Pattern Formation in Chemotaxis

Size: px
Start display at page:

Download "Pattern Formation in Chemotaxis"

Transcription

1 Pattern Formation in Chemotaxis Thomas Hillen University of Alberta, Edmonton (with K. Painter, Heriot-Watt) Pattern Formation in Chemotaxis p.1/28

2 Outline (1) The Minimal Model (M1) Pattern Formation in Chemotaxis p.2/28

3 Outline (1) The Minimal Model (M1) (2) The Volume Filling Model (M3a) Pattern Formation in Chemotaxis p.2/28

4 Outline (1) The Minimal Model (M1) (2) The Volume Filling Model (M3a) (3) Regularizations (M2)-(M8) Pattern Formation in Chemotaxis p.2/28

5 Outline (1) The Minimal Model (M1) (2) The Volume Filling Model (M3a) (3) Regularizations (M2)-(M8) (4) Pattern Formation Pattern Formation in Chemotaxis p.2/28

6 Outline (1) The Minimal Model (M1) (2) The Volume Filling Model (M3a) (3) Regularizations (M2)-(M8) (4) Pattern Formation (5) Open Questions and Conclusions Pattern Formation in Chemotaxis p.2/28

7 (1) Chemotaxis Equation Patlak 53 Keller and Segel, 7 Minimal model u t = (D u χu v), v t = 2 v + u v. (M1) u(x, t): cell density v(x, t): chemical signal Pattern Formation in Chemotaxis p.3/28

8 Horstmann s review 3 [D. Horstmann, Jahresberichte DMV, 15, , 23.] model derivations steady states blow-up general mathematical properties self similar solutions, traveling waves Pattern Formation in Chemotaxis p.4/28

9 (M1) shows Finite Time Blow Up x time Pattern Formation in Chemotaxis p.5/28

10 Theorem 1 ( ) (Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Perthame, etc ) Pattern Formation in Chemotaxis p.6/28

11 Theorem 1 ( ) (Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Perthame, etc ) ū = u (x)dx Pattern Formation in Chemotaxis p.6/28

12 Theorem 1 ( ) (Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Perthame, etc ) ū = u (x)dx 1-D: Spike formation, no blow-up. Pattern Formation in Chemotaxis p.6/28

13 Theorem 1 ( ) (Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Perthame, etc ) ū = u (x)dx 1-D: Spike formation, no blow-up. 2-D: quantized blow-up (Suzuki 5, Hortsmann 3) boundary blow-up takes mass 4π χ interior blow-up takes mass 8π χ. If u I 1 < 4π χ then global existence. Pattern Formation in Chemotaxis p.6/28

14 Theorem 1 ( ) (Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Perthame, etc ) ū = u (x)dx 1-D: Spike formation, no blow-up. 2-D: quantized blow-up (Suzuki 5, Hortsmann 3) boundary blow-up takes mass 4π χ interior blow-up takes mass 8π χ. If u I 1 < 4π χ then global existence. n-d: There is a threshold in L n/2 (Perthame et al. 5). Pattern Formation in Chemotaxis p.6/28

15 (2) The Volume Filling Approach (M3a) (w. K. Painter) Increasing chemoattractant concentration A B C Pattern Formation in Chemotaxis p.7/28

16 (2) The Volume Filling Approach (M3a) (w. K. Painter) Increasing chemoattractant concentration A B C q(u) : probability to find space at a local cell density u Pattern Formation in Chemotaxis p.7/28

17 (2) The Volume Filling Approach (M3a) (w. K. Painter) Increasing chemoattractant concentration A B C q(u) : probability to find space at a local cell density u Assumption q(u max ) = and q(u) for all u < U max. Pattern Formation in Chemotaxis p.7/28

18 (2) The Volume Filling Approach (M3a) (w. K. Painter) Increasing chemoattractant concentration A B C q(u) : probability to find space at a local cell density u Assumption q(u max ) = and q(u) for all u < U max. Standard example: U max = 1, q(u) = 1 u. Pattern Formation in Chemotaxis p.7/28

19 The Volume Filling Model We use a Master equation approach to derive: u t = (D(q(u) q (u)u) u q(u)uχ(v) v) v t = v + u v Pattern Formation in Chemotaxis p.8/28

20 Pattern Analysis [1]-[7] [1] Hillen + Painter 2: First mention of the volume filling model; proof of global existence for special cases; numerical pattern formation. Pattern Formation in Chemotaxis p.9/28

21 Pattern Analysis [1]-[7] [1] Hillen + Painter 2: First mention of the volume filling model; proof of global existence for special cases; numerical pattern formation. If the domain is large enough we obtain non trivial steady states. u(x) τ (x) Pattern Formation in Chemotaxis p.9/28

22 Pattern Formation in 1-D cell density log 1 t space 3 Pattern Formation in Chemotaxis p.1/28

23 Pattern Formation in 2-D ū =.5 (top),.25 (middle),.75 (bottom) Pattern Formation in Chemotaxis p.11/28

24 Pattern Analysis [1]-[7] [1] Hillen + Painter 2: [2] Painter + Hillen 22: Derivation from a random walk description, pattern formation, coarsening. Pattern Formation in Chemotaxis p.12/28

25 Pattern Analysis [1]-[7] [1] Hillen + Painter 2: [2] Painter + Hillen 22: Derivation from a random walk description, pattern formation, coarsening. [3] D. Wrzosek 23: Existence of a compact global attractor. Pattern Formation in Chemotaxis p.12/28

26 Pattern Analysis [1]-[7] [1] Hillen + Painter 2: [2] Painter + Hillen 22: Derivation from a random walk description, pattern formation, coarsening. [3] D. Wrzosek 23: Existence of a compact global attractor. [4] D. Wrzosek 24: Lyapunov function. ω-limit sets are steady states. Pattern Formation in Chemotaxis p.12/28

27 Pattern Analysis [1]-[7] [5] Potapov + Hillen 24: Bifurcation diagram, metastability, numerical estimates of leading eigenvalues, scaling analysis and pattern interaction. Pattern Formation in Chemotaxis p.13/28

