Basic Issues in Theories of Large Amplitude Collective Motion

Size: px
Start display at page:

Download "Basic Issues in Theories of Large Amplitude Collective Motion"

Transcription

1 Basic Issues in Theories of Large Amplitude Collective Motion Takashi Nakatsukasa RIKEN Nishina Center) Adiabatic self-consistent collective coordinate ASCC) method GCM/GOA vs ASCC INT workshop: Quantitative Large Amplitude Shape Dynamics: fission and heavy ion fusion INT, Seattle, USA, October 3 th, 13

2 Brief introduction Theories of large amplitude collective motion, associated with TDHFB)

3 Adiabatic theories of LACM Baranger-Veneroni, Expansion with respect to χ Villars, Eq. for the collective subspace zero-th and first-order w.r.t. momenta) Non-uniqueness problem Validity condition Goeke- Reinhard, 1978-) ) ) ) t i t i e e t χ χ ρ ρ ) ) )], [ ) ) ) ) 1 Φ + Φ Φ Φ q q q im q Q H q q q Q q V H q δ δ Goeke, Reinhard, Rowe, NPA ) 48

4 Approaches to Non-uniqueness Problem 1) Yamamura-Kuriyama-Iida, 1984 Requirement of analyticity ex) Moya de Guerra-Villars, 1978) Therefore, in principle, we can determine a unique collective path in the ATDHF. The higher-order in p can be systematically treated. In practice, it is only applicable to simple models. ) Rowe, Mukhejee-Pal, 1981 Requirement of Point transf. and equations up to Op ) There is no systematic way to go beyond the second order in p. In practice, the method is applicable to realistic models as well.

5 Non-adiabatic theories of LACM Rowe-Bassermann, Marumori, Holzwarth-Yukawa, Local Harmonic Approach LHA) Curvature problem Correspondence between, Q,P Infinitesimal generator, is not guaranteed. δ Φ H V q Q Φ δ Φ [ H, Q ] + im 1 P Φ δ Φ [ H, P ] ic Q Φ Marumori et al, 198- Self-consistent collective coordinate SCC) method The problems of LHA are solved. The SCC equation is solved by the expansion with respect to q,p). δ Φq, p) Ĥ H q ˆQ H p H Φq, p) Ĥ Φq, p) ˆP Φ Adiabatic approx. LACM Matsuo, TN, Matsuyanagi, )

6 Adiabatic Self-consistent Collective Coordinate ASCC) method ASCC: Theory to define a collective submanifold with canonical coordinates. Equations expanded up to nd order in collective momenta Collective potential & collective masses leads to the following equations Constrained CMF) mean-field eq. LHE) Local harmonic eq. δ δ δ φ φ φ Hˆ V Qˆ φ [ ] Hˆ, iqˆ B Pˆ [ ˆ ˆ ˆ ] H V Q, P i 1 B φ C Qˆ [[ ] ] Hˆ, V Qˆ, Qˆ φ

7 Constrained mean-field calculation CMF equation δ β Ĥ λ ˆQ ) β, β ˆQ β β Potential energy surface V β) β Ĥ β Deformed non-equilibrium) MF states Slater determinants { β } Next step: Dynamics Staszczak et al.

8 GCM & GOA Construction of the Hilbert space δβ Ĥ λ ˆQ ) β HW eq. to a collective Hamiltonian! Slater determinants Generalized eigenvalue problem H β, β ') f β ')dβ ' ) f β ')dβ ' E I β, β ' Gaussian overlap approx. H β, β ') H GOA β, β ') I β, β ') I GOA β, β ') H coll β, β)ψβ) EΨβ) { β } H coll is constructed from Ĥ, with GOA mass Zero-point energy V β) β Ĥ β + ΔV β ) ) β Ĥ β ', I β, β ' ) β β ' H β, β '

9 ASCC method ASCC based on the TDVP ) β V q δ β Ĥ λ ˆQ! ) H q, p ) Ψ H Ψ ˆQ is determined by the local harmonic eq. LHE) LHE RPA at the potential minimum LHE RPA / TV) Mass obtained with No zero-point energy ΔV Some non-trivial?) remarks ˆQ is not merely the constraint operator Ĥ λ ˆQ LHE Hamiltonian is the one in a moving frame: ˆQ Q + Q α a + a + α ) α +Q α aa + Q 11 µ a + a ) α µ ) µ Ĥ λ ˆQ

10 Trivial example translation) TDHF eq. i t ρ t ) h ρ ) "# [ ], ρ t $ % Transformed TDHF i t ρ t ) h[ ρ ] v p, ρ t) $% & ' ρ t ) e i vt p ρ t Quasi-stationary solution in the moving frame #$ h[ ρ ] v p, ρ % & Due to Galilean symmetry ρ e Tr [ p ρ ] Amv im v r ρ e im v r Intrinsic motion is described by )e i vt p

