(FALL 2011) 225A - DIFFERENTIAL TOPOLOGY FINAL < HOPF DEGREE THEOREM >

Size: px
Start display at page:

Download "(FALL 2011) 225A - DIFFERENTIAL TOPOLOGY FINAL < HOPF DEGREE THEOREM >"

Transcription

1 (FALL 2011) 225A - DIFFERENTIAL TOPOLOGY FINAL < HOPF DEGREE THEOREM > GEUNHO GIM 1. Without loss of generality, we can assume that x = z = 0. Let A = df 0. By regularity at 0, A is a linear isomorphism. Write f(x) = Ax + u(x) where u(x) = o(). Choose a small such that Ax > u(x) on B(0, ). By using the homotopy H(t, x) = Ax + tu(x) Ax + tu(x), Ax + u(x) Ax we can conclude that the map is homotopic to the map Ax + u(x) Ax. In the last homework, we proved that GL n (R) has two (path-)connected components determined by the sign of a determinant. Thus every matrix A GL n (R) is homotopic to the identity I (if det A > 0) or a reflection R = diag( 1, 1,, 1) (if det A < 0) via a path inside GL n (R). In B(0, ), we can find a homotopy from Ax to x Ax (Case I) f preserves orientation at 0. det A = det df 0 > 0, so A is homotopic to I. Ax + u(x) W ( f, 0) = deg : B(0, ) Sk 1 Ax + u(x) x = deg : B(0, ) Sk 1 1 = deg I : B(0, ) Sk 1 = +1 since 1 I is bijective and orientation-preserving. (Case II) f reverses orientation at 0. Similarly, A is homotopic to R and W ( f, 0) = deg( 1 R) = 1 since 1 R is bijective and orientation-reversing. or Rx Rx. 1

2 2 GEUNHO GIM 2. Because z is a regular value, there are only finitely many preimages of z in int(b). Call them {x 1,, x t } and choose small balls B(x i, ) int(b) for each i. Note that u(x) = : B ( ( B i )) = (B int(b i )) S k 1 extends to B int(b i ). Since B int(b i ) is compact, we know that I( u, {y}) = 0 for a regular value y of u. Thus we can conclude that W ( f, z) = deg : B Sk 1 = deg : ( B i) S k 1 = deg : B i S k 1, i which equals the number of preimages of z counted with orientation convention(+1 if df xi is orientation-preserving, 1 otherwise) by Exercise (I guess this statement is true, but couldn t construct an extension explicitly. Instead, I proved a weaker statement which is enough for further arguments) Claim : Let B = B(0, 1) be a closed ball in R k, and let f : R k int(b) Y be a smooth map. If f : B Y is homotopic to a constant, then there exists a smooth map F : R k Y such that F = f on R k int(b(0, 2)). (Proof) Let H : B [0, 1] Y be a homotopy such that H 1 = f and H 0 is a constant map. Choose a smooth increasing function ρ : R R such that ρ(s) = 0, if s 1 3 1, if 1 2 s 3 2 s, if s 2 By using ρ, we can define a smooth map F : R k Y by f ρ() x, if 1 F (x) = x H, ρ(), if 1 Note that F is constant on the set {x 1, 1 3 }, and F = f is on Suppose f : S l R l+1 {0} has W (f, 0) = 0. Then, deg(u(x) := f(x) : S l S l ) = f(x) W (f, 0) = 0 by definition. The special case implies that u is homotopic to a constant map. On the other hand, H : S l [0, 1] R l+1 {0} gives a homotopy between f and u by H(x, t) = (1 t)f(x) + t f(x) ( 0 for any t, x). f(x) Therefore, f is homotopic to a constant map.

3 (FALL 2011) 225A - DIFFERENTIAL TOPOLOGY FINAL < HOPF DEGREE THEOREM > 3 5. Take a large ball B = B(0, r) so that it contains every preimage of 0. Then, W ( f : B R k {0}, 0) = 0 by Exercise 2. Let s assume that the special case holds when l = k 1, and that r = 1 by suitable scaling. By Exercise 4, Corollary holds for l = k 1, thus f is homotopic to a constant. By Exercise 3, we can construct g : R k R k {0} such that g = f on R k int(b(0, 2)). Note that g does not assume the value 0 because f R k int(b(0,1)) and the homotopy (between f and a constant) don t assume it. 6. Firstly, we need the following lemma. Lemma 1. Let f, g : S 1 S 1 be smooth maps. Then, f and g are homotopic if and only if deg f = deg g. Proof. ( ) Obvious. ( ) Suppose deg f = d = deg g. There exists a map h : R R such that f(e iθ ) = e ih(θ). Moreover, h(θ + 2π) h(θ) is a continuous map which takes values in a discrete set 2πZ. Thus h(θ + 2π) h(θ) = 2πm for some fixed m Z. Note that (1 t)h(θ + 2π) + tm(θ + 2π) = (1 t)h(θ) + tmθ + 2mπ. By the well-defined homotopy H(θ, t) = exp(i{(1 t)h(θ) + tmθ}), f is homotopic to the m-th power map θ m : S 1 S 1. Since m = deg θ m = deg f, m = d. Because both f and g are homotopic to θ d, they are homotopic to each other. We will use an induction on l to prove Special Case. First suppose l = 1. By the lemma, any smooth map f : S 1 S 1 with deg f = 0 is homotopic to the 0-th power map, i.e., a constant map. Assume that Special Case is true for l = 1, 2,, k 1. Let f : S k S k be a degree-0 map. Choose two distinct regular values a, b S k (possible by Sard). Let f 1 (a) = {a 1,, a s }. Take an open set U = R k such that U S k f 1 (b). By isotropy lemma, there exists a diffeomorphism h : S k S k, isotopic to the identity, such that h maps a 1,, a s into U. Since f = f id is homotopic to f h 1, we can assume that f 1 (a) U. We can view f U : U S k {b} as a map from R k to R k where a is identified with 0 in the latter case. By Exercise 2, the induction hypothesis, and the fact that U contains every preimage of a, Exercise 5 is applicable in this case. There exists a map g : U S k {a, b} such that g = f outside a compact set in U. Extend g : S k S k {a} by defining g = f on S k U. g is smoothly extended since f = g outside a compact set. We can define a homotopy H(x, t) = (1 t)f(x) + tg(x) on S k {b} = R k and extend it to S k by setting H(x, t) = f(x) when x S k U. Because g = f outside a compact set in U, and g(x) = f(x) implies H(x, t) = f(x), H is well-defined smooth homotopy between f and g. On the other hand, g is homotopic to a constant map since S k {a} is contractible. Thus, so is f.

