Non-commutative Algebra

Size: px
Start display at page:

Download "Non-commutative Algebra"

Transcription

1 Non-commutative Algebra Patrick Da Silva Freie Universität Berlin June 2, 2017

2

3 Table of Contents 1 Introduction to unital rings Generalities Centralizers and bicentralizers Tensor products and Hom Isotypical modules Finiteness conditions on rings and modules Artinian, noetherian and finite length modules Artinian and noetherian rings Simple modules Completely reducible modules Isotypical components of completely reducible modules Centralizer and bicentralizer of a completely reducible module Centralizer of a simple module Simple and semisimple rings Left & right vector spaces over a skew field Centralizer of a completely reducible module Semisimple rings Radicals Radical of a module Radical of a ring Radical of artinian rings/modules Modules over an artinian ring Tensor products of K-algebras Modules over tensor products Tensor product of K-fields Tensor product of completely reducible modules Separable algebras and modules over a field Page 3

4

5 Chapter 1 Introduction to unital rings We assume the reader is familiar with a bit of algebra (at least elementary group theory). All our rings are assumed unital, namely multiplication admits a unique neutral element which will always be denoted by 1. This set of notes will serve as a reference to other sets of notes when proofs are necessary, and thus is not meant to be introductory. The set of non-negative integers N is equal to {0, 1,, n, } (this has the advantage of turning it into a monoid). 1.1 Generalities Definition 1.1. Let A be an abelian group denoted additively, i.e. via the symbol + and with neutral element 0. We say that A is a (unital) ring when it is equipped with a multiplication (usually denoted by juxtaposition) : A A A satisfying the following axioms : Distributivity : For all a 1, a 2, a 3 A, Associativity : For all a 1, a 2, a 3 A, a 1 (a 2 + a 3 ) = a 1 a 2 + a 1 a 3, (a 1 + a 2 )a 3 = a 1 a 3 + a 2 a 3. a 1 (a 2 a 3 ) = (a 1 a 2 )a 3. Neutral element : There exists a unique element, call the unit element (or simply 1) and denoted by 1 A, such that for all a A, 1a = a = a1. A subring of A is a subset of A which contains 1 and is closed under addition and multiplication, and thus becomes a ring of its own. Remark 1.2. If M is an abelian group, the collection of all abelian group endomorphisms of M, denoted by End Z (M), is a ring ; the identity endomorphism of M serves as unit element, addition is performed pointwise and multiplication is given by composition. Definition 1.3. Let A, B be rings. (i) A morphism of rings is a map ϕ : A B such that for all a 1, a 2 A, ϕ(a 1 + a 2 ) = ϕ(a 1 ) + ϕ(a 2 ), ϕ(a 1 a 2 ) = ϕ(a 1 )ϕ(a 2 ), ϕ(1) = 1. It is clear under this definition that the image im ϕ def = ϕ(a) is a subring of B. 5