11 Equation of collective motion TDHF TDVP) eq. δ Ψt) i t H Ψt) Collective variables Basic eq. of the SCC method Translational case q, p) δ Ψ qt), pt) ) i H Ψ qt), pt) ) t Quasi-stationary states in a moving frame δ Ψ q, p) Ĥ i q q i p p Ψ q, p ) δ Ψ q, p) Ĥ H p ˆP H q ˆQ Ψ q, p) δ Ψ q, p) Ĥ v P Ψ q, p) Marumori et al., PTP 64, ) R v, Ψ q, p q H p, " # ) ˆQ, ˆP P H p q $ % Ψ q, p ) i Determined by LHE

12 TDHFB) Classical Hamilton s form The TDHFB) equation can be described by the classical form. For instance, using the Thouless form Blaizot, Ripka, Quantum Theory of Finite Systems 1986) Yamamura, Kuriyama, Prog. Theor. Phys. Suppl )! z exp# 1 z c ph p " + c h $ & Φ % The TDHFB) equation becomes in a form i z 1+ zz + ) H z + 1+ z+ z) i z + 1+ z + z) H z 1+ zz+ ) The Holstein-Primakoff-type mapping ξ ph H π ph π ph H ξ ph Hz, z + ) z H z z z H ξ,π ) ξ + iπ ) ph! " z1+ z + z) 1/ # $ ph

13 Harmonic approximation in TDHF Small fluctuation around the HF state ξ,π H ξ,π Φ H Φ + 1 " c + p c h,c + h c p ) $ # In terms of classical variables ξ α, π ) ) ξ,π H ξ,π E + 1 ρ ph, ρ hp α! # " A B B * A * E + 1 Bαβ π α π β + 1 C αβξ α ξ β $! # &# % " A B % " c + % $ h c p ' B * A * ' $ & c + p c ' # h & ph index α ph) $ ρ hp & ρ &, ph % B αβ H π α π β π,ξξ ρ α 1 ξ α + iπ α ) E + 1 n p ) µ +ω n q µ ) * + µ Linear point transformation ξ α, π ) q, p ) α µ C αβ H ξ α ξ β π,ξξ Hξ α,π α ) Hq µ, p µ ) q δ µ µν µ µ α µ µ α µ µ X + Y ) α ξ, pµ ωµ X Y ) 1 ω q ξ α A B) αβ q ξ ν β, ω δ µ µν ξ q α µ α A + B) αβ α ξ q π β ν α

14 Harmonic approximation at non-equilibriums Second derivatives H c H q q c + H q c ξ α ξ β Σ q c ) ξ α ξ β q c ξ α ξ β Σ Σ Curvature C αβ Σ H H q c ξ α ξ β q c ξ α ξ β Σ Σ Mass B αβ H H q c Σ π α π β Σ q c π α π β Σ Second derivative are NOT tensors. n q q c ) Σ : q c, q n ; p c p n H Σ q n Σ Metric tensor K αβ q µ q µ ξ α ξ β C αβ αβ H H ξ α ξ Γ γ H β αβ ξ γ γ 1 γδ ) γ Γ K K + K K g f µ µ αβ δα, β δβ, α αβ, δ, µ, αβ Affine connection With this metric, the collective space is assumed to be flat.

15 Separation of Nambu-Goldstone modes Cyclic variable sym. op.) 1) Symmetry operator S momentum ) Symmetry operator S coordinate! " Ŝ, Ĥ # * p s, H $ * ) * * + { } PB p s { q s, H} qs PB ξ α B αγ C γβ q s TN, Walet, DoDang, PRC ) 143 TN, PTEP 1 1) 1A7 Ψt) S Ψt) q s ξt),πt) ) or p s ξt),πt) The Nambu-Goldstone modes become zero modes and are separated from the other modes. π α H π α π β ξ α Bαγ C γβ ξ β H ξ C ξ α α αβ q s q s π α π β q s ) H ξ α Bαβ q s ξ α

16 Local harmonic eq. in ASCC Hinohara et al, PTP 117 7) 451 TN, Walet, DoDang, PRC ) 143 Local Harmonic equation determines the normal modes: B αγ ξ β C γβ q ω ξ α B αγ q c C c q c γβ ξ ω q c α ξ β 1) Invariant property under the transformation: q c q c + cq s, p s p s + cp c V q V s q c V s q c Requires a gauge fixing of c. ) Strong canonicity condition prescription) [ ˆQ, Ŝ] to determine q ξ α ξ β and Problem q π α π β These quantities correspond to a + a-part pp-, hh-part) of ˆQ and Ŝ

17 Adiabatic SCC Symplectic LHE) Applications to simple models More realistic applications have been done with the P+Q Hamiltonian. Hinohara et al., PTP 119, 59 8); PRC 8, ); PRC 8, ); PRC 85, 433 1) Sato et al., NPA 849, ), PRC 86, 86, )

18 Applications to O4) models Model Hamiltonian Source of T-odd mean fields H P σ jm h 1 j m> # 1 "! 1 c Parameters Monopole+ Quadrupole pairing + Quadrupole int. G j m m P P + P P ) G P P + P P ) m ε, ε d 1 1 Ω 1 c jm, < Ω > Ω., d 14, Ω j j P / / 1., ε 3 1., d 1, Ω j m> σ 1. jm c j m c jm, Q 1 χq d j j ε 3 ε ε 1 m σ jm c + jm c jm Ω j+ 1 j

19 Larger G Hinohara, TN, Matsuo, Matsuyanagi, PTP115 6) 567 Potential Mass: M1/B Cranking Mass Effects of time-odd MF D φ Q φ

20 Exact Adiabatic SCC CHB with M cranking Time-odd effects are neglected in the cranking mass!

21 Curvature effects Neglected calc Full calc Qˆ µν Q + + aµ aν + h.c. ) + A B + µν Qµν aµ aν µν q ξ α ξ, q β π α π β In this model, requiring the gauge invariance, we can determine them. The curvature effects are weak.