28 Pattern Analysis [1]-[7] [5] Potapov + Hillen 24: Bifurcation diagram, metastability, numerical estimates of leading eigenvalues, scaling analysis and pattern interaction. Bifurcation Diagram Pattern Formation in Chemotaxis p.13/28

29 Pattern Analysis [1]-[7] [6] Dolak + Schmeiser 24: Asymptotic analysis of pattern interaction. Pattern Formation in Chemotaxis p.14/28

30 Pattern Analysis [1]-[7] [6] Dolak + Schmeiser 24: Asymptotic analysis of pattern interaction. [7] Dolak + Hillen 23: Application to Dictyostelium discoideum and to Salmonella typhimurium. Pattern Formation in Chemotaxis p.14/28

31 (3) Regularizations Signal dependent sensitivity (M2a), (M2b) Density dependent sensitivity (M3a), (M3b) Non-local gradient (M4) Non-linear diffusion (M5) Non-linear signal kinetics (M6) Non-linear gradient (M7) Cell kinetics (M8) Pattern Formation in Chemotaxis p.15/28

32 Receptor Model (M2a) u t = Othmer, Stevens 97 ( D u v t = 2 v + u v ) χu (1 + αv) v 2 Segel 76 77, Ford et al 91, Tyson et al 99, Levine and Sleeman 97 Pattern Formation in Chemotaxis p.16/28

33 Logistic model (M2b) u t = ( D u χu 1 + β ) v + β v v t = 2 v + u v Keller, Segel 71, Dahlquist et al 72, Nanjundiah 73 see review in Horstmann 3 Pattern Formation in Chemotaxis p.17/28

34 Volume-Filling (M3a) u t = ( ( D u χu 1 u ) ) v γ H, Painter 1 2 v t = 2 v + u v, Wrzosek 4, Dolak, Schmeiser 5 Pattern Formation in Chemotaxis p.18/28

35 Velazquez model (M3b): Velazquez 4 u t = ( D u χ u ) 1 + ɛu v v t = 2 v + u v, Pattern Formation in Chemotaxis p.19/28

36 Non-Local Model (M4) u t = ( D u χu ) ρ v v t = 2 v + u v Non-local gradient: ρ v(x, t) = Othmer, H 2 n S n 1 ρ H, Painter, Schmeiser 6 S n 1 σv(x + ρσ, t) dσ, Pattern Formation in Chemotaxis p.2/28

37 Nonlinear Diffusion (M5) u t = (Du n u χu v) v t = 2 v + u v, Kowalczyk 5 Eberl 1, biofilm Pattern Formation in Chemotaxis p.21/28

38 Nonlinear Signal Kinetics (M6) u t = (D u χu v) v t = 2 v + u 1 + φu v, Höfer et al 95, Woodward et al 95 Myerscough et al 98, Post 99. Pattern Formation in Chemotaxis p.22/28

39 Nonlinear Gradient (M7) u t = (D u χuf c ( v)) v t = 2 v + u v, F c ( v) = 1 c ( ( ) ( )) cvx1 cvxn tanh,..., tanh. 1 + c 1 + c Rivero et al 89 Pattern Formation in Chemotaxis p.23/28

40 Cell Kinetics (M8) u t = (D u χu v) + ru(1 u) v t = 2 v + u v Tyson 99, Woodward 95, Chaplain, Stuart 93 Osaki et al 2, Wrzosek 4, Pattern Formation in Chemotaxis p.24/28

41 (4) Pattern Formation Pattern Formation in Chemotaxis p.25/28

42 2-D Aggregations (M1) t = (M2a) α = (M2b) β = (M3a) γ = (M3b) ε = (M4) ρ = (M5) n = (M6) φ = (M7) c = 3. 5 (M8) r = (M1) (a) Cell density profiles (M2b) (M2a) (M5) (M4) (M3b) (M8) (M7) (M6) (M3a) (b) Peak cell density evolution Pattern Formation in Chemotaxis p.26/28

43 (5) Open Questions Global existence for (M2b) for n-d, n 3 and β > Global existence for (M2b) for β =. Possibly threshold and blow-up? Prove existence of a global attractor for (M2a), (M2b), (M3b), (M4), (M5), (M6), (M7) analysis of merging dynamics (so far only Dolak et al.) analysis of merging-emerging dynamics for (M8) Pattern Formation in Chemotaxis p.27/28

44 Conclusions List of models not complete Pattern Formation in Chemotaxis p.28/28

45 Conclusions List of models not complete A combination of effects might be needed for applications Pattern Formation in Chemotaxis p.28/28

46 Conclusions List of models not complete A combination of effects might be needed for applications All models show coarsening dynamics Pattern Formation in Chemotaxis p.28/28

47 Conclusions List of models not complete A combination of effects might be needed for applications All models show coarsening dynamics Thanks to K. Painter, and to NSERC Pattern Formation in Chemotaxis p.28/28

Volume Effects in Chemotaxis

Volume Effects in Chemotaxis Volume Effects in Chemotaxis Thomas Hillen University of Alberta supported by NSERC with Kevin Painter (Edinburgh), Volume Effects in Chemotaxis p.1/?? Eschirichia coli Berg - Lab (Harvard) Volume Effects

More information

Exclusion of boundary blowup for 2D chemotaxis system with Dirichlet boundary condition for the Poisson part

Exclusion of boundary blowup for 2D chemotaxis system with Dirichlet boundary condition for the Poisson part Exclusion of boundary blowup for 2D chemotaxis system with Dirichlet boundary condition for the Poisson part 2012. 09 Takashi Suzuki The model 1. Smoluchowski Part other Poisson parts a) Debye system (DD

More information

Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding

Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding Advances in Applied Mathematics 26, 28 31 (21) doi:1.16/aama.21.721, available online at http://www.idealibrary.com on Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding

More information

Classical solutions and pattern formation for a volume filling chemotaxis model

Classical solutions and pattern formation for a volume filling chemotaxis model CHAOS 17, 037108 2007 Classical solutions and pattern formation for a volume filling chemotaxis model Zhian Wang and Thomas Hillen Department of Mathematical and Statistical Science, University of Alberta,