6 Chapter 1 (ii) A left A-module is an abelian group M together with a morphism of rings ϕ : A End Z (M). This morphism defines a left action of A on M, namely a map A M M, whose output is usually denoted by juxtaposition, and is given by am def def = ϕ a (m), where ϕ a = ϕ(a). The assumptions on a morphism of rings shows that ϕ 1 = id M, ϕ a is an endomorphism of abelian groups and ϕ a1 a 2 = ϕ a1 ϕ a2. (iii) Given a ring A, the opposite ring A opp is a ring whose underlying abelian group is equal to A but if we denote multiplication in A opp by and that of A by juxtaposition, for a 1, a 2 A opp, we set a 1 a 2 def = a 2 a 1. Reading the axioms of a ring in the multiplicatively reversed order shows that A opp is a ring and has the same unit element as A. (iv) A right A-module is an abelian group N together with a morphism of rings ψ : A End Z (M) opp. To make notation more natural, an element ϕ End Z (M) opp acts on m M by setting the endomorphism on the right, not on the left ; in other words, for all m M, ϕ End Z (M) ϕ(m), ϕ End Z (M) opp (m)ϕ. This morphism defines a right action of A on M, namely a map M A M, whose output is also denoted by juxtaposition and is given by ma def = ϕ a (m). This is indeed a right action of A on M : m(a 1 a 2 ) def = (m)ϕ a1 a 2 = ((m)ϕ a1 )ϕ a2. The order has indeed been reversed, since in End Z (M), the composition ϕ a1 ϕ a2 applied to m M is equal to ϕ a1 (ϕ a2 (m)), where as in End Z (M) opp, the composition ϕ a1 ϕ a2 applied to m equals ϕ a2 (ϕ a1 (m)) ; to emphasize the right action and hopefully minimize confusion, we chose the above notation. (v) An (A, B)-bimodule is an abelian group M together with two morphisms of rings, namely ϕ L : A End Z (M) and ϕ R : B End Z (M) opp, corresponding to left and right multiplication. The maps ϕ L and ϕ R are required to turn M into a left A-module and a right B-module respectively, together with the additional property that for all a A, b B and m M, (ϕ L a (m))ϕ R b = ϕl a ((m)ϕ R b ). Note that for left and right A-modules M, we usually denote the action of a A on m M by juxtaposition, namely am def = ϕ a (m). The axioms of an (A, B)-bimodule becomes essentially associativity, namely a(mb) = (am)b. When A = B, we call an (A, A)-bimodule simply an A- bimodule. (vi) If M is an abelian group which is a left A-module and a left B-module, we can canonically turn M into a right B opp -module. We say that the two module structures on M are compatible if they make M a (A, B opp )-module. This is equivalent to asking that m M, a A, b B, a(bm) = b(am). Similarly, if M is a right A-module and a right B-module, we say that these are compatible if it makes M a (A opp, B)-bimodule, which is equivalent to asking that m M, a A, b B, (ma)b = (mb)a. 6

7 More generally, if {A i } i I and {B j } j J are two families of rings and M is an (A i, B j )-bimodule for each i I, j J, we say that these structures are compatible if the module structures given by A i, A i are compatible for all i, i I and the module structures iven by B j, B j are compatible for all j, j J. (vii) A morphism of left A-modules/right A-modules/(A, B)-bimodules is a morphism of abelian groups between two left A-modules/right A-modules/(A, B)-bimodules which commutes with the action of A on M. For instance, if ϕ : M N is a morphism of abelian groups between two left A-modules, it is a morphism of left A-modules precisely when a A, m M, ϕ(am) = aϕ(m). Remark 1.4. The collection of (small) left A-modules together with their morphisms form a category, which we denote by A-Mod. Similarly, right A-modules and (A, B)-bimodules form categories ; we denote them by Mod-A and A-Mod-B, respectively. Therefore, left and right A-modules inherit notions of endomorphism, automorphism, monomorphism, epimorphism, isomorphism, etc. The composition of two maps (which are morphisms of some type, most of the time) is denoted by (for example, ϕ ψ), except when the maps composed belong to some ring, in which case we might adopt juxtaposition as the symbol for composition. Definition 1.5. Let A be a ring and M be a left A-module. The endomorphism ring of M is the ring End A (M) consisting of all endomorphisms of M, i.e. morphisms of left A-modules ϕ : M M. Addition is done element-wise and multiplication is given by composition. If M is a right A-module, we also denote its endomorphism ring by End A (M). When M is an (A, B)-bimodule, we denote the ring of all (A, B)-module endomorphisms of M by End (A,B) (M). Remark 1.6. A morphism of rings ϕ : A B is equivalent to a morphism of rings ϕ opp : A opp B opp ; the underlying set maps ϕ and ϕ opp are equal, but the requirement that ϕ opp respects multiplication is the multiplicative axiom of ϕ read in reverse. It follows that a right A-module is nothing more but a left A opp - module, so anything proven about all left A-modules for any ring A is also proven for right A-modules, when the statement is read appropriately. To prevent ourselves from dealing with left and right A-modules all the time, unless we specifically need both notions, we will stick to left A-modules. Given a left A-module M, the right A opp -module structure on M corresponding to its left A-module structure will be denoted by M opp (i.e. the morphism of rings ϕ : A End Z (M) corresponds to ϕ : A opp End Z (M) opp, so it is given by the same data but in a different notation). Definition 1.7. Let A be a ring and M a left A-module. A subset N M is called a left A-submodule of M (or simply an A-submodule) if it is an abelian subgroup of M which is stable under the action of A, i.e. for all a A and n N, an N. We also say that N is stable under A to say that it is an A-submodule of M. In this case, we write N M to indicate that N is a submodule of M. Given a family of submodules {N i } i I, we can define their sum as i I N i def = { } n i n i N i i I where the superscript indicates that only finitely many of the n i s are non-zero. A family of submodules {N i } i I of M is said to be in a direct sum if they are in a direct sum as abelian groups, namely every m i I N i can be written uniquely as a sum m = i I n i, n i N i. When i I N i = M, we write M = i I N i and we say that M is the direct sum of the N i s. Remark 1.8. To check if M is a direct sum of two of its submodules N 1, N 2, it suffices to check if N 1 +N 2 = M and N 1 N 2 = 0, where 0 denotes the trivial submodule consisting only of the zero element of M. One 7