22 Model of protons and neutrons T.N. & Walet, PRC ) 3397 G p.3 G p 1 Neutrons Protons Upper orbital has a larger quadrupole moment CHB+M cr LHE Exact

23 Adiabatic vs Diabatic Dynamics Review: Nazarewicz, NPA ) 489c The problem has been discussed since the paper by Hill and Wheeler 1953) The pairing interaction plays a key role for configuration changes at level crossings. ε ε ε β ε β β Specialization energy β Spontaneous fission life time is much larger for odd nuclei.

24 Summary Adiabatic Self-consistent Collective Coordinate ASCC) method to derive a collective submanifold and to determine the collective mass & potential. Difference between ASCC & GCM Zero-point energy and ) Collective mass RPA and GOA ) Hamiltonian H-λQ and H ) Applications to multi-o4) model ASCC vs Exact ASCC vs GCM vs GOA vs Exact Consistent calculation is desired for comparison between these GCM & ASCC ATDHFB).

25 Questions Can we justify the use of GOA? in GCM/ Perhaps, the small-amplitude limit is easy. Small-amplitude HF+GCM/GOA with complex generator coordinates of all ph-degrees of freedom reduces to RPA Jancovici & Schiff, 1964)) Then, how about the HFB+GCM? Does it reduce to QRPA? H λ ˆQ Where does the effect of come from? λ ˆN

Microscopic description of shape coexistence and shape transition

Microscopic description of shape coexistence and shape transition Microscopic description of shape coexistence and shape transition Nobuo Hinohara (RIKEN Nishina Center) Koichi Sato (RIKEN), Kenichi Yoshida (Niigata Univ.) Takashi Nakatsukasa (RIKEN), Masayuki Matsuo

More information

Effects of Time-Odd Components in Mean Field on Large Amplitude Collective Dynamics

Effects of Time-Odd Components in Mean Field on Large Amplitude Collective Dynamics Effects of Time-Odd Components in Mean Field on Large Amplitude Collective Dynamics Nobuo HINOHARA, Takashi NAKATSUKASA, Masayuki MATSUO 3 and Kenichi MATSUYANAGI Department of Physics, Graduate School

More information

Single particle degrees of freedom in fission

Single particle degrees of freedom in fission Single particle degrees of freedom in fission Heloise Goutte SPhN division CEA Saclay CEA-Saclay/DSM/Irfu Service de Physique Nucléaire PND2 PAGE 1 Non exhaustive Focused on: - Fission fragment yields

More information

( ) ( ) ( ) Invariance Principles & Conservation Laws. = P δx. Summary of key point of argument

( ) ( ) ( ) Invariance Principles & Conservation Laws. = P δx. Summary of key point of argument Invariance Principles & Conservation Laws Without invariance principles, there would be no laws of physics! We rely on the results of experiments remaining the same from day to day and place to place.

More information

Density functional theory of spontaneous fission life-times

Density functional theory of spontaneous fission life-times Density functional theory of spontaneous fission life-times Jhilam Sadhukhan University of Tennessee, Knoxville & Oak Ridge National Laboratory Fission N,Z Microscopic understanding elongation necking

More information

Repulsive aspects of pairing correlation in nuclear fusion reaction

Repulsive aspects of pairing correlation in nuclear fusion reaction 4C EOS and Heavy Nuclei, ARIS2014 2014.6.6 (Fri.) @ Univ. of Tokyo Repulsive aspects of pairing correlation in nuclear fusion reaction Shuichiro Ebata Meme Media Laboratory, Hokkaido Univ. Nuclear Reaction

More information

A Microscopic Theory of Fission

A Microscopic Theory of Fission LLNL-PROC-717819 A Microscopic Theory of Fission W. Younes, J. A. Brown, E. F. Matthews January 12, 2017 6th International Conference on "Fission and Properties of Neutron-Rich Nuclei" Sanibel Island,

More information

RPA and QRPA calculations with Gaussian expansion method

RPA and QRPA calculations with Gaussian expansion method RPA and QRPA calculations with Gaussian expansion method H. Nakada (Chiba U., Japan) @ DCEN11 Symposium (YITP, Sep. 6, 11) Contents : I. Introduction II. Test of GEM for MF calculations III. Test of GEM

More information

POSTULATES OF QUANTUM MECHANICS

POSTULATES OF QUANTUM MECHANICS POSTULATES OF QUANTUM MECHANICS Quantum-mechanical states - In the coordinate representation, the state of a quantum-mechanical system is described by the wave function ψ(q, t) = ψ(q 1,..., q f, t) (in