More information

GLOBAL EXISTENCE FOR CHEMOTAXIS WITH FINITE SAMPLING RADIUS. (Communicated by Aim Sciences)

GLOBAL EXISTENCE FOR CHEMOTAXIS WITH FINITE SAMPLING RADIUS. (Communicated by Aim Sciences) Manuscript submitted to AIMS Journals Volume X, Number X, XX 2X Website: http://aimsciences.org pp. X XX GLOBAL EXISTENCE FOR CHEMOTAXIS WITH FINITE SAMPLING RADIUS T. Hillen, K. Painter +, C. Schmeiser

More information

Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model

Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model Michael Winkler Fakultät für Mathematik, Universität Duisburg-Essen, 45117 Essen, Germany Abstract We consider the

More information

Journal of Differential Equations

Journal of Differential Equations J. Differential Equations 49 (010) 1519 1530 Contents lists available at ScienceDirect Journal of Differential Equations www.elsevier.com/locate/jde Pattern formation (I): The Keller Segel model Yan Guo

More information

Point vortex mean field theories multi-intensities and kinetic model

Point vortex mean field theories multi-intensities and kinetic model Point vortex mean field theories multi-intensities and kinetic model Takashi Suzuki A. Static Theory ~ what should it be? Hamiltonian statistical mechanics (Gibbs) micro-canonical statistics H total energy

More information

A positivity-preserving finite element method for chemotaxis problems in 3D

A positivity-preserving finite element method for chemotaxis problems in 3D A positivity-preserving finite element method for chemotaxis problems in 3D Robert Strehl Andriy Sokolov Dmitri Kuzmin Dirk Horstmann Stefan Turek December 17, 2010 Abstract We present an implicit finite

More information

THE SET OF CONCENTRATION FOR SOME HYPERBOLIC MODELS OF CHEMOTAXIS

THE SET OF CONCENTRATION FOR SOME HYPERBOLIC MODELS OF CHEMOTAXIS Journal of Hyperbolic Differential Equations c World Scientific Publishing Company THE SET OF CONCENTRATION FOR SOME HYPERBOLIC MODELS OF CHEMOTAXIS LOBNA DERBEL Laboratoire d Ingénierie Mathématique,

More information

Singular solutions of partial differential equations modelling chemotactic aggregation

Singular solutions of partial differential equations modelling chemotactic aggregation Singular solutions of partial differential equations modelling chemotactic aggregation Juan J. L. Velázquez Abstract. This paper reviews several mathematical results for partial differential equations

More information

Kinetic models for chemotaxis

Kinetic models for chemotaxis Kinetic models for chemotaxis FABIO A. C. C. CHALUB Centro de Matemática e Aplicações Fundamentais Universidade de Lisboa Kinetic models for chemotaxis p. Main Goal To study two different levels of description

More information

Spatio-Temporal Chaos in a Chemotaxis Model

Spatio-Temporal Chaos in a Chemotaxis Model Spatio-Temporal Chaos in a Chemotaxis Model Preprint submitted to Physica D September 6, 1 Spatio-Temporal Chaos in a Chemotaxis Model Kevin J. Painter 1 and Thomas Hillen 1 Corresponding Author. Department

More information

MERGING-EMERGING SYSTEMS CAN DESCRIBE SPATIO-TEMPORAL PATTERNING IN A CHEMOTAXIS MODEL. Thomas Hillen. Jeffrey Zielinski. Kevin J.

MERGING-EMERGING SYSTEMS CAN DESCRIBE SPATIO-TEMPORAL PATTERNING IN A CHEMOTAXIS MODEL. Thomas Hillen. Jeffrey Zielinski. Kevin J. Manuscript submitted to AIMS Journals Volume X, Number X, XX 2X doi:.3934/xx.xx.xx.xx pp. X XX MERGING-EMERGING SYSTEMS CAN DESCRIBE SPATIO-TEMPORAL PATTERNING IN A CHEMOTAXIS MODEL Thomas Hillen Centre

More information

Derivation of Hyperbolic Models for Chemosensitive Movement

Derivation of Hyperbolic Models for Chemosensitive Movement Derivation of Hyperbolic Models for Chemosensitive Movement Francis Filbet Philippe Laurençot Benoît Perthame November 7, 23 Abstract A Chapman-Enskog expansion is used to derive hyperbolic models for

More information

Mathematical models for cell movement Part I

Mathematical models for cell movement Part I Mathematical models for cell movement Part I FABIO A. C. C. CHALUB Centro de Matemática e Aplicações Fundamentais Universidade de Lisboa Mathematical models for cell movementpart I p. Overview Biological

More information

Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2

Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2 Acta Appl Math (14) 19:135 146 DOI 1.17/s144-13-983-5 Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension Tomasz Cieślak Christian Stinner Received: January

More information

A Finite Volume Scheme for the Patlak-Keller-Segel Chemotaxis Model

A Finite Volume Scheme for the Patlak-Keller-Segel Chemotaxis Model A Finite Volume Scheme for the Patlak-eller-Segel Chemotaxis Model Francis FIBET November 9, 005 Abstract A finite volume method is presented to discretize the Patlak-eller-Segel (PS) model for chemosensitive

More information

Free energy estimates for the two-dimensional Keller-Segel model

Free energy estimates for the two-dimensional Keller-Segel model Free energy estimates for the two-dimensional Keller-Segel model dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine in collaboration with A. Blanchet (CERMICS, ENPC & Ceremade) & B.