4 4 GEUNHO GIM 7. Suppose W R M and f : W R k+1 is a smooth map. By -neighborhood theorem, there is an open set U of points in R M with distance less than from W. Choose a sufficiently small so that each point x U possesses a unique closest point w x W. Also, there exists a submersion π : U W which is the identity on W. We can extend f to U by composing g := f π : U R k+1. Take a smooth increasing function h : R R such that { 1, x /3 h(x) = 0, x 2/3 Extend g smoothly to the whole R M by setting { g(wx + (x w g(x) = x )h(d(x, W ))), x U 0, x R M U where d(x, W ) is the distance between the point x U and W. In particular, f is extendable to W. 8. Let W be a compact, connected oriented k + 1 dimensional manifold with boundary, and let f : W S k be a smooth map. If f extends to F : W S k, with F = f, then clearly deg f = 0. Conversely, suppose deg f = 0. By Exercise 7, f : W S k R k+1 extends to G : W R k+1. By taking a homotopy of F (which is invariant on W ) if necessary, we can assume that 0 is a regular value of G. By a similar argument in Exercise 6, we can take an open set U = R k+1 such that G 1 (0) U W. Take a closed ball B in U which contains G 1 (0). Note that G(x) is defined on a compact set W int(b), G(x) which has (W int(b)) = W B. Let G = G B, then G W ( G, 0) = deg : B Sk G G = deg : W Sk G = deg(f) = 0 by assumption. Since B = S k, Corollary after Exercise 4 is applicable in this case. G is homotopic to a constant map, thus by Exercise 3, G U int(b) : U int(b) R k+1 {0} enduces G : U R k+1 {0} such that G = G on U int(b ) where B U is a closed ball properly containing B. Also, it extends to W by defining G = G outside U. We get F = G G : W Sk which extends f.

5 9. (FALL 2011) 225A - DIFFERENTIAL TOPOLOGY FINAL < HOPF DEGREE THEOREM > 5 Theorem 1. (The Hopf Degree Theorem) Two maps of a compact, connected, oriented k-manifold X into S k are homotopic if and only if they have the same degree. Proof. If g, h : X S k are homotopic, they have the same degree. Conversely, suppose deg g = deg h. Let W = X [0, 1], and define f : W S k by f(x, 0) = g(x), f(x, 1) = h(x). Note that deg f = deg h deg g = 0. By Extension Theorem, f can be extended to F : W S k, which gives a homotopy between g and h.

Math 225A: Differential Topology, Final Exam

Math 225A: Differential Topology, Final Exam Math 225A: Differential Topology, Final Exam Ian Coley December 9, 2013 The goal is the following theorem. Theorem (Hopf). Let M be a compact n-manifold without boundary, and let f, g : M S n be two smooth

More information

Math 215B: Solutions 3

Math 215B: Solutions 3 Math 215B: Solutions 3 (1) For this problem you may assume the classification of smooth one-dimensional manifolds: Any compact smooth one-dimensional manifold is diffeomorphic to a finite disjoint union

More information

Transversality. Abhishek Khetan. December 13, Basics 1. 2 The Transversality Theorem 1. 3 Transversality and Homotopy 2

Transversality. Abhishek Khetan. December 13, Basics 1. 2 The Transversality Theorem 1. 3 Transversality and Homotopy 2 Transversality Abhishek Khetan December 13, 2017 Contents 1 Basics 1 2 The Transversality Theorem 1 3 Transversality and Homotopy 2 4 Intersection Number Mod 2 4 5 Degree Mod 2 4 1 Basics Definition. Let