8 Chapter 1 needs to be careful when trying to check that M is the direct sum of k submodules, k N ; in this case, one must verify that k k N i = M, 1 i k, N i N j = 0. i=1 Proposition 1.9. (Isomorphism theorems) Let A be a ring and ϕ : M N be a morphism of left A- modules. j=1 j i (i) If N M, the quotient module M/N is defined as the quotient abelian group. structure is given by a(m + N) def = am + N. It is indeed a left A-module. Its A-module (ii) The kernel and the image of ϕ is defined as its kernel and image as abelian groups. We denote them by ker ϕ M and im ϕ N. It induces a natural morphism ϕ : M/ ker ϕ N which is onto im ϕ, thus giving the first isomorphism theorem : M/ ker ϕ im ϕ. (iii) If N 1, N 2 M are two left A-submodules, then N 1 + N 2, N 1 N 2 M and we have the second isomorphism theorem (N 1 + N 2 )/N 1 N 1 /(N 1 N 2 ). (iv) If N 1 N 2 M, then N 1 is a submodule of M and (M/N 1 )/(N 2 /N 1 ) M/N 2. Proof. This is the same proof as in the commutative case, hence is omitted. Definition Let A be a ring. One can see A as an A-bimodule over itself by using multiplication, i.e. ϕ L a 1 (a 2 ) = a 1 a 2 = (a 1 )ϕ R a 2. A left ideal (resp. right ideal, two-sided ideal) of A is a left A-submodule (resp. right A-submodule, A-bisubmodule) of A when seen as an A-bimodule over itself. Given a left A-module M and a subset S M, we can define the left A-submodule of M generated by S, written A S, as the smallest A-submodule of M containing S ; it can be constructed as the intersection of all A-submodules of M which contain S, since this collection is non-empty because M is in it. Similarly, one defines the right A-submodule of M generated by S as S A when M is a right A-module. If B is a ring and M is an (A, B)-bimodule, then the (A, B)-bisubmodule of M generated by S is defined the same way and is written A S B. When A is seen as an A-bimodule over itself, we use a different notation. For S A, the left ideal, right ideal and two-sided ideal generated by S are denoted respectively by A (S), (S) A and A (S) A. If S = {m 1,, m n } is a finite subset of M, we write A m 1,, m n instead (similar notations when M is a right A-module or an (A, B)-bimodule, or when A = M is an A-bimodule over itself and we speak of ideals). If S = {m} is a singleton, we may write Am def = A m, ma def = m A and AmB def = A m B, so that n n n A m 1,, m n = Am i, m 1,, m n A = m i A, A m 1,, m n B = Am i B. 8 i=1 i=1 i=1