More information

VOLUME-FILLING AND QUORUM-SENSING IN MODELS FOR CHEMOSENSITIVE MOVEMENT

VOLUME-FILLING AND QUORUM-SENSING IN MODELS FOR CHEMOSENSITIVE MOVEMENT CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 1, Number 4, Winter 22 VOLUME-FILLING AND QUORUM-SENSING IN MODELS FOR CHEMOSENSITIVE MOVEMENT KEVIN J. PAINTER AND THOMAS HILLEN ABSTRACT. Chemotaxis is one

More information

Blow-up and Pattern Formation in Hyperbolic Models for Chemotaxis in 1-D

Blow-up and Pattern Formation in Hyperbolic Models for Chemotaxis in 1-D Blow-up and Pattern Formation in Hyperbolic Models for Chemotaxis in -D T. Hillen H. A. Levine February 4, 3 Abstract: In this paper we study finite time blow-up of solutions of a hyperbolic model for

More information

Mathematical tools for cell chemotaxis

Mathematical tools for cell chemotaxis Mathematical tools for cell chemotaxis Vincent Calvez CNRS, ENS Lyon, France CIMPA, Hammamet, March 2012 Chemotaxis = biased motion in response to a chemical cue. From individual to collective behaviour

More information

Blow-up and pattern formation in hyperbolic models for chemotaxis in 1-D

Blow-up and pattern formation in hyperbolic models for chemotaxis in 1-D Z. angew. Math. Phys. 54 (003) 1 30 0044-75/03/050001-30 DOI 10.1007/s00033-003-1013-3 c 003 Birkhäuser Verlag, Basel Zeitschrift für angewandte Mathematik und Physik ZAMP Blow-up and pattern formation

More information

SINGULARITY FORMATION IN CHEMOTAXIS - A CONJECTURE OF NAGAI

SINGULARITY FORMATION IN CHEMOTAXIS - A CONJECTURE OF NAGAI SINGULARITY FORMATION IN CHEMOTAXIS - A CONJECTURE OF NAGAI HOWARD A. LEVINE & JOANNA RENC LAWOWICZ Abstract. Consider the initial boundary value problem for the system (S) u t = u xx (uv x) x, v t = u

More information

Hyperbolic models of cell movements: an introduction

Hyperbolic models of cell movements: an introduction Hyperbolic models of cell movements: an introduction Roberto Natalini Istituto per le Applicazioni del Calcolo M. Picone Consiglio Nazionale delle Ricerche 17 February 2011, Seminar at Mathematical modeling

More information

GLOBAL EXISTENCE OF SOLUTIONS TO A HYPERBOLIC-PARABOLIC SYSTEM

GLOBAL EXISTENCE OF SOLUTIONS TO A HYPERBOLIC-PARABOLIC SYSTEM PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 35, Number 4, April 7, Pages 7 7 S -99396)8773-9 Article electronically published on September 8, 6 GLOBAL EXISTENCE OF SOLUTIONS TO A HYPERBOLIC-PARABOLIC

More information

LECTURE OF BCB 570 SPRING 2013 MATHEMATICAL MODELING AND STUDY OF

LECTURE OF BCB 570 SPRING 2013 MATHEMATICAL MODELING AND STUDY OF LECTURE OF BCB 570 SPRING 2013 MATHEMATICAL MODELING AND STUDY OF CHEMOTAXIS PROCESSES Wen Zhou Department of Statistics Iowa State University April 9, 2013 OUTLINE OUTLINE 1 INTRODUCTION 2 MATHEMATICAL

More information

Interface Motion in the Ostwald Ripening and Chemotaxis Systems

Interface Motion in the Ostwald Ripening and Chemotaxis Systems Interface Motion in the Ostwald Ripening and Chemotaxis Systems by Eamon Kavanagh B.Sc., McMaster University, 211 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER

More information

Ecient, accurate and exible Finite Element solvers for Chemotaxis problems

Ecient, accurate and exible Finite Element solvers for Chemotaxis problems Ecient, accurate and exible Finite Element solvers for Chemotaxis problems Robert Strehl, Andriy Sokolov, Stefan Turek Abstract In the framework of Finite Element discretizations we introduce a fully nonlinear

More information

arxiv: v2 [math.ap] 28 Mar 2016

arxiv: v2 [math.ap] 28 Mar 2016 Pattern formation in Keller Segel chemotaxis models with logistic growth arxiv:1407.5246v2 [math.ap] 28 Mar 2016 LING JIN, QI WANG, ZENGYAN ZHANG Department of Mathematics Southwestern University of Finance

More information

Yoshie Sugiyama (Tsuda university)

Yoshie Sugiyama (Tsuda university) Measure valued soluions of he D Keller Segel sysem oin work: Sephan Luckhaus (Leipzig Univ.) Yoshie Sugiyama (Tsuda universiy) Juan J.L.Velázquez (ICMAT in Madrid) The 3rd OCAMI-TIMS Join Inernaional Workshop

More information

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author s institution, sharing

More information

arxiv: v1 [math.ap] 24 Jun 2017

arxiv: v1 [math.ap] 24 Jun 2017 Global existence and asymptotic behavior of classical solutions for a 3D two-species Keller Segel-Stokes system with competitive kinetics arxiv:706.0790v [math.ap] 4 Jun 07 Xinru Cao Institut für Mathematik,

More information

Self-similar solutions to a parabolic system modelling chemotaxis

Self-similar solutions to a parabolic system modelling chemotaxis $(_{\square }^{\pm} \mathrm{f}\mathrm{f}\mathrm{l} \grave{7}\ovalbox{\tt\small REJECT})$ 1197 2001 189-195 189 Self-similar solutions to a parabolic system modelling chemotaxis Yuki Naito ( ) Department

More information

Introduction to Travelling Waves Modeling Examples. Travelling Waves. Dagmar Iber. Computational Biology (CoBI), D-BSSE, ETHZ

Introduction to Travelling Waves Modeling Examples. Travelling Waves. Dagmar Iber. Computational Biology (CoBI), D-BSSE, ETHZ Introduction to Travelling Waves Modeling Examples Travelling Waves Dagmar Iber Computational Biology (CoBI), D-BSSE, ETHZ 1 2 Introduction to Travelling Waves Modeling Examples Outline 1 Introduction

More information

Mathematical analysis of tumour invasion model with proliferation and re-establishment

Mathematical analysis of tumour invasion model with proliferation and re-establishment Mathematical analysis of tumour invasion model with proliferation and re-establishment AKISATO KUBO Fujita Health University Department of Mathematics, School of Health Sciences 1-98, Toyoake, Aichi 47-1192