More information

1 )(y 0) {1}. Thus, the total count of points in (F 1 (y)) is equal to deg y0

1 )(y 0) {1}. Thus, the total count of points in (F 1 (y)) is equal to deg y0 1. Classification of 1-manifolds Theorem 1.1. Let M be a connected 1 manifold. Then M is diffeomorphic either to [0, 1], [0, 1), (0, 1), or S 1. We know that none of these four manifolds are not diffeomorphic

More information

Math 147, Homework 6 Solutions Due: May 22, 2012

Math 147, Homework 6 Solutions Due: May 22, 2012 Math 147, Homework 6 Solutions Due: May 22, 2012 1. Let T = S 1 S 1 be the torus. Is it possible to find a finite set S = {P 1,..., P n } of points in T and an embedding of the complement T \ S into R

More information

225A DIFFERENTIAL TOPOLOGY FINAL

225A DIFFERENTIAL TOPOLOGY FINAL 225A DIFFERENTIAL TOPOLOGY FINAL KIM, SUNGJIN Problem 1. From hitney s Embedding Theorem, we can assume that N is an embedded submanifold of R K for some K > 0. Then it is possible to define distance function.

More information

The Borsuk-Ulam Theorem

The Borsuk-Ulam Theorem The Borsuk-Ulam Theorem Artur Bicalho Saturnino June 2018 Abstract I am going to present the Borsuk-Ulam theorem in its historical context. After that I will give a proof using differential topology and

More information

Math 147, Homework 5 Solutions Due: May 15, 2012

Math 147, Homework 5 Solutions Due: May 15, 2012 Math 147, Homework 5 Solutions Due: May 15, 2012 1 Let f : R 3 R 6 and φ : R 3 R 3 be the smooth maps defined by: f(x, y, z) = (x 2, y 2, z 2, xy, xz, yz) and φ(x, y, z) = ( x, y, z) (a) Show that f is

More information

DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM

DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM ARIEL HAFFTKA 1. Introduction In this paper we approach the topology of smooth manifolds using differential tools, as opposed to algebraic ones such

More information

Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit

Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit 1. (a) Show that the set M R 3 defined by the equation (1 z 2 )(x 2 + y 2 ) = 1 is a smooth submanifold of R 3.

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

Algebraic Topology Homework 4 Solutions

Algebraic Topology Homework 4 Solutions Algebraic Topology Homework 4 Solutions Here are a few solutions to some of the trickier problems... Recall: Let X be a topological space, A X a subspace of X. Suppose f, g : X X are maps restricting to

More information

Lifting Smooth Homotopies of Orbit Spaces of Proper Lie Group Actions

Lifting Smooth Homotopies of Orbit Spaces of Proper Lie Group Actions Journal of Lie Theory Volume 15 (2005) 447 456 c 2005 Heldermann Verlag Lifting Smooth Homotopies of Orbit Spaces of Proper Lie Group Actions Marja Kankaanrinta Communicated by J. D. Lawson Abstract. By

More information

Lecture 2. x if x X B n f(x) = α(x) if x S n 1 D n

Lecture 2. x if x X B n f(x) = α(x) if x S n 1 D n Lecture 2 1.10 Cell attachments Let X be a topological space and α : S n 1 X be a map. Consider the space X D n with the disjoint union topology. Consider further the set X B n and a function f : X D n

More information

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 6. Geodesics A parametrized line γ : [a, b] R n in R n is straight (and the parametrization is uniform) if the vector γ (t) does not depend on t. Thus,

More information

Math 225B: Differential Geometry, Final

Math 225B: Differential Geometry, Final Math 225B: Differential Geometry, Final Ian Coley March 5, 204 Problem Spring 20,. Show that if X is a smooth vector field on a (smooth) manifold of dimension n and if X p is nonzero for some point of

More information

Theorem 3.11 (Equidimensional Sard). Let f : M N be a C 1 map of n-manifolds, and let C M be the set of critical points. Then f (C) has measure zero.

Theorem 3.11 (Equidimensional Sard). Let f : M N be a C 1 map of n-manifolds, and let C M be the set of critical points. Then f (C) has measure zero. Now we investigate the measure of the critical values of a map f : M N where dim M = dim N. Of course the set of critical points need not have measure zero, but we shall see that because the values of

More information

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim SOLUTIONS Dec 13, 218 Math 868 Final Exam In this exam, all manifolds, maps, vector fields, etc. are smooth. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each).

More information

Math 225A: Differential Topology, Homework 4

Math 225A: Differential Topology, Homework 4 Math 225A: Differential Topology, Homework 4 Ian Coley February 10, 2014 Problem 1.5.4. Let X and Z be transversal submanifolds of Y. Prove that if y X Z, then T y (X Z) = T y (X) T y (Z). Since X Z is

More information

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE JOHANNES EBERT 1.1. October 11th. 1. Recapitulation from differential topology Definition 1.1. Let M m, N n, be two smooth manifolds

More information

Bordism and the Pontryagin-Thom Theorem

Bordism and the Pontryagin-Thom Theorem Bordism and the Pontryagin-Thom Theorem Richard Wong Differential Topology Term Paper December 2, 2016 1 Introduction Given the classification of low dimensional manifolds up to equivalence relations such