9 Remark When ϕ : A B is a morphism of rings, im ϕ is a subring of B and ker ϕ is a two-sided ideal of A, which allows to turn the quotient A/ ker ϕ into an A-bimodule. This A-bimodule structure turns A/ ker ϕ into a ring of its own and A/ ker ϕ im ϕ. Proposition Let A be a ring and M a left A-module. An element π End A (M) is called a projection if π 2 = π. (i) If π is a projection, then we have M = ker π im π. (ii) If π is a projection, then so is 1 π (recall that 1 End A (M) is the identity map of M). (iii) Whenever m M is written as m = m 1 +m 2 where m 1 im π and m 2 ker π, we have m 1 = π(m) and m 2 = (1 π)(m). (iv) We have ker π = im (1 π) and im π = ker(1 π). (v) Let π End A (M) be a projection. We have the identities End A (M)π = {ϕ End A (M) ker ϕ ker π}, πend A (M) = {ϕ End A (M) im ϕ im π}. (vi) If M = N 1 N 2 is the direct sum of two left A-submodules, let π End A (M) be the endomorphism defined by π(n 1 +n 2 ) def = n 1. Then π is the unique projection in End A (M) which satisfies ker π = N 2 and im π = N 1 ; we call it the projection onto N 1 and denote it by π N1 or simply π 1 if the context allows it. More generally, if M = i I N i, there is a unique projection π End A (M) satisfying im π = N i and ker π = j I\{i} N j. Proof. For m M, write m = (m π(m)) + π(m), so that M = ker π + im π. If m ker π im π, then m = π(m ) = π 2 (m ) = π(m) = 0, which proves (i). Note that π = (1 (1 π)), which proves (ii), (iii) and (iv) because m = (m π(m)) + π(m). To prove (v), we proceed with the first equality. If ϕ = ψπ, then π(m) = 0 implies ψ(π(m)) = 0, hence the inclusion ( ) holds. For the reverse, if ϕ : M M satisfies ker ϕ ker π, then ϕ is entirely determined by the values it takes on im π. But for m im π, we have ϕ(m) = ϕ(π(m)), hence ϕ = ϕπ End A (M)π. As for the second equality, it is clear that im πϕ im π, which gives ( ). For the reverse inclusion, suppose ϕ End A (M) satisfies im ϕ im π. Then ϕ(m) im π for all m M, hence π(ϕ(m)) = ϕ(m), which means ϕ = πϕ πend A (M), as desired. Finally, the endomorphism defined in (vi) is clearly a projection. Its unicity comes from part (iii). Definition Let A be a ring, M a left A-module and N M an A-submodule. We say that N is a direct summand if there exists a projection on M onto N. In other words, N is a direct summand if there exists an A-submodule N M such that M = N N. Definition Let A be a ring and M, N be two left A-modules. The set Hom A (M, N) is defined as the set of all morphisms of left A-modules ϕ : M N. It is obviously an abelian group, and it is turned into a left A-module by (aϕ)(m) def = aϕ(m) = ϕ(am). This construction is functorial in the following sense. Given morphisms ϕ : M 2 M 1 and ψ : N 1 N 2, we obtain a morphism Hom A (ϕ, ψ) : Hom A (M 1, N 1 ) Hom A (M 2, N 2 ) by sending α to ψ α ϕ. The 9