More information

INSTABILITY IN A GENERALIZED KELLER-SEGEL MODEL

INSTABILITY IN A GENERALIZED KELLER-SEGEL MODEL INSTABILITY IN A GENERALIZED KELLER-SEGEL MODEL PATRICK DE LEENHEER, JAY GOPALAKRISHNAN, AND ERICA ZUHR Abstract. We present a generalized Keller-Segel model where an arbitrary number of chemical compounds

More information

Models of Biological Movements: Analysis and Numerical Simulations. Cristiana Di Russo. CNRS, Institut Camille Jordan Université Claude Bernard Lyon 1

Models of Biological Movements: Analysis and Numerical Simulations. Cristiana Di Russo. CNRS, Institut Camille Jordan Université Claude Bernard Lyon 1 Models of Biological Movements: Analysis and Numerical Simulations Cristiana Di Russo CNRS, Institut Camille Jordan Université Claude Bernard Lyon 1 Journées de l'anr MONUMENTALG June 30th, 2011 C.Di Russo

More information

Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems

Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems J. Math. Biol. (27) 55:365 388 DOI.7/s285-7-88-4 Mathematical Biology Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems Ian G. Pearce Mark A. J. Chaplain Pietà G.

More information

EXISTENCE OF MULTIPLE SOLUTIONS FOR A NONLINEARLY PERTURBED ELLIPTIC PARABOLIC SYSTEM IN R 2

EXISTENCE OF MULTIPLE SOLUTIONS FOR A NONLINEARLY PERTURBED ELLIPTIC PARABOLIC SYSTEM IN R 2 Electronic Journal of Differential Equations, Vol. 2929), No. 32, pp. 1 1. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu login: ftp) EXISTENCE

More information

Volume effects in the Keller Segel model: energy estimates preventing blow-up

Volume effects in the Keller Segel model: energy estimates preventing blow-up J. Math. Pures Appl. 86 (2006) 155 175 www.elsevier.com/locate/matpur Volume effects in the Keller Segel moel: energy estimates preventing blow-up Vincent Calvez a,, José A. Carrillo b a DMA, École Normale

More information

PATTERN FORMATION IN ROSENZWEIG MACARTHUR MODEL WITH PREY TAXIS

PATTERN FORMATION IN ROSENZWEIG MACARTHUR MODEL WITH PREY TAXIS INTERNATIONA JOURNA OF NUMERICA ANAYSIS AND MODEING Volume 16, Number 1, Pages 97 115 c 219 Institute for Scientific Computing and Information PATTERN FORMATION IN ROSENZWEIG MACARTHUR MODE WITH PREY TAXIS

More information

für Mathematik in den Naturwissenschaften Leipzig

für Mathematik in den Naturwissenschaften Leipzig ŠܹÈÐ Ò ¹ÁÒ Ø ØÙØ für Mathematik in den Naturwissenschaften Leipzig Simultaneous Finite Time Blow-up in a Two-Species Model for Chemotaxis by Elio Eduardo Espejo Arenas, Angela Stevens, and Juan J.L.

More information

Jeans type analysis of chemotactic collapse

Jeans type analysis of chemotactic collapse 1 Jeans type analysis of chemotactic collapse Pierre-Henri Chavanis and Clément Sire arxiv:0708.3163v [physics.bio-ph] 19 Nov 008 October 30, 018 Laboratoire de Physique héorique (IRSAMC, CNRS), Université

More information

An augmented Keller-Segal model for E. coli chemotaxis in fast-varying environments

An augmented Keller-Segal model for E. coli chemotaxis in fast-varying environments An augmented Keller-Segal model for E. coli chemotaxis in fast-varying environments Tong Li Min Tang Xu Yang August 6, 5 Abstract This is a continuous study on E. coli chemotaxis under the framework of

More information

Traveling Waves and Steady States of S-K-T Competition Model

Traveling Waves and Steady States of S-K-T Competition Model Traveling Waves and Steady States of S-K-T Competition Model with Cross diffusion Capital Normal University, Beijing, China (joint work with Wei-Ming Ni, Qian Xu, Xuefeng Wang and Yanxia Wu) 2015 KAIST

More information

arxiv: v1 [math.ap] 13 Mar 2015

arxiv: v1 [math.ap] 13 Mar 2015 arxiv:1503.03979v1 [math.ap] 13 Mar 2015 Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway Benoît Perthame Min Tang Nicolas auchelet March 16, 2015 Abstract

More information

DYNAMIC TRANSITION AND PATTERN FORMATION FOR CHEMOTACTIC SYSTEMS. Tian Ma. Shouhong Wang. (Communicated by Qing Nie)

DYNAMIC TRANSITION AND PATTERN FORMATION FOR CHEMOTACTIC SYSTEMS. Tian Ma. Shouhong Wang. (Communicated by Qing Nie) DISCRETE AND CONTINUOUS doi:.3934/dcdsb.4.9.89 DYNAMICAL SYSTEMS SERIES B Volume 9, Number 9, November 4 pp. 89 835 DYNAMIC TRANSITION AND PATTERN FORMATION FOR CHEMOTACTIC SYSTEMS Tian Ma Department of

More information

5. Bacterial Patterns and Chemotaxis 5.1 Background and Experimental Results

5. Bacterial Patterns and Chemotaxis 5.1 Background and Experimental Results 5. Bacterial Patterns and Chemotaxis 5.1 Background and Experimental Results There is an obvious case for studying bacteria. For example, bacteria are responsible for a large number of diseases and they

More information

Gradient Flows: Qualitative Properties & Numerical Schemes

Gradient Flows: Qualitative Properties & Numerical Schemes Gradient Flows: Qualitative Properties & Numerical Schemes J. A. Carrillo Imperial College London RICAM, December 2014 Outline 1 Gradient Flows Models Gradient flows Evolving diffeomorphisms 2 Numerical

More information

Taxis Diffusion Reaction Systems

Taxis Diffusion Reaction Systems Chapter 2 Taxis Diffusion Reaction Systems In this chapter we define the class of taxis diffusion reaction (TDR) systems which are the subject of this thesis. To this end, we start in Sec. 2. with the

More information

On the parabolic-elliptic limit of the doubly parabolic Keller Segel system modelling chemotaxis