More information

Math 141 Final Exam December 18, 2014

Math 141 Final Exam December 18, 2014 Math 141 Final Exam December 18, 2014 Name: Complete the following problems. In order to receive full credit, please provide rigorous proofs and show all of your work and justify your answers. Unless stated

More information

7. Homotopy and the Fundamental Group

7. Homotopy and the Fundamental Group 7. Homotopy and the Fundamental Group The group G will be called the fundamental group of the manifold V. J. Henri Poincaré, 895 The properties of a topological space that we have developed so far have

More information

THE JORDAN-BROUWER SEPARATION THEOREM

THE JORDAN-BROUWER SEPARATION THEOREM THE JORDAN-BROUWER SEPARATION THEOREM WOLFGANG SCHMALTZ Abstract. The Classical Jordan Curve Theorem says that every simple closed curve in R 2 divides the plane into two pieces, an inside and an outside

More information

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM ANG LI Abstract. In this paper, we start with the definitions and properties of the fundamental group of a topological space, and then proceed to prove Van-

More information

Notes on Differential Topology

Notes on Differential Topology Notes on Differential Topology George Torres Last updated January 18, 2018 Contents 1 Smooth manifolds and Topological manifolds 3 1.1 Smooth Structures............................................ 3 1.2

More information

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, )

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, ) II.3 : Eilenberg-Steenrod properties (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, 8.3 8.5 Definition. Let U be an open subset of R n for some n. The de Rham cohomology groups (U are the cohomology groups

More information

10 Excision and applications

10 Excision and applications 22 CHAPTER 1. SINGULAR HOMOLOGY be a map of short exact sequences of chain complexes. If two of the three maps induced in homology by f, g, and h are isomorphisms, then so is the third. Here s an application.

More information

INTEGRATION OF FORMS. 3.1 Introduction. This is page 105 Printer: Opaque this CHAPTER 3

INTEGRATION OF FORMS. 3.1 Introduction. This is page 105 Printer: Opaque this CHAPTER 3 This is page 105 Printer: Opaque this CHAPTER 3 INTEGRATION OF FORMS 3.1 Introduction The change of variables formula asserts that if U and V are open subsets of R n and f : U V a C 1 diffeomorphism then,

More information

Applications of Homotopy

Applications of Homotopy Chapter 9 Applications of Homotopy In Section 8.2 we showed that the fundamental group can be used to show that two spaces are not homeomorphic. In this chapter we exhibit other uses of the fundamental

More information

Polynomial mappings into a Stiefel manifold and immersions

Polynomial mappings into a Stiefel manifold and immersions Polynomial mappings into a Stiefel manifold and immersions Iwona Krzyżanowska Zbigniew Szafraniec November 2011 Abstract For a polynomial mapping from S n k to the Stiefel manifold Ṽk(R n ), where n k

More information

1. Classifying Spaces. Classifying Spaces

1. Classifying Spaces. Classifying Spaces Classifying Spaces 1. Classifying Spaces. To make our lives much easier, all topological spaces from now on will be homeomorphic to CW complexes. Fact: All smooth manifolds are homeomorphic to CW complexes.

More information

Analysis II: The Implicit and Inverse Function Theorems

Analysis II: The Implicit and Inverse Function Theorems Analysis II: The Implicit and Inverse Function Theorems Jesse Ratzkin November 17, 2009 Let f : R n R m be C 1. When is the zero set Z = {x R n : f(x) = 0} the graph of another function? When is Z nicely

More information

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups A Lie group is a special smooth manifold on which there is a group structure, and moreover, the two structures are compatible. Lie groups are

More information

INVERSE FUNCTION THEOREM and SURFACES IN R n

INVERSE FUNCTION THEOREM and SURFACES IN R n INVERSE FUNCTION THEOREM and SURFACES IN R n Let f C k (U; R n ), with U R n open. Assume df(a) GL(R n ), where a U. The Inverse Function Theorem says there is an open neighborhood V U of a in R n so that

More information

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES 1. Vector Bundles In general, smooth manifolds are very non-linear. However, there exist many smooth manifolds which admit very nice partial linear structures.

More information

DIFFERENTIAL MANIFOLDS HW Exercise Employing the summation convention, we have: [u, v] i = ui x j vj vi. x j u j

DIFFERENTIAL MANIFOLDS HW Exercise Employing the summation convention, we have: [u, v] i = ui x j vj vi. x j u j DIFFERENTIAL MANIFOLDS HW 3 KELLER VANDEBOGERT. Exercise.4 Employing the summation convention, we have: So that: [u, v] i = ui x j vj vi x j uj [w, [u, v]] i = wi x [u, k v]k x j x k wk v j ui v j x j

More information

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1 ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP HONG GYUN KIM Abstract. I studied the construction of an algebraically trivial, but topologically non-trivial map by Hopf map p : S 3 S 2 and a

More information

Math 637 Topology Paulo Lima-Filho. Problem List I. b. Show that a contractible space is path connected.