10 Chapter 1 following diagram commutes : Hom A (ϕ,id N1 ) Hom A (M 1, N 1 ) Hom A (M 2, N 1 ) Hom A (id M1,ψ) Hom A (ϕ,ψ) Hom A (id M2,ψ) Hom A (ϕ,id N2 ) Hom A (M 1, N 2 ) Hom A (M 2, N 2 ) We sometimes write Hom A (M, ψ) instead of Hom A (id M, ψ) : Hom A (M, N 1 ) Hom A (M, N 2 ) when ψ : N 1 N 2 is a morphism ; similarly for Hom A (ϕ, N) : Hom A (M 1, N) Hom A (M 2, N). Remark As in the case of abelian groups, we have a notion of short exact sequences ϕ ψ 0 M 1 M 2 M 3 0. This sequence is said to be exact at M 2 when ker ψ = im ϕ, and more generally, it is called a short exact sequence when ϕ is injective, ψ is surjective and ker ψ = im ϕ, in which case M 2 /ϕ(m 1 ) M 3 (this is equivalent to asking the sequence to be exact at M 1, M 2 and M 3 ). Applying Hom A (N, ) on this sequence, we obtain the left-exact sequence Hom A (N,ϕ) Hom A (N,ψ) 0 Hom A (N, M 1 ) Hom A (N, M 2 ) Hom A (N, M 3 ) Left-exactness means that the sequence is exact at Hom A (N, M 1 ) and Hom A (N, M 2 ) but not necessarily at Hom A (N, M 3 ). Applying Hom A (, N) on this sequence, we obtain the left-exact sequence Hom A (ψ,n) Hom A (ϕ,n) 0 Hom A (M 3, N) Hom A (M 2, N) Hom A (M 1, N) (note the order inversion ; this is because Hom A (, N) is a contravariant functor, i.e. it reverses the order in which morphisms are composed). See Proposition 1.16 for proofs. When ψ is a projection, we say that the above exact sequence splits. When applying Hom A (N, ) or Hom A (, N) to split exact sequences, the resulting exact sequence is also split. One easily sees that when N M, N is a direct summand of M if and only if the identity map of M extends to a endomorphism π End A (M) with im π = N, in which case M = N ker π. Proposition Let ϕ ψ 0 M 1 M 2 M 3 0 be a sequence of left A-modules (not necessarily exact). The following are equivalent : (i) The sequence above is right-exact (ii) For all left A-modules N, the following sequence is exact : Hom A (ϕ,n) Hom A (ψ,n) 0 Hom A (M 3, N) Hom A (M 2, N) Hom A (M 1, N) Also, the following are equivalent : 10 (i) The above sequence is left-exact (ii) For all left A-modules N, the following sequence is exact : Hom A (N,ϕ) Hom A (N,ψ) 0 Hom A (N, M 1 ) Hom A (N, M 2 ) Hom A (N, M 3 )