More information

Cluster-gas-like states and monopole excitations. T. Yamada

Cluster-gas-like states and monopole excitations. T. Yamada Cluster-gas-like states and monopole excitations T. Yamada Cluster-gas-like states and monopole excitations Isoscalar monopole excitations in light nuclei Cluster-gas-likes states: C, 16 O, 11 B, 13 C

More information

Macroscopic properties in low-energy nuclear reactions by microscopic TDDFT

Macroscopic properties in low-energy nuclear reactions by microscopic TDDFT Macroscopic properties in low-energy nuclear reactions by microscopic TDDFT Kouhei Washiyama (RIKEN, Nishina Center, Japan) Collaboration with Denis Lacroix (GANIL), Sakir Ayik (Tennesse Tech.) Key word:

More information

The Nuclear Many-Body Problem

The Nuclear Many-Body Problem The Nuclear Many-Body Problem relativistic heavy ions vacuum electron scattering quarks gluons radioactive beams heavy few nuclei body quark-gluon soup QCD nucleon QCD few body systems many body systems

More information

The collective model from a Cartan-Weyl perspective

The collective model from a Cartan-Weyl perspective The collective model from a Cartan-Weyl perspective Stijn De Baerdemacker Veerle Hellemans Kris Heyde Subatomic and radiation physics Universiteit Gent, Belgium http://www.nustruc.ugent.be INT workshop

More information

p(p,e + ν)d reaction determines the lifetime of the sun

p(p,e + ν)d reaction determines the lifetime of the sun 2013.12.25 Contents Basic properties of nuclear systems Different aspects in different time scales Symmetry breaking in finite time scale Rapidly rotating nuclei Superdeformation and new type of symmetry

More information

proton-neutron pairing vibrations

proton-neutron pairing vibrations proton-neutron pairing vibrations Outline of this lecture: Basics of the vibrational modes of excitation in nuclei surface vibration, like-particle pairing vibration, and then Microscopic framework to

More information

Study of the tensor correlation using a mean-field-type model. Satoru Sugimoto Kyoto University

Study of the tensor correlation using a mean-field-type model. Satoru Sugimoto Kyoto University Study of the tensor correlation using a mean-field-type model Satoru Sugimoto Kyoto University The content. Introduction. Charge- and parity-projected Hartree- Fock method 3. pplication to the sub-closed

More information

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution Mixing Quantum and Classical Mechanics: A Partially Miscible Solution R. Kapral S. Nielsen A. Sergi D. Mac Kernan G. Ciccotti quantum dynamics in a classical condensed phase environment how to simulate

More information

TDHF Basic Facts. Advantages. Shortcomings

TDHF Basic Facts. Advantages. Shortcomings TDHF Basic Facts Advantages! Fully microscopic, parameter-free description of nuclear collisions! Use same microscopic interaction used in static calculations! Successful in describing low-energy fusion,

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Nucleons in Nuclei: Interactions, Geometry, Symmetries

Nucleons in Nuclei: Interactions, Geometry, Symmetries Nucleons in Nuclei: Interactions, Geometry, Symmetries Jerzy DUDEK Department of Subatomic Research, CNRS/IN 2 P 3 and University of Strasbourg, F-67037 Strasbourg, FRANCE September 28, 2010 Mathematial

More information

PHY 396 K. Problem set #5. Due October 9, 2008.

PHY 396 K. Problem set #5. Due October 9, 2008. PHY 396 K. Problem set #5. Due October 9, 2008.. First, an exercise in bosonic commutation relations [â α, â β = 0, [â α, â β = 0, [â α, â β = δ αβ. ( (a Calculate the commutators [â αâ β, â γ, [â αâ β,

More information

Excitations in light deformed nuclei investigated by self consistent quasiparticle random phase approximation

Excitations in light deformed nuclei investigated by self consistent quasiparticle random phase approximation Excitations in light deformed nuclei investigated by self consistent quasiparticle random phase approximation C. Losa, A. Pastore, T. Døssing, E. Vigezzi, R. A. Broglia SISSA, Trieste Trento, December

More information

Cranked-RPA description of wobbling motion in triaxially deformed nuclei

Cranked-RPA description of wobbling motion in triaxially deformed nuclei Cranked-RPA description of wobbling motion in triaially deformed nuclei Takuya Shoji and Yoshifumi R. Shimizu Department of Physics, Graduate School of Sciences, Kyushu University, Fukuoka 81-8581,Japan

More information

Observables predicted by HF theory

Observables predicted by HF theory Observables predicted by HF theory Total binding energy of the nucleus in its ground state separation energies for p / n (= BE differences) Ground state density distribution of protons and neutrons mean

More information

Theoretical study of fission barriers in odd-a nuclei using the Gogny force

Theoretical study of fission barriers in odd-a nuclei using the Gogny force Theoretical study of fission barriers in odd-a nuclei using the Gogny force S. Pérez and L.M. Robledo Departamento de Física Teórica Universidad Autónoma de Madrid Saclay, 9th May 2006 Workshop on the

More information

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle Short-Ranged Central and Tensor Correlations in Nuclear Many-Body Systems Reaction Theory for Nuclei far from Stability @ INT Seattle September 6-, Hans Feldmeier, Thomas Neff, Robert Roth Contents Motivation