Math 637 Topology Paulo Lima-Filho. Problem List I. b. Show that a contractible space is path connected. Problem List I Problem 1. A space X is said to be contractible if the identiy map i X : X X is nullhomotopic. a. Show that any convex subset of R n is contractible. b. Show that a contractible space is

More information

SOLUTIONS TO THE FINAL EXAM

SOLUTIONS TO THE FINAL EXAM SOLUTIONS TO THE FINAL EXAM Short questions 1 point each) Give a brief definition for each of the following six concepts: 1) normal for topological spaces) 2) path connected 3) homeomorphism 4) covering

More information

A fixed point theorem for smooth extension maps

A fixed point theorem for smooth extension maps A fixed point theorem for smooth extension maps Nirattaya Khamsemanan Robert F. Brown Catherine Lee Sompong Dhompongsa Abstract Let X be a compact smooth n-manifold, with or without boundary, and let A

More information

SMSTC (2017/18) Geometry and Topology 2.

SMSTC (2017/18) Geometry and Topology 2. SMSTC (2017/18) Geometry and Topology 2 Lecture 1: Differentiable Functions and Manifolds in R n Lecturer: Diletta Martinelli (Notes by Bernd Schroers) a wwwsmstcacuk 11 General remarks In this lecture

More information

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f))

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f)) 1. Basic algebra of vector fields Let V be a finite dimensional vector space over R. Recall that V = {L : V R} is defined to be the set of all linear maps to R. V is isomorphic to V, but there is no canonical

More information

The coincidence Nielsen number for maps into real projective spaces

The coincidence Nielsen number for maps into real projective spaces F U N D A M E N T A MATHEMATICAE 140 (1992) The coincidence Nielsen number for maps into real projective spaces by Jerzy J e z i e r s k i (Warszawa) Abstract. We give an algorithm to compute the coincidence

More information

THE POINCARE-HOPF THEOREM

THE POINCARE-HOPF THEOREM THE POINCARE-HOPF THEOREM ALEX WRIGHT AND KAEL DIXON Abstract. Mapping degree, intersection number, and the index of a zero of a vector field are defined. The Poincare-Hopf theorem, which states that under

More information

Algebraic Topology exam

Algebraic Topology exam Instituto Superior Técnico Departamento de Matemática Algebraic Topology exam June 12th 2017 1. Let X be a square with the edges cyclically identified: X = [0, 1] 2 / with (a) Compute π 1 (X). (x, 0) (1,

More information

4 Countability axioms

4 Countability axioms 4 COUNTABILITY AXIOMS 4 Countability axioms Definition 4.1. Let X be a topological space X is said to be first countable if for any x X, there is a countable basis for the neighborhoods of x. X is said

More information

Differential Topology Solution Set #2

Differential Topology Solution Set #2 Differential Topology Solution Set #2 Select Solutions 1. Show that X compact implies that any smooth map f : X Y is proper. Recall that a space is called compact if, for every cover {U } by open sets

More information

LECTURE 11: TRANSVERSALITY

LECTURE 11: TRANSVERSALITY LECTURE 11: TRANSVERSALITY Let f : M N be a smooth map. In the past three lectures, we are mainly studying the image of f, especially when f is an embedding. Today we would like to study the pre-image

More information

AN INTRODUCTION TO THE FUNDAMENTAL GROUP

AN INTRODUCTION TO THE FUNDAMENTAL GROUP AN INTRODUCTION TO THE FUNDAMENTAL GROUP DAVID RAN Abstract. This paper seeks to introduce the reader to the fundamental group and then show some of its immediate applications by calculating the fundamental

More information

Proposition 5. Group composition in G 1 (N) induces the structure of an abelian group on K 1 (X):

Proposition 5. Group composition in G 1 (N) induces the structure of an abelian group on K 1 (X): 2 RICHARD MELROSE 3. Lecture 3: K-groups and loop groups Wednesday, 3 September, 2008 Reconstructed, since I did not really have notes { because I was concentrating too hard on the 3 lectures on blow-up

More information

Convex Symplectic Manifolds

Convex Symplectic Manifolds Convex Symplectic Manifolds Jie Min April 16, 2017 Abstract This note for my talk in student symplectic topology seminar in UMN is an gentle introduction to the concept of convex symplectic manifolds.

More information

MTH 428/528. Introduction to Topology II. Elements of Algebraic Topology. Bernard Badzioch

MTH 428/528. Introduction to Topology II. Elements of Algebraic Topology. Bernard Badzioch MTH 428/528 Introduction to Topology II Elements of Algebraic Topology Bernard Badzioch 2016.12.12 Contents 1. Some Motivation.......................................................... 3 2. Categories

More information

Homework 8 Solutions to Selected Problems

Homework 8 Solutions to Selected Problems Homework 8 Solutions to Selected Problems June 7, 01 1 Chapter 17, Problem Let f(x D[x] and suppose f(x is reducible in D[x]. That is, there exist polynomials g(x and h(x in D[x] such that g(x and h(x

More information

AN INTRODUCTION TO ARITHMETIC AND RIEMANN SURFACE. We describe points on the unit circle with coordinate satisfying

AN INTRODUCTION TO ARITHMETIC AND RIEMANN SURFACE. We describe points on the unit circle with coordinate satisfying AN INTRODUCTION TO ARITHMETIC AND RIEMANN SURFACE 1. RATIONAL POINTS ON CIRCLE We start by asking us: How many integers x, y, z) can satisfy x 2 + y 2 = z 2? Can we describe all of them? First we can divide