On the parabolic-elliptic limit of the doubly parabolic Keller Segel system modelling chemotaxis On the parabolic-elliptic limit of the doubly parabolic Keller Segel system modelling chemotaxis Piotr Biler, Lorenzo Brandolese To cite this version: Piotr Biler, Lorenzo Brandolese. On the parabolic-elliptic

More information

Physical Mechanisms for Chemotactic Pattern Formation by Bacteria

Physical Mechanisms for Chemotactic Pattern Formation by Bacteria Biophysical Journal Volume 74 April 1998 1677 1693 1677 Physical Mechanisms for Chemotactic Pattern Formation by Bacteria Michael P. Brenner,* Leonid S. Levitov, # and Elena O. Budrene Departments of *Mathematics

More information

Conservation and dissipation principles for PDEs

Conservation and dissipation principles for PDEs Conservation and dissipation principles for PDEs Modeling through conservation laws The notion of conservation - of number, energy, mass, momentum - is a fundamental principle that can be used to derive

More information

Keller-Segel models for chemotaxis. Jessica Ann Hulzebos. A Creative Component submitted to the graduate faculty

Keller-Segel models for chemotaxis. Jessica Ann Hulzebos. A Creative Component submitted to the graduate faculty Keller-Segel models for chemotaxis by Jessica Ann Hulzebos A Creative Component submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Applied

More information

ILL-POSEDNESS ISSUE FOR THE DRIFT DIFFUSION SYSTEM IN THE HOMOGENEOUS BESOV SPACES

ILL-POSEDNESS ISSUE FOR THE DRIFT DIFFUSION SYSTEM IN THE HOMOGENEOUS BESOV SPACES Iwabuchi, T. and Ogawa, T. Osaka J. Math. 53 (216), 919 939 ILL-POSEDNESS ISSUE FOR THE DRIFT DIFFUSION SYSTEM IN THE HOMOGENEOUS BESOV SPACES TSUKASA IWABUCHI and TAKAYOSHI OGAWA (Received February 13,

More information

BOUNDEDNESS IN A THREE-DIMENSIONAL ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH NONLINEAR DIFFUSION AND LOGISTIC SOURCE

BOUNDEDNESS IN A THREE-DIMENSIONAL ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH NONLINEAR DIFFUSION AND LOGISTIC SOURCE Electronic Journal of Differential Equations, Vol. 016 (016, No. 176, pp. 1 1. ISSN: 107-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu BOUNDEDNESS IN A THREE-DIMENSIONAL ATTRACTION-REPULSION

More information

Mathematical analysis of tumour invasion with proliferation model and simulations

Mathematical analysis of tumour invasion with proliferation model and simulations Mathematical analysis of tumour invasion with proliferation model and simulations AKISATO KUBO Department of Mathematics School of Health Sciences Fujita Health University 1-98, Toyoake, Aichi 47-1192

More information

STABILITY OF CONSTANT STATES AND QUALITATIVE BEHAVIOR OF SOLUTIONS TO A ONE DIMENSIONAL HYPERBOLIC MODEL OF CHEMOTAXIS. Francesca Romana Guarguaglini

STABILITY OF CONSTANT STATES AND QUALITATIVE BEHAVIOR OF SOLUTIONS TO A ONE DIMENSIONAL HYPERBOLIC MODEL OF CHEMOTAXIS. Francesca Romana Guarguaglini DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS SERIES B Volume 12, Number 1, July 29 doi:1.3934/dcdsb.29.12.xx pp. 1 XX STABILITY OF CONSTANT STATES AND QUALITATIVE BEHAVIOR OF SOLUTIONS TO A ONE DIMENSIONAL

More information

Solving the Fisher s Equation by Means of Variational Iteration Method

Solving the Fisher s Equation by Means of Variational Iteration Method Int. J. Contemp. Math. Sciences, Vol. 4, 29, no. 7, 343-348 Solving the Fisher s Equation by Means of Variational Iteration Method M. Matinfar 1 and M. Ghanbari 1 Department of Mathematics, University

More information

arxiv: v2 [math.ap] 17 Oct 2015

arxiv: v2 [math.ap] 17 Oct 2015 EXISTENCE OF SOLUTIONS FOR THE KELLER-SEGEL MODEL OF CHEMOTAXIS WITH MEASURES AS INITIAL DATA arxiv:1507.00497v2 [math.ap] 17 Oct 2015 PIOTR BILER AND JACEK ZIENKIEWICZ Abstract. A simple proof of the

More information

Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis II: Bacterial Populations

Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis II: Bacterial Populations Bulletin of Mathematical Biology (2008) 70: 1570 1607 DOI 10.1007/s11538-008-9322-5 REVIEW ARTICLE Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis II: Bacterial Populations M.J.

More information

arxiv: v1 [math.ap] 22 Dec 2017

arxiv: v1 [math.ap] 22 Dec 2017 arxiv:72.08497v [math.ap] 22 Dec 207 Existence and Instability of Traveling Pulses of Keller-Segel System with Nonlinear Chemical Gradients and Small Diffusions Chueh-Hsin Chang, Yu-Shuo Chen, John M.

More information

arxiv: v2 [math.ap] 3 Feb 2014

arxiv: v2 [math.ap] 3 Feb 2014 Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity arxiv:1212.2807v2 [math.ap] 3 Feb 2014 Alexandre MOTARU Université Paris 13,

More information

A Chemotactic Model for the Advance and Retreat of the Primitive Streak in Avian Development

A Chemotactic Model for the Advance and Retreat of the Primitive Streak in Avian Development Bulletin of Mathematical Biology (2) 62, 51 525 doi:1.16/bulm.1999.166 Available online at http://www.idealibrary.com on A Chemotactic Model for the Advance and Retreat of the Primitive Streak in Avian

More information

Analysis of a herding model in social economics

Analysis of a herding model in social economics Analysis of a herding model in social economics Lara Trussardi 1 Ansgar Jüngel 1 C. Kühn 1 1 Technische Universität Wien Taormina - June 13, 2014 www.itn-strike.eu L. Trussardi, A. Jüngel, C. Kühn (TUW)

More information

Wavefront invasion for a chemotaxis model of Multiple Sclerosis. R. Barresi, E. Bilotta, F. Gargano, M. C. Lombardo, P. Pantano & M.

