassmannian and shifted Schur functions

Equivariant cohomology of infinite-dimensional Grassmannian and shifted Schur functions Equivariant cohomology of infinite-dimensional Grassmannian and shifted Schur functions Jia-Ming (Frank) Liou, Albert Schwarz February 28, 2012 1. H = L 2 (S 1 ): the space of square integrable complex-valued

More information

Octonions? A non-associative geometric algebra. Benjamin Prather. October 19, Florida State University Department of Mathematics

Octonions? A non-associative geometric algebra. Benjamin Prather. October 19, Florida State University Department of Mathematics A non-associative geometric algebra Benjamin Florida State University Department of Mathematics October 19, 2017 Let K be a field with 1 1 Let V be a vector space over K. Let, : V V K. Definition V is

More information

Cauchy-Kowalevski extensions, Fueter s theorems and boundary values of special systems in Clifford analysis

Cauchy-Kowalevski extensions, Fueter s theorems and boundary values of special systems in Clifford analysis Cauchy-Kowalevski extensions, Fueter s theorems and boundary values of special systems in Clifford analysis by Dixan Peña Peña A thesis submitted to Ghent University for the degree of Doctor of Philosophy

More information

Quantising noncompact Spin c -manifolds

Quantising noncompact Spin c -manifolds Quantising noncompact Spin c -manifolds Peter Hochs University of Adelaide Workshop on Positive Curvature and Index Theory National University of Singapore, 20 November 2014 Peter Hochs (UoA) Noncompact

More information

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations MTH6111 Complex Analysis 2009-10 Lecture Notes c Shaun Bullett 2009 IV. Conformal Maps 1. Geometric interpretation of differentiability We saw from the definition of complex differentiability that if f

More information