More information

LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY

LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY WEIMIN CHEN, UMASS, SPRING 07 1. Blowing up and symplectic cutting In complex geometry the blowing-up operation amounts to replace a point in

More information

We have the following immediate corollary. 1

We have the following immediate corollary. 1 1. Thom Spaces and Transversality Definition 1.1. Let π : E B be a real k vector bundle with a Euclidean metric and let E 1 be the set of elements of norm 1. The Thom space T (E) of E is the quotient E/E

More information

LECTURE 15-16: PROPER ACTIONS AND ORBIT SPACES

LECTURE 15-16: PROPER ACTIONS AND ORBIT SPACES LECTURE 15-16: PROPER ACTIONS AND ORBIT SPACES 1. Proper actions Suppose G acts on M smoothly, and m M. Then the orbit of G through m is G m = {g m g G}. If m, m lies in the same orbit, i.e. m = g m for

More information

Math 205B Homework. Edward Burkard. f(x + h) f(x) L(h) < ɛ h. f(x + h) f(x) < ɛ h + L(h) , then we get continuity.

Math 205B Homework. Edward Burkard. f(x + h) f(x) L(h) < ɛ h. f(x + h) f(x) < ɛ h + L(h) , then we get continuity. Math 05B Homework Edward Burkard 0.0. Lecture Problems. 1. Show that a differentiable function is continuous. 0. Kaiser Wilhelm Problems Let f : R n R m be a differentiable function. Then for any ɛ > 0

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

On the uniqueness of the coincidence index on orientable differentiable manifolds

On the uniqueness of the coincidence index on orientable differentiable manifolds Fairfield University DigitalCommons@Fairfield Math & Computer Science Faculty Publications Math & Computer Science Department 1-1-2007 On the uniqueness of the coincidence index on orientable differentiable

More information

THE INVERSE FUNCTION THEOREM FOR LIPSCHITZ MAPS

THE INVERSE FUNCTION THEOREM FOR LIPSCHITZ MAPS THE INVERSE FUNCTION THEOREM FOR LIPSCHITZ MAPS RALPH HOWARD DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA COLUMBIA, S.C. 29208, USA HOWARD@MATH.SC.EDU Abstract. This is an edited version of a

More information

1 Whitehead s theorem.

1 Whitehead s theorem. 1 Whitehead s theorem. Statement: If f : X Y is a map of CW complexes inducing isomorphisms on all homotopy groups, then f is a homotopy equivalence. Moreover, if f is the inclusion of a subcomplex X in

More information

Math 752 Week s 1 1

Math 752 Week s 1 1 Math 752 Week 13 1 Homotopy Groups Definition 1. For n 0 and X a topological space with x 0 X, define π n (X) = {f : (I n, I n ) (X, x 0 )}/ where is the usual homotopy of maps. Then we have the following

More information

M4P52 Manifolds, 2016 Problem Sheet 1

M4P52 Manifolds, 2016 Problem Sheet 1 Problem Sheet. Let X and Y be n-dimensional topological manifolds. Prove that the disjoint union X Y is an n-dimensional topological manifold. Is S S 2 a topological manifold? 2. Recall that that the discrete

More information

On the Diffeomorphism Group of S 1 S 2. Allen Hatcher

On the Diffeomorphism Group of S 1 S 2. Allen Hatcher On the Diffeomorphism Group of S 1 S 2 Allen Hatcher This is a revision, written in December 2003, of a paper of the same title that appeared in the Proceedings of the AMS 83 (1981), 427-430. The main

More information

Extra exercises Analysis in several variables

Extra exercises Analysis in several variables Extra exercises Analysis in several variables E.P. van den Ban Spring 2018 Exercise 1. Let U R n and V R p be open subsets and let π : U V be a C k map which is a surjective submersion. By a local C k

More information

CORES OF ALEXANDROFF SPACES

CORES OF ALEXANDROFF SPACES CORES OF ALEXANDROFF SPACES XI CHEN Abstract. Following Kukie la, we show how to generalize some results from May s book [4] concerning cores of finite spaces to cores of Alexandroff spaces. It turns out

More information

Cup product and intersection

Cup product and intersection Cup product and intersection Michael Hutchings March 28, 2005 Abstract This is a handout for my algebraic topology course. The goal is to explain a geometric interpretation of the cup product. Namely,

More information

TOPOLOGY HW 8 CLAY SHONKWILER

TOPOLOGY HW 8 CLAY SHONKWILER TOPOLOGY HW 8 CLAY SHONKWILER 55.1 Show that if A is a retract of B 2, then every continuous map f : A A has a fixed point. Proof. Suppose r : B 2 A is a retraction. Thenr A is the identity map on A. Let

More information

The theory of manifolds Lecture 2

The theory of manifolds Lecture 2 The theory of manifolds Lecture 2 Let X be a subset of R N, Y a subset of R n and f : X Y a continuous map. We recall Definition 1. f is a C map if for every p X, there exists a neighborhood, U p, of p