Wavefront invasion for a chemotaxis model of Multiple Sclerosis. R. Barresi, E. Bilotta, F. Gargano, M. C. Lombardo, P. Pantano & M. Wavefront invasion for a chemotaxis model of Multiple Sclerosis R. Barresi, E. Bilotta, F. Gargano, M. C. Lombardo, P. Pantano & M. Sammartino Ricerche di Matematica ISSN 35-538 Ricerche mat. DOI.7/s587-6-65-3

More information

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Christophe Berthon, Anaïs Crestetto et Françoise Foucher LMJL, Université de Nantes ANR GEONUM Séminaire de l équipe

More information

Theoretical and numerical results for a chemo-repulsion model with quadratic production

Theoretical and numerical results for a chemo-repulsion model with quadratic production Theoretical and numerical results for a chemo-repulsion model with quadratic production F. Guillén-Gonzalez, M. A. Rodríguez-Bellido & and D. A. Rueda-Gómez Dpto. Ecuaciones Diferenciales y Análisis Numérico

More information

Blow-up dynamics for the aggregation equation with degenerate diffusion

Blow-up dynamics for the aggregation equation with degenerate diffusion Blow-up dynamics for the aggregation equation with degenerate diffusion Yao Yao a, Andrea L. Bertozzi a a Department of Mathematics, University of California Los Angeles, Los Angeles, CA 995, USA Abstract

More information

arxiv: v1 [math.ap] 9 Dec 2009

arxiv: v1 [math.ap] 9 Dec 2009 arxiv:0912.1792v1 [math.ap] 9 Dec 2009 Mathematical description of bacterial traveling pulses Nikolaos Bournaveas, Axel Buguin, Vincent Calvez, Benoît Perthame, Jonathan Saragosti, Pascal Silberzan Abstract

More information

Fractional Laplacian

Fractional Laplacian Fractional Laplacian Grzegorz Karch 5ème Ecole de printemps EDP Non-linéaire Mathématiques et Interactions: modèles non locaux et applications Ecole Supérieure de Technologie d Essaouira, du 27 au 30 Avril

More information

Allen Cahn Equation in Two Spatial Dimension

Allen Cahn Equation in Two Spatial Dimension Allen Cahn Equation in Two Spatial Dimension Yoichiro Mori April 25, 216 Consider the Allen Cahn equation in two spatial dimension: ɛ u = ɛ2 u + fu) 1) where ɛ > is a small parameter and fu) is of cubic

More information

PARABOLIC SYSTEM OF CHEMOTAXIS: BLOWUP IN A FINITE AND THE INFINITE TIME

PARABOLIC SYSTEM OF CHEMOTAXIS: BLOWUP IN A FINITE AND THE INFINITE TIME METHODS AND APPLICATIONS OF ANALYSIS. 2001 international Press Vol. 8, No. 2, pp. 349-368, June 2001 009 PARABOLIC SYSTEM OF CHEMOTAXIS: BLOWUP IN A FINITE AND THE INFINITE TIME TAKASI SENBA* AND TAKASHI

More information

Stability and absorbing set of parabolic chemotaxis model of Escherichia coli

Stability and absorbing set of parabolic chemotaxis model of Escherichia coli 10 Nonlinear Analysis: Modelling and Control 013 Vol. 18 No. 10 6 Stability and absorbing set of parabolic chemotaxis model of Escherichia coli Salvatore Rionero a Maria Vitiello b1 a Department of Mathematics

More information

arxiv: v1 [math.ap] 21 Sep 2017

arxiv: v1 [math.ap] 21 Sep 2017 Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X doi:10.3934/xx.xx.xx.xx pp. X XX TRAVELING WAVE AND AGGREGATION IN A FLUX-LIMITED KELLER-SEGEL MODEL arxiv:1709.07296v1 [math.ap] 21 Sep

More information

A New Interpretation of The Keller-Segel Model Based on Multiphase Modelling

A New Interpretation of The Keller-Segel Model Based on Multiphase Modelling Loughborough University Institutional Repository A New Interpretation of The Keller-Segel Model Based on Multiphase Modelling This item was submitted to Loughborough University's Institutional Repository

More information

arxiv: v1 [math.ap] 6 Mar 2017

arxiv: v1 [math.ap] 6 Mar 2017 arxiv:73.794v [math.ap] 6 Mar 7 Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-stokes system with competitive kinetics Xinru Cao Institut für Mathematik,

More information

arxiv: v1 [nlin.ao] 22 Jun 2012

arxiv: v1 [nlin.ao] 22 Jun 2012 DYNAMIC TRANSITION AND PATTERN FORMATION FOR CHEMOTACTIC SYSTEMS arxiv:6.584v [nlin.ao] Jun TIAN MA AND SHOUHONG WANG Abstract. The main objective of this article is to study the dynamic transition and

More information

Biological self-organisation phenomena on weighted networks

Biological self-organisation phenomena on weighted networks Biological self-organisation phenomena on weighted networks Lucilla Corrias (jointly with F. Camilli, Sapienza Università di Roma) Mathematical Modeling in Biology and Medicine Universidad de Oriente,

More information

Entropy-dissipation methods I: Fokker-Planck equations

Entropy-dissipation methods I: Fokker-Planck equations 1 Entropy-dissipation methods I: Fokker-Planck equations Ansgar Jüngel Vienna University of Technology, Austria www.jungel.at.vu Introduction Boltzmann equation Fokker-Planck equations Degenerate parabolic

More information

arxiv: v2 [q-bio.qm] 25 Jun 2018

arxiv: v2 [q-bio.qm] 25 Jun 2018 Accepted manuscript version for publication in Journal of Theoretical Biology, see http://doi.org/10.1016/j.jtbi.2018.06.019. Mathematical models for chemotaxis 1 and their applications in self-organisation

More information

The Helmholtz Equation

The Helmholtz Equation The Helmholtz Equation Seminar BEM on Wave Scattering Rene Rühr ETH Zürich October 28, 2010 Outline Steklov-Poincare Operator Helmholtz Equation: From the Wave equation to Radiation condition Uniqueness