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7

Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7 Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7 In Lecture 1 and 2, we have discussed how to represent the state of a quantum mechanical system based the superposition

More information

Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei

Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei INT Program INT- 11-2d Interfaces between structure and reactions for rare isotopes and nuclear astrophysics

More information

doi: /RevModPhys

doi: /RevModPhys doi: 1.113/RevModPhys.88.454 Time-dependent density-functional description of nuclear dynamics Takashi Nakatsukasa Center for Computational Sciences University of Tsukuba Tsukuba 35-8577 Japan RIKEN Nishina

More information

Nuclear Structure III: What to Do in Heavy Nuclei

Nuclear Structure III: What to Do in Heavy Nuclei Nuclear Structure III: What to Do in Heavy Nuclei J. Engel University of North Carolina June 15, 2005 Outline 1 Hartree-Fock 2 History 3 Results 4 Collective Excitations Outline 1 Hartree-Fock 2 History

More information

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure Kouichi Hagino Tohoku University, Sendai, Japan 1. Introduction: heavy-ion fusion reactions 2. Fusion and Quasi-elastic

More information

Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory. C. R. Praharaj Institute of Physics Bhubaneswar.

Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory. C. R. Praharaj Institute of Physics Bhubaneswar. Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory C. R. Praharaj Institute of Physics. India INT Workshop Nov 2007 1 Outline of talk Motivation Formalism HF calculation

More information

REVIEW. Hamilton s principle. based on FW-18. Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws!

REVIEW. Hamilton s principle. based on FW-18. Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws! Hamilton s principle Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws! based on FW-18 REVIEW the particle takes the path that minimizes the integrated difference

More information

SCF calculation on HeH +

SCF calculation on HeH + SCF calculation on HeH + Markus Meuwly Department of Chemistry, University of Basel, Basel, Switzerland Abstract This document describes the main steps involved in carrying out a SCF calculation on the

More information

Effective Constraints

Effective Constraints Introduction work with M. Bojowald, B. Sandhöfer and A. Skirzewski IGC, Penn State 1 arxiv:0804.3365, submitted to Rev. Math. Phys. Introduction Constrained systems Classically constraints restrict physically

More information

CHAPTER-2 ONE-PARTICLE PLUS ROTOR MODEL FORMULATION

CHAPTER-2 ONE-PARTICLE PLUS ROTOR MODEL FORMULATION CHAPTE- ONE-PATCLE PLUS OTO MODEL FOMULATON. NTODUCTON The extension of collective models to odd-a nuclear systems assumes that an odd number of pons (and/or neutrons) is coupled to an even-even core.

More information

Adiabatic TDDFT + discussion

Adiabatic TDDFT + discussion Adiabatic TDDFT + discussion University of Warsaw & University of Jyväskylä INT Program INT-13-3 Quantitative Large Amplitude Shape Dynamics: fission and heavy ion fusion Seattle, September 23 - November

More information

Symmetries and collective Nuclear excitations PRESENT AND FUTURE EXOTICS IN NUCLEAR PHYSICS In honor of Geirr Sletten at his 70 th birthday

Symmetries and collective Nuclear excitations PRESENT AND FUTURE EXOTICS IN NUCLEAR PHYSICS In honor of Geirr Sletten at his 70 th birthday Symmetries and collective Nuclear excitations PRESENT AND FUTURE EXOTICS IN NUCLEAR PYSICS In honor of Geirr Sletten at his 70 th birthday Stefan Frauendorf, Y. Gu, Daniel Almehed Department of Physics

More information

Quantization of the open string on exact plane waves and non-commutative wave fronts

Quantization of the open string on exact plane waves and non-commutative wave fronts Quantization of the open string on exact plane waves and non-commutative wave fronts F. Ruiz Ruiz (UCM Madrid) Miami 2007, December 13-18 arxiv:0711.2991 [hep-th], with G. Horcajada Motivation On-going

More information

CANHP2015, Sept 21- Oct.30, 2015, Yukawa-Institute, Kyoto

CANHP2015, Sept 21- Oct.30, 2015, Yukawa-Institute, Kyoto Recent developments in Covariant density functional theory beyond mean field Kyoto, Oct. 23, 20 Peter Ring Technical University Munich Excellence Cluster Origin of the Universe Peking University, Beijing

More information

Auxiliary-field quantum Monte Carlo methods in heavy nuclei

Auxiliary-field quantum Monte Carlo methods in heavy nuclei Mika Mustonen and Yoram Alhassid (Yale University) Introduction Auxiliary-field quantum Monte Carlo methods in heavy nuclei Auxiliary-field Monte Carlo (AFMC) methods at finite temperature Sign problem

More information

A Model Analysis of Triaxial Deformation Dynamics in Oblate-Prolate Shape Coexistence Phenomena

A Model Analysis of Triaxial Deformation Dynamics in Oblate-Prolate Shape Coexistence Phenomena 129 Progress of Theoretical Physics, Vol. 123, No. 1, January 2010 A Model Analysis of Triaxial Deformation Dynamics in Oblate-Prolate Shape Coexistence Phenomena Koichi Sato, 1,2 Nobuo Hinohara, 2 Takashi