More information

Handlebody Decomposition of a Manifold

Handlebody Decomposition of a Manifold Handlebody Decomposition of a Manifold Mahuya Datta Statistics and Mathematics Unit Indian Statistical Institute, Kolkata mahuya@isical.ac.in January 12, 2012 contents Introduction What is a handlebody

More information

The Inverse Function Theorem 1

The Inverse Function Theorem 1 John Nachbar Washington University April 11, 2014 1 Overview. The Inverse Function Theorem 1 If a function f : R R is C 1 and if its derivative is strictly positive at some x R, then, by continuity of

More information

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA  address: Topology Xiaolong Han Department of Mathematics, California State University, Northridge, CA 91330, USA E-mail address: Xiaolong.Han@csun.edu Remark. You are entitled to a reward of 1 point toward a homework

More information

Vector fields Lecture 2

Vector fields Lecture 2 Vector fields Lecture 2 Let U be an open subset of R n and v a vector field on U. We ll say that v is complete if, for every p U, there exists an integral curve, γ : R U with γ(0) = p, i.e., for every

More information

SARD S THEOREM ALEX WRIGHT

SARD S THEOREM ALEX WRIGHT SARD S THEOREM ALEX WRIGHT Abstract. A proof of Sard s Theorem is presented, and applications to the Whitney Embedding and Immersion Theorems, the existence of Morse functions, and the General Position

More information

Geometry Qualifying Exam Notes

Geometry Qualifying Exam Notes Geometry Qualifying Exam Notes F 1 F 1 x 1 x n Definition: The Jacobian matrix of a map f : N M is.. F m F m x 1 x n square matrix, its determinant is called the Jacobian determinant.. When this is a Definition:

More information

1. Bounded linear maps. A linear map T : E F of real Banach

1. Bounded linear maps. A linear map T : E F of real Banach DIFFERENTIABLE MAPS 1. Bounded linear maps. A linear map T : E F of real Banach spaces E, F is bounded if M > 0 so that for all v E: T v M v. If v r T v C for some positive constants r, C, then T is bounded:

More information

Math 598 Feb 14, Geometry and Topology II Spring 2005, PSU

Math 598 Feb 14, Geometry and Topology II Spring 2005, PSU Math 598 Feb 14, 2005 1 Geometry and Topology II Spring 2005, PSU Lecture Notes 7 2.7 Smooth submanifolds Let N be a smooth manifold. We say that M N m is an n-dimensional smooth submanifold of N, provided

More information

DIFFERENTIAL TOPOLOGY: MORSE THEORY AND THE EULER CHARACTERISTIC

DIFFERENTIAL TOPOLOGY: MORSE THEORY AND THE EULER CHARACTERISTIC DIFFERENTIAL TOPOLOGY: MORSE THEORY AND THE EULER CHARACTERISTIC DANIEL MITSUTANI Abstract. This paper uses differential topology to define the Euler characteristic as a self-intersection number. We then

More information

DEVELOPMENT OF MORSE THEORY

DEVELOPMENT OF MORSE THEORY DEVELOPMENT OF MORSE THEORY MATTHEW STEED Abstract. In this paper, we develop Morse theory, which allows us to determine topological information about manifolds using certain real-valued functions defined

More information

GEOMETRY HW 12 CLAY SHONKWILER

GEOMETRY HW 12 CLAY SHONKWILER GEOMETRY HW 12 CLAY SHONKWILER 1 Let M 3 be a compact 3-manifold with no boundary, and let H 1 (M, Z) = Z r T where T is torsion. Show that H 2 (M, Z) = Z r if M is orientable, and H 2 (M, Z) = Z r 1 Z/2

More information

INTRODUCTION TO DIFFERENTIAL TOPOLOGY

INTRODUCTION TO DIFFERENTIAL TOPOLOGY INTRODUCTION TO DIFFERENTIAL TOPOLOGY Joel W. Robbin UW Madison Dietmar A. Salamon ETH Zürich 29 April 2018 ii Preface These are notes for the lecture course Differential Geometry II held by the second

More information

Notes for Math 535 Differential Geometry Spring Francis Bonahon. Department of Mathematics, University of Southern California

Notes for Math 535 Differential Geometry Spring Francis Bonahon. Department of Mathematics, University of Southern California Notes for Math 535 Differential Geometry Spring 2016 Francis Bonahon Department of Mathematics, University of Southern California Date of this version: April 27, 2016 c Francis Bonahon 2016 CHAPTER 1 A

More information

i = f iα : φ i (U i ) ψ α (V α ) which satisfy 1 ) Df iα = Df jβ D(φ j φ 1 i ). (39)

i = f iα : φ i (U i ) ψ α (V α ) which satisfy 1 ) Df iα = Df jβ D(φ j φ 1 i ). (39) 2.3 The derivative A description of the tangent bundle is not complete without defining the derivative of a general smooth map of manifolds f : M N. Such a map may be defined locally in charts (U i, φ

More information

x = π m (a 0 + a 1 π + a 2 π ) where a i R, a 0 = 0, m Z.

x = π m (a 0 + a 1 π + a 2 π ) where a i R, a 0 = 0, m Z. ALGEBRAIC NUMBER THEORY LECTURE 7 NOTES Material covered: Local fields, Hensel s lemma. Remark. The non-archimedean topology: Recall that if K is a field with a valuation, then it also is a metric space