11 Proof. The fact that (i) implies (ii) is a consequence of the left-exactness of Hom and is proved in the same way as in the case of abelian groups, so is left as an exercise. Conversely, in the second case, we can take N = A and notice that we have the natural isomorphism Hom A (A, M i ) M i, so we recover the exactness required in (i). In the first case, we have to work a bit more. Let N def = M 3 /im ψ. The projection map π : M 3 M 3 /im ψ is such that π ψ = 0 by definition, but since π ψ = Hom A (ψ, N)(π) = 0 and Hom A (ψ, N) is injective, we get π = 0, i.e. im ψ = M 3, which means ψ is surjective. Let N = M 3 and consider ψ Hom A (M 2, N). Since Hom A (ψ ϕ, N) = Hom A (ψ, N) Hom A (ϕ, N) = 0 for all left A-modules N, we have ψ ϕ = 0 (take N = M 3 and apply Hom A (ψ ϕ, N) to id M3 ), which implies im ϕ ker ψ. Next, take N def = M 2 /im ϕ. Since π : M 2 M 2 /im ϕ lies in ker Hom A (ϕ, N) = im Hom A (ψ, N), there exists ν : M 3 M 2 /im ϕ such that π = Hom A (ψ, N)(ν) = ν ψ. Therefore, ker ψ ker(ν ψ) = ker π = im ϕ, completing the proof. Definition Let A be a ring. (i) An element e A is called an idempotent if e 2 = e. (ii) A family of idempotents {e i } i I of A is called orthogonal if for any i, j I distinct, we have e i e j = 0. Corollary Let A be a ring and M a left A-module. Consider a family of submodules {M i } i I such that i I M i = M. Then the following are equivalent : (i) We have M = i I M i (ii) Each M i is a direct summand and the family of idempotents {π i } i I End A (M) is orthogonal. Proof. Obvious. Remark The assumption that i I M i = M is not vital ; we can always add an element to the set I such that M = i I ker π i and it follows that M = i I { } M i. If M was already the direct sum of the M i s, this does not change anything to the statement ; if it isn t, we have to replace (i) by the equality M def = i I M i = i I M i and the π i by π i M, which shows that the π i M form a family of orthogonal idempotents. 1.2 Centralizers and bicentralizers Definition Let A be a ring and S A be a subset. The centralizer of S in A is denoted by C A (S) and is defined as C A (S) def = {a A s S, as = sa}. Note that by definition, C A (S) is a subring of A, so we can consider its bicentralizer CA 2 The center of A is equal to its own centralizer and is denoted by Z(A) def = C A (A) = {z A a A, az = za}. (S) def = C A (C A (S)). We say that B is commutative if B = Z(B) (in which case we resolve to the theory of commutative rings). Remark It might be tempting to define recursively the k th centralizer by CA k = C A (C k 1 A (S)), but this notion is pointless, as we can see right away. It is clear that S CA 2 (S) by definition (the elements of the centralizer commute with all elements of S, so the elements of S commute with the elements of (S) def 11

12 Chapter 1 the centralizer). Letting C A (S) play the role of S in the latter inclusion gives C A (S) CA 3 (S). When S T A, we have C A (S) C A (T ) (elements which commute with every element of T also commute with every element of S), therefore S CA 2 (S) implies C A(S) CA 3 (S), which gives C A(S) = CA 3 (S). Therefore, the centralizer of the bicentralizer is the centralizer itself. If B A is a subring, then Z(B) = C A (B) B. In particular, if B is commutative, then B C A (B), thus C 2 A (B) C A(B). It follows that Z(C A (B)) = C CA (B)(C A (B)) = C A (C A (B)) C A (B) = C 2 A(B) C A (B). One also sees that C 2 A (A) = C A(Z(A)) = A follows from the definition. Definition Let A be a commutative ring. An associative A-algebra is a ring B equipped with a morphism ϕ : A B, called the structure map of the algebra, such that im A Z(B). More generally, an A-algebra is defined as an A-bimodule B equipped with an A-bilinear map (, ) : B B B ; when this bilinear map satisfies (a, 1) = (1, a) = a and is associative (meaning that (b 1, (b 2, b 3 )) = ((b 1, b 2 ), b 3 ) for all b 1, b 2, b 3 B), we recover the notion of an associative A-algebra. In this document, all our A-algebras are associative unless otherwise mentioned, so we will call them A-algebras. If B 1, B 2 are two A-algebras, since A is commutative, we can consider the tensor product B 1 A B 2 which becomes a ring via the definition (b 1 b 2 )(b 1 b 2) def = (b 1 b 1) (b 2 b 2) which is extended by A-bilinearity to all of B 1 A B 2. It canonically becomes an A-algebra via the morphism A B 1 A B 2 defined by a a 1 = 1 a. An A-subalgebra of a A-algebra B is a subring C B such that the structure map ϕ : A B of A satisfies ϕ(a) C, in which case C becomes an A-algebra using the same structure map with codomain restricted to C since ϕ(a) Z(B) C Z(C). Definition A ring K in which for every a A, there exists a unique element a 1 A satisfying aa 1 = a 1 a = 1, is called a skew field or a division ring. If K is commutative, we call K a field. When K is a field and A is a K-algebra, A is in particular a K-vector space and thus we can apply the techniques of linear algebra. One remark : since K has no nonzero ideals, a K-algebra always contains an isomorphic copy of K as a K-subalgebra, so we usually write K A with no regards to the structure map. Proposition Let K be a field and A, B be two K-algebras. If A A and B B are K-subalgebras, then C A (A ) is a K-subalgebra of A, C B (B ) is a K-subalgebra of B and As a corollary, Z(A K B) = Z(A) K Z(B). C A K B(A K B ) = C A (A ) K C B (B ). Proof. Since A A, we have K Z(A) = C A (A) C A (A ). Since K A C 2 A (A ), we have K C A (A ) C 2 A (A ) = Z(C A (A )) by Remark 1.21, hence C A (A ) (and similarly C B (B )) are K-subalgebras. 12