More information

arxiv:gr-qc/ v2 6 Apr 1999

arxiv:gr-qc/ v2 6 Apr 1999 1 Notations I am using the same notations as in [3] and [2]. 2 Temporal gauge - various approaches arxiv:gr-qc/9801081v2 6 Apr 1999 Obviously the temporal gauge q i = a i = const or in QED: A 0 = a R (1)

More information

Chapter 3: Relativistic Wave Equation

Chapter 3: Relativistic Wave Equation Chapter 3: Relativistic Wave Equation Klein-Gordon Equation Dirac s Equation Free-electron Solutions of the Timeindependent Dirac Equation Hydrogen Solutions of the Timeindependent Dirac Equation (Angular

More information

arxiv: v1 [nucl-th] 10 Jan 2013

arxiv: v1 [nucl-th] 10 Jan 2013 Efficient calculation of the quasiparticle random-phase approximation matrix Paolo Avogadro Department of Physics & Astronomy, Texas A&M University-Commerce, Commerce, Texas 75428, USA and arxiv:131.222v1

More information

The shape distribution of nuclear level densities in the shell model Monte Carlo method

The shape distribution of nuclear level densities in the shell model Monte Carlo method The shape distribution of nuclear level densities in the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method and level densities Nuclear deformation

More information

Concavity of energy surfaces

Concavity of energy surfaces Concavity of energy surfaces S Karataglidis and B. G. Giraud Department of Physics, University of Johannesburg, P.O. Box 5 Auckland Park, 6, South Africa Institut de Physique Théorique, Centre d Etudes

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Effective Field Theory of Post-Newtonian Gravity with a Spin (x2)

Effective Field Theory of Post-Newtonian Gravity with a Spin (x2) Effective Field Theory of Post-Newtonian Gravity with a Spin (x2) Michèle Lévi Institut de Physique Théorique Université Paris-Saclay 52nd Rencontres de Moriond Gravitation La Thuile, March 30, 2017 EFTs

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

H.O. [202] 3 2 (2) (2) H.O. 4.0 [200] 1 2 [202] 5 2 (2) (4) (2) 3.5 [211] 1 2 (2) (6) [211] 3 2 (2) 3.0 (2) [220] ε

H.O. [202] 3 2 (2) (2) H.O. 4.0 [200] 1 2 [202] 5 2 (2) (4) (2) 3.5 [211] 1 2 (2) (6) [211] 3 2 (2) 3.0 (2) [220] ε E/ħω H r 0 r Y0 0 l s l l N + l + l s [0] 3 H.O. ε = 0.75 4.0 H.O. ε = 0 + l s + l [00] n z = 0 d 3/ 4 [0] 5 3.5 N = s / N n z d 5/ 6 [] n z = N lj [] 3 3.0.5 0.0 0.5 ε 0.5 0.75 [0] n z = interaction of

More information

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire 4 November 2010. Master 2 APIM Le problème à N corps nucléaire: structure nucléaire The atomic nucleus is a self-bound quantum many-body (manynucleon) system Rich phenomenology for nuclei Mean field Which

More information

Nuclear Collective Motions

Nuclear Collective Motions Nuclear Collective Motions Takashi Nakatsukasa Theoretical Nuclear Physics Laboratory, RIKEN Nishina Center 2009..9-28 20th Chris Engelbrecht Summer School in Theoretical Physics Nuclei and Nucleonic Systems:

More information

Adiabatic particle pumping and anomalous velocity

Adiabatic particle pumping and anomalous velocity Adiabatic particle pumping and anomalous velocity November 17, 2015 November 17, 2015 1 / 31 Literature: 1 J. K. Asbóth, L. Oroszlány, and A. Pályi, arxiv:1509.02295 2 D. Xiao, M-Ch Chang, and Q. Niu,

More information

RPA and The Shell Model

RPA and The Shell Model RPA and The Shell Model Calvin W. Johnson San Diego State University Ionel Stetcu Louisiana State University & University of Arizona I. Stetcu and C. W. Johnson, Phys. Rev. C 66 034301 (2002) C. W. Johnson

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

Shell model approach to N Z medium-heavy nuclei using extended P+QQ interaction

Shell model approach to N Z medium-heavy nuclei using extended P+QQ interaction Shell model approach to N Z medium-heavy nuclei using extended PQQ interaction M. Hasegawa Topics: Structure of N Z medium-heavy nuclei, Large-scale shell model calculations, Extended PQQ interaction (EPQQ).

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2 2358-20 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 2 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5)

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5) LECTURE 12 Maxwell Velocity Distribution Suppose we have a dilute gas of molecules, each with mass m. If the gas is dilute enough, we can ignore the interactions between the molecules and the energy will

More information

How to do C.C. calculations if there is only limited experimental information on intrinsic degrees of freedom?