More information

LECTURE Itineraries We start with a simple example of a dynamical system obtained by iterating the quadratic polynomial

LECTURE Itineraries We start with a simple example of a dynamical system obtained by iterating the quadratic polynomial LECTURE. Itineraries We start with a simple example of a dynamical system obtained by iterating the quadratic polynomial f λ : R R x λx( x), where λ [, 4). Starting with the critical point x 0 := /2, we

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Randall R. Holmes Auburn University Typeset by AMS-TEX Chapter 1. Metric Spaces 1. Definition and Examples. As the course progresses we will need to review some basic notions about

More information

TOPOLOGY TAKE-HOME CLAY SHONKWILER

TOPOLOGY TAKE-HOME CLAY SHONKWILER TOPOLOGY TAKE-HOME CLAY SHONKWILER 1. The Discrete Topology Let Y = {0, 1} have the discrete topology. Show that for any topological space X the following are equivalent. (a) X has the discrete topology.

More information

REPRESENTATION THEORY WEEK 7

REPRESENTATION THEORY WEEK 7 REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable

More information

1. Simplify the following. Solution: = {0} Hint: glossary: there is for all : such that & and

1. Simplify the following. Solution: = {0} Hint: glossary: there is for all : such that & and Topology MT434P Problems/Homework Recommended Reading: Munkres, J.R. Topology Hatcher, A. Algebraic Topology, http://www.math.cornell.edu/ hatcher/at/atpage.html For those who have a lot of outstanding

More information

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

g 2 (x) (1/3)M 1 = (1/3)(2/3)M. COMPACTNESS If C R n is closed and bounded, then by B-W it is sequentially compact: any sequence of points in C has a subsequence converging to a point in C Conversely, any sequentially compact C R n is

More information

Manifolds and tangent bundles. Vector fields and flows. 1 Differential manifolds, smooth maps, submanifolds

Manifolds and tangent bundles. Vector fields and flows. 1 Differential manifolds, smooth maps, submanifolds MA 755 Fall 05. Notes #1. I. Kogan. Manifolds and tangent bundles. Vector fields and flows. 1 Differential manifolds, smooth maps, submanifolds Definition 1 An n-dimensional C k -differentiable manifold

More information

1 z. = 2 w =. As a result, 1 + u 2. 2u 2. 2u u 2 ) = u is smooth as well., ϕ 2 ([z 1 : z 2 ]) = z 1

1 z. = 2 w =. As a result, 1 + u 2. 2u 2. 2u u 2 ) = u is smooth as well., ϕ 2 ([z 1 : z 2 ]) = z 1 KOÇ UNIVERSITY FALL 011 MATH 554 MANIFOLDS MIDTERM 1 OCTOBER 7 INSTRUCTOR: BURAK OZBAGCI 180 Minutes Solutions by Fatih Çelik PROBLEM 1 (0 points): Let N = (0 0 1) be the north pole in the sphere S R 3

More information

Immerse Metric Space Homework

Immerse Metric Space Homework Immerse Metric Space Homework (Exercises -2). In R n, define d(x, y) = x y +... + x n y n. Show that d is a metric that induces the usual topology. Sketch the basis elements when n = 2. Solution: Steps

More information

ON THE REAL MILNOR FIBRE OF SOME MAPS FROM R n TO R 2

ON THE REAL MILNOR FIBRE OF SOME MAPS FROM R n TO R 2 ON THE REAL MILNOR FIBRE OF SOME MAPS FROM R n TO R 2 NICOLAS DUTERTRE Abstract. We consider a real analytic map-germ (f, g) : (R n, 0) (R 2, 0). Under some conditions, we establish degree formulas for

More information

THE EULER CHARACTERISTIC OF A LIE GROUP

THE EULER CHARACTERISTIC OF A LIE GROUP THE EULER CHARACTERISTIC OF A LIE GROUP JAY TAYLOR 1 Examples of Lie Groups The following is adapted from [2] We begin with the basic definition and some core examples Definition A Lie group is a smooth

More information

THE INVERSE FUNCTION THEOREM

THE INVERSE FUNCTION THEOREM THE INVERSE FUNCTION THEOREM W. PATRICK HOOPER The implicit function theorem is the following result: Theorem 1. Let f be a C 1 function from a neighborhood of a point a R n into R n. Suppose A = Df(a)

More information

Math General Topology Fall 2012 Homework 13 Solutions

Math General Topology Fall 2012 Homework 13 Solutions Math 535 - General Topology Fall 2012 Homework 13 Solutions Note: In this problem set, function spaces are endowed with the compact-open topology unless otherwise noted. Problem 1. Let X be a compact topological

More information

Math 4310 Solutions to homework 7 Due 10/27/16

Math 4310 Solutions to homework 7 Due 10/27/16 Math 4310 Solutions to homework 7 Due 10/27/16 1. Find the gcd of x 3 + x 2 + x + 1 and x 5 + 2x 3 + x 2 + x + 1 in Rx. Use the Euclidean algorithm: x 5 + 2x 3 + x 2 + x + 1 = (x 3 + x 2 + x + 1)(x 2 x

More information