13 As for the equality, note that the inclusion ( ) is clear. Consider the following direct sum decompositions = A K B = A = C A (A A, B = C B (B ) B ) ( C A (A ) K C B (B ) ( (A K C B (B )) (C A (A ) K B ) (A K B ) which shows that C A (A ) K C B (B ) is a direct summand of the K-vector space A K B and ), C A (A ) K C B (B ) = ( (A K C B (B ) ) ( C A (A ) K B )). By the symmetry of our argument, it will suffice to show that C A K B(A K B ) C A (A ) K B. Let z = i I a i b i C A K B(A K B ) where a i A, b i B. Without loss of generality, we can suppose that the b i are linearly independent over K. For any a A, we have z(a 1) = (a 1)z = i I (a i a aa i ) b i = 0. Since the b i are linearly independent, this means that a i a aa i = 0 for all i, which means a i C A (A ), as desired. Definition Let A be a ring and M an A-module. The structure map ϕ : A End Z (M) is a morphism of rings, so let A M = ϕ(a), which is a subring of End Z (M). For each a A, we use the notation def def a M = ϕ a A M. The map ϕ : A A M defined by a A M is onto and A M is called the ring of homotheties of M (its elements are called homotheties of M). The centralizer and bicentralizer of M are defined as the centralizer/bicentralizer of A M in End Z (M) : C A (M) def = C EndZ (M)(A M ), C 2 A(M) def = C 2 End Z (M) (A M). By definition, the centralizer of M is the endomorphism ring of the A-module M since C A (M) = {ϕ End Z (M) a A, ϕa M = a M ϕ} = End A (M). The countermodule 1 of M, denoted by M is the abelian group M seen as a module over its centralizer, namely, the endomorphism ring End A (M). Multiplication is defined the obvious way, namely if ϕ End A (M) and m M, we define ϕm def = ϕ(m). Note that the A-module and End A (M)-module structures of M are compatible since ϕ(am) = aϕ(m) for all a A, ϕ End A (M) and m M. We define the double countermodule of M, denoted by M, as the countermodule of its countermodule, namely M def = (M ). Remark Even when A is commutative, C A (M) = End A (M) is, in general, a noncommutative ring. Therefore, results that we build in this document here can also be useful for the theory of commutative rings, since considering only commutative rings prevents the study of noncommutative rings such as End A (M). Note that compatibility of module structures is not a transitive notion, i.e. if M is a left module over the three rings A, B, C, the module structures of A and B are compatible and the module structures of B and C are compatible, this does not mean that the structures of A and C are compatible. A particularly relevant example is that of the A-module, C A (M)-module and CA 2 (M)-module structures on the A-module M. The first two and last two are compatible, but A and CA 2 (M) give compatible structures on M if and only if CA 2 (M) C A(M), which is not always the case (see Example 1.34). 1 The French term for this is contre-module, but we have not found an English translation which is commonly used. 13