How to do C.C. calculations if there is only limited experimental information on intrinsic degrees of freedom? New approach to coupled-channels calculations for heavy-ion fusion reactions around the Coulomb barrier Kouichi Hagino Tohoku University, Sendai, Japan 1. Introduction - H.I. sub-barrier fusion reactions

More information

arxiv: v1 [nucl-th] 18 Jan 2018

arxiv: v1 [nucl-th] 18 Jan 2018 Nuclear deformation in the configuration-interaction shell model arxiv:181.6175v1 [nucl-th] 18 Jan 218 Y. Alhassid, 1 G.F. Bertsch 2,3 C.N. Gilbreth, 2 and M.T. Mustonen 1 1 Center for Theoretical Physics,

More information

II. Spontaneous symmetry breaking

II. Spontaneous symmetry breaking . Spontaneous symmetry breaking .1 Weinberg s chair Hamiltonian rotational invariant eigenstates of good angular momentum: M > have a density distribution that is an average over all orientations with

More information

Statistical properties of nuclei by the shell model Monte Carlo method

Statistical properties of nuclei by the shell model Monte Carlo method Statistical properties of nuclei by the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method Circumventing the odd particle-number sign problem

More information

Regular & Chaotic. collective modes in nuclei. Pavel Cejnar. ipnp.troja.mff.cuni.cz

Regular & Chaotic. collective modes in nuclei. Pavel Cejnar. ipnp.troja.mff.cuni.cz Pavel Cejnar Regular & Chaotic collective modes in nuclei Institute of Particle and Nuclear Physics Faculty of Mathematics and Physics Charles University, Prague, Czech Republic cejnar @ ipnp.troja.mff.cuni.cz

More information

The semiclassical. model for adiabatic slow-fast systems and the Hofstadter butterfly

The semiclassical. model for adiabatic slow-fast systems and the Hofstadter butterfly The semiclassical. model for adiabatic slow-fast systems and the Hofstadter butterfly Stefan Teufel Mathematisches Institut, Universität Tübingen Archimedes Center Crete, 29.05.2012 1. Reminder: Semiclassics

More information

Application of quantum number projection method to tetrahedral shape and high-spin states in nuclei

Application of quantum number projection method to tetrahedral shape and high-spin states in nuclei Application of quantum number projection method to tetrahedral shape and high-spin states in nuclei Contents S.Tagami, Y.Fujioka, J.Dudek*, Y.R.Shimizu Dept. Phys., Kyushu Univ. 田上真伍 *Universit'e de Strasbourg

More information

Effective shell model Hamiltonians from density functional theory: Quadrupolar and pairing correlations

Effective shell model Hamiltonians from density functional theory: Quadrupolar and pairing correlations PHYSICAL REVIEW C 77, 6438 (8) Effective shell model Hamiltonians from density functional theory: Quadrupolar and pairing correlations R. Rodríguez-Guzmán and Y. Alhassid * Center for Theoretical Physics,

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/ Twistor Strings, Gauge Theory and Gravity Abou Zeid, Hull and Mason hep-th/0606272 Amplitudes for YM, Gravity have elegant twistor space structure: Twistor Geometry Amplitudes for YM, Gravity have elegant

More information

Some Open Problems in Nuclear Large Amplitude Collective Motion (including fission) Aurel Bulgac University of Washington Funding: DOE grants No. DE FG02 FG02 97ER41014 (UW NTGroup) DE FC02 07ER41457 07ER41457

More information

Topological Physics in Band Insulators IV

Topological Physics in Band Insulators IV Topological Physics in Band Insulators IV Gene Mele University of Pennsylvania Wannier representation and band projectors Modern view: Gapped electronic states are equivalent Kohn (1964): insulator is

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Contents / Key words. Self-consistent deformed pnqrpa for spin-isospin responses

Contents / Key words. Self-consistent deformed pnqrpa for spin-isospin responses Contents / Key words Self-consistent deformed pnqrpa for spin-isospin responses Self-consistency: T=1 pairing and IAS Collectivity of GT giant resonance Possible new type of collective mode: T= proton-neutron

More information

1 Quantum fields in Minkowski spacetime

1 Quantum fields in Minkowski spacetime 1 Quantum fields in Minkowski spacetime The theory of quantum fields in curved spacetime is a generalization of the well-established theory of quantum fields in Minkowski spacetime. To a great extent,

More information

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1 Physics 624, Quantum II -- Exam 1 Please show all your work on the separate sheets provided (and be sure to include your name) You are graded on your work on those pages, with partial credit where it is

More information

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet Physics 58, Fall Semester 018 Professor Eduardo Fradkin Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 018, 5:00 pm 1 Spin waves in a quantum Heisenberg antiferromagnet In this

More information

Relativistic versus Non Relativistic Mean Field Models in Comparison

Relativistic versus Non Relativistic Mean Field Models in Comparison Relativistic versus Non Relativistic Mean Field Models in Comparison 1) Sampling Importance Formal structure of nuclear energy density functionals local density approximation and gradient terms, overall

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Cosmology & CMB. Set2: Linear Perturbation Theory. Davide Maino

Cosmology & CMB. Set2: Linear Perturbation Theory. Davide Maino Cosmology & CMB Set2: Linear Perturbation Theory Davide Maino Covariant Perturbation Theory Covariant = takes same form in all coordinate systems Invariant = takes the same value in all coordinate systems

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

Spontaneous breaking of supersymmetry

Spontaneous breaking of supersymmetry Spontaneous breaking of supersymmetry Hiroshi Suzuki Theoretical Physics Laboratory Nov. 18, 2009 @ Theoretical science colloquium in RIKEN Hiroshi Suzuki (TPL) Spontaneous breaking of supersymmetry Nov.