More information

Phenomenological model of bacterial aerotaxis with a negative feedback

Phenomenological model of bacterial aerotaxis with a negative feedback Nonlinear Analysis: Modelling and Control, 3, Vol. 8, No., 7 49 7 Phenomenological model of bacterial aerotais with a negative feedback Vladas Skakauskas a,, Pranas Katauskis a, Remigijus Šimkus b, Feliksas

More information

Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd

Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd College of William and Mary Williamsburg, Virginia 23187 Mathematical Applications in Ecology and Evolution Workshop

More information

arxiv: v1 [math.ap] 8 Nov 2017

arxiv: v1 [math.ap] 8 Nov 2017 DERIATION OF A BACTERIAL NUTRIENT-TAXIS SYSTEM WITH DOUBLY DEGENERATE CROSS-DIFFUSION AS THE PARABOLIC LIMIT OF A ELOCITY-JUMP PROCESS arxiv:1711.03015v1 [math.ap] 8 Nov 2017 RAMÓN G. PLAZA Abstract. This

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Global phase diagrams of run-and-tumble dynamics: equidistribution, waves, and blowup by Kyungkeun Kang, Arnd Scheel, and Angela Stevens

More information

Pattern formation in prey-taxis systems

Pattern formation in prey-taxis systems Journal of Biological Dynamics Vol. 00, No. 00, Month-Month 00x, 1 8 Pattern formation in prey-taxis systems J. M. Lee, T. Hillen and M. A. Lewis Centre for Mathematical Biology and Department of Mathematical

More information

A GENERALIZED KELLER-SEGEL MODEL

A GENERALIZED KELLER-SEGEL MODEL A GENERALIZED KELLER-SEGEL MODEL By ERICA ZUHR A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

More information

Continuous Traveling Waves for Prey-Taxis

Continuous Traveling Waves for Prey-Taxis Bulletin of Mathematical Biology (28) 7: 654 676 DOI 1.17/s11538-7-9271-4 ORIGINAL ARTICLE Continuous Traveling Waves for Prey-Taxis J.M. Lee a,, T. Hillen a,m.a.lewis a,b a Centre for Mathematical Biology

More information

Boundedness of solutions to a virus infection model with saturated chemotaxis

Boundedness of solutions to a virus infection model with saturated chemotaxis Boundedness of solutions to a virus infection model with saturated chemotaxis arxiv:7.0226v [math.ap] 3 Nov 207 Bingran Hu School of Information and Technology, Dong Hua University, 20005 Shanghai, P.

More information

arxiv: v1 [math.ap] 29 Dec 2008

arxiv: v1 [math.ap] 29 Dec 2008 Blow up of solutions to generalized Keller Segel model arxiv:812.4982v1 [math.ap] 29 Dec 28 Piotr Biler Grzegorz Karch Instytut Matematyczny, Uniwersytet Wroc lawski pl. Grunwaldzki 2/4, 5 384 Wroc law,

More information

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (EN

More information

Shadow system for adsorbate-induced phase transition model

Shadow system for adsorbate-induced phase transition model RIMS Kôkyûroku Bessatsu B5 (9), 4 Shadow system for adsorbate-induced phase transition model Dedicated to Professor Toshitaka Nagai on the occasion of his sixtieth birthday By Kousuke Kuto and Tohru Tsujikawa

More information

LOCAL WELLPOSEDNESS AND INSTABILITY OF TRAVELLING WAVES IN A CHEMOTAXIS MODEL

LOCAL WELLPOSEDNESS AND INSTABILITY OF TRAVELLING WAVES IN A CHEMOTAXIS MODEL LOCAL WELLPOSEDNESS AND INSTABILITY OF TRAVELLING WAVES IN A CHEMOTAXIS MODEL MARTIN MEYRIES Abstract. We consider the Keller-Segel model for chemotaxis with a nonlinear diffusion coefficent and a singular

More information

Coupled Keller Segel Stokes model: global existence for small initial data and blow-up delay

Coupled Keller Segel Stokes model: global existence for small initial data and blow-up delay Couple Keller Segel Stokes moel: global existence for small initial ata an blow-up elay Alexaner Lorz Department of Applie Mathematics an Theoretical Physics University of Cambrige Wilberforce Roa, Cambrige

More information

GLOBAL ATTRACTIVITY IN A CLASS OF NONMONOTONE REACTION-DIFFUSION EQUATIONS WITH TIME DELAY

GLOBAL ATTRACTIVITY IN A CLASS OF NONMONOTONE REACTION-DIFFUSION EQUATIONS WITH TIME DELAY CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 17, Number 1, Spring 2009 GLOBAL ATTRACTIVITY IN A CLASS OF NONMONOTONE REACTION-DIFFUSION EQUATIONS WITH TIME DELAY XIAO-QIANG ZHAO ABSTRACT. The global attractivity

More information

A nonlinear cross-diffusion system for contact inhibition of cell growth

A nonlinear cross-diffusion system for contact inhibition of cell growth A nonlinear cross-diffusion system for contact inhibition of cell growth M. Bertsch 1, D. Hilhorst 2, H. Izuhara 3, M. Mimura 3 1 IAC, CNR, Rome 2 University of Paris-Sud 11 3 Meiji University FBP 2012

More information

Exit times of diffusions with incompressible drift

Exit times of diffusions with incompressible drift Exit times of diffusions with incompressible drift Gautam Iyer, Carnegie Mellon University gautam@math.cmu.edu Collaborators: Alexei Novikov, Penn. State Lenya Ryzhik, Stanford University Andrej Zlatoš,

More information

Group Method. December 16, Oberwolfach workshop Dynamics of Patterns

Group Method. December 16, Oberwolfach workshop Dynamics of Patterns CWI, Amsterdam heijster@cwi.nl December 6, 28 Oberwolfach workshop Dynamics of Patterns Joint work: A. Doelman (CWI/UvA), T.J. Kaper (BU), K. Promislow (MSU) Outline 2 3 4 Interactions of localized structures

More information