More information

Towards a microscopic theory for low-energy heavy-ion reactions

Towards a microscopic theory for low-energy heavy-ion reactions Towards a microscopic theory for low-energy heavy-ion reactions Role of internal degrees of freedom in low-energy nuclear reactions Kouichi Hagino (Tohoku University) 1. Introduction: Environmental Degrees

More information

arxiv:hep-th/ v1 23 Mar 1995

arxiv:hep-th/ v1 23 Mar 1995 Straight-line string with curvature L.D.Soloviev Institute for High Energy Physics, 142284, Protvino, Moscow region, Russia arxiv:hep-th/9503156v1 23 Mar 1995 Abstract Classical and quantum solutions for

More information

Examination paper for TFY4210 Quantum theory of many-particle systems

Examination paper for TFY4210 Quantum theory of many-particle systems Department of Physics Examination paper for TFY4210 Quantum theory of many-particle systems Academic contact during examination: Associate Professor John Ove Fjærestad Phone: 97 94 00 36 Examination date:

More information

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU Nuclear structure aspects of Schiff Moments N.Auerbach Tel Aviv University and MSU T-P-odd electromagnetic moments In the absence of parity (P) and time (T) reversal violation the T P-odd moments for a

More information

Momentum relation and classical limit in the future-not-included complex action theory

Momentum relation and classical limit in the future-not-included complex action theory Momentum relation and classical limit in the future-not-included complex action theory Keiichi Nagao Ibaraki Univ. Aug. 7, 2013 @ YITP Based on the work with H.B.Nielsen PTEP(2013) 073A03 (+PTP126 (2011)102,

More information

16.1. PROBLEM SET I 197

16.1. PROBLEM SET I 197 6.. PROBLEM SET I 97 Answers: Problem set I. a In one dimension, the current operator is specified by ĵ = m ψ ˆpψ + ψˆpψ. Applied to the left hand side of the system outside the region of the potential,

More information

Nuclear Structure (II) Collective models

Nuclear Structure (II) Collective models Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France NSDD Workshop, Trieste, March 2014 TALENT school TALENT (Training in Advanced Low-Energy Nuclear Theory, see http://www.nucleartalent.org).

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

4.3 Lecture 18: Quantum Mechanics

4.3 Lecture 18: Quantum Mechanics CHAPTER 4. QUANTUM SYSTEMS 73 4.3 Lecture 18: Quantum Mechanics 4.3.1 Basics Now that we have mathematical tools of linear algebra we are ready to develop a framework of quantum mechanics. The framework

More information

arxiv:nucl-th/ v1 28 Sep 1995

arxiv:nucl-th/ v1 28 Sep 1995 Octupole Vibrations at High Angular Momenta Takashi Nakatsukasa AECL, Chalk River Laboratories, Chalk River, Ontario K0J 1J0, Canada (Preprint : TASCC-P-95-26) arxiv:nucl-th/9509043v1 28 Sep 1995 Properties

More information

Emergent symmetries in the Canonical Tensor Model

Emergent symmetries in the Canonical Tensor Model Emergent symmetries in the Canonical Tensor Model Naoki Sasakura Yukawa Institute for Theoretical Physics, Kyoto University Based on collaborations with Dennis Obster arxiv:1704.02113 and a paper coming

More information

A Symmetric Treatment of Damped Harmonic Oscillator in Extended Phase Space

A Symmetric Treatment of Damped Harmonic Oscillator in Extended Phase Space Proceedings of Institute of Mathematics of NAS of Ukraine 00, Vol. 43, Part, 645 65 A Symmetric Treatment of Damped Harmonic Oscillator in Extended Phase Space S. NASIRI and H. SAFARI Institute for Advanced

More information

Spacetime foam and modified dispersion relations

Spacetime foam and modified dispersion relations Institute for Theoretical Physics Karlsruhe Institute of Technology Workshop Bad Liebenzell, 2012 Objective Study how a Lorentz-invariant model of spacetime foam modify the propagation of particles Spacetime

More information

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor EJTP 6, No. 22 (2009) 189 196 Electronic Journal of Theoretical Physics Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor Walaa. I. Eshraim and Nasser. I. Farahat Department of

More information

Cosmology in generalized Proca theories

Cosmology in generalized Proca theories 3-rd Korea-Japan workshop on dark energy, April, 2016 Cosmology in generalized Proca theories Shinji Tsujikawa (Tokyo University of Science) Collaboration with A.De Felice, L.Heisenberg, R.Kase, S.Mukohyama,

More information

On the Heisenberg and Schrödinger Pictures

On the Heisenberg and Schrödinger Pictures Journal of Modern Physics, 04, 5, 7-76 Published Online March 04 in SciRes. http://www.scirp.org/ournal/mp http://dx.doi.org/0.436/mp.04.5507 On the Heisenberg and Schrödinger Pictures Shigei Fuita, James

More information