14 Chapter 1 Definition Let A be a ring. We have already seen that A can be interpreted as an A-bimodule over itself, but we can relax these assumptions and only consider the left A-module A, which we denote by A l. Equivalently, we can consider the right A-module A, which we denote by A r. Proposition Let A be a ring. (i) The centralizer of the left A-module A l is the opposite ring of homotheties of the right A-module A r. In symbols, C A (A l ) = (A Ar ) opp = (A opp ) (A opp ) l A opp. This means that A l is canonically a left A opp -module. Namely, as left A opp -modules, A l (A opp ) l. (ii) The centralizer of the right A-module A r is the opposite ring of homotheties of the left A-module A l. In symbols, C A (A r ) = (A Al ) opp = (A opp ) (A opp ) r A opp. The same comments as in part (i) apply, i.e. A r is a right A opp -module satisfying A r (A opp ) r. Proof. We begin by proving (i). If ϕ End Z (A l ) = End Z ((A opp ) r ) commutes with a Al for each a A, then ϕ(a) = ϕ(a1) = (ϕ a Al )(1) = (a Al ϕ)(1) = aϕ(1), so that ϕ corresponds to multiplication on the right by the element ϕ(1). Conversely, any such endomorphism (of the form a A opp) belongs to C r A (A l ) since multiplication on the left commutes with multiplication on the right ; this is associativity of multiplication. Therefore, C A (A l ) and (A Ar ) opp are identified as abelian groups. As for multiplication, if ψ, ϕ C A (A l ), then (ψ ϕ)(a) = ψ(ϕ(a)) = ψ(aϕ(1)) = aϕ(1)ψ(1) = a(ψ(1) Ar ϕ(1) Ar ). where stands for multiplication in (A Ar ) opp. Finally, we show that the identity map of A induces the isomorphism A l (A opp ) l. For ϕ, ψ C A (A l ), we have (ψ ϕ)(a) = a(ψ(1) ϕ(1)) = ψ(1) ϕ(1) a. The left-most term is the left C A (A l )-action on A l, and identifying the action of C A (A l ) with that of A opp via the map ϕ ϕ(1) (A opp ) l, this completes the proof. (Note that C A (A l ) and (A Al ) opp are not just isomorphic, they are equal ; this is because they are defined as the same subsets of End Z (A).) The statement of (ii) is proved along the lines of the proof of part (i), everything being written in reverse order. Remark The centralizer of a left A-module M is equal to the ring of homotheties of M (in symbols, C A (M) = C A (M) M ). Since it is clear that C A (M) M C A (M), this is the statement that for ϕ C A (M) = C EndZ (M)(A M ), as endomorphisms of M, we have ϕ M = ϕ. In other words, the map ϕ ϕ M from C A (M) to End Z (M) is an injective morphism of rings. This is clear because the endomorphism of M which multiplies by ϕ M is exactly ϕ. It follows that C A (M) M = C A (M) and thus C 2 A(M) = C 2 End Z (M) (A M) = C EndZ (M)(C EndZ (M)(A M )) = C EndZ (M)(C A (M) M ) = C CA (M)(M ), C 2 A(M) = C CA (M)(M ) = C CA (M)(M ) M = C 2 A(M) M. This means that C 2 A (M) is the ring of homotheties of the double countermodule M and the centralizer of M. The latter can be re-written as C 2 A (M) = End End A (M)(M ), but since for any a A, the endomorphism a M is an End A (M)-linear map on M by definition of End A (M), we obtain A M C 2 A (M) = A M. Also note that since C EndZ (M)(A M ) = C 3 End Z (M) (A M), the centralizer of M is just the centralizer of M, so that we do not speak of M. 14

15 Corollary Let A be a ring. We have C 2 A(A l ) = A Al, C 2 A(A r ) = A Ar. Proof. It suffices to prove that the first equality holds. By using Proposition 1.28 and Remark 1.29, we see that C 2 A(A l ) = C A opp(a l ) = C A opp((a opp ) r ) = A Al. The proof of the second equality is done analogously. Proposition Let A be a ring and M a left A-module. Suppose N M is an A-submodule which is a direct summand. (i) N is stable under C 2 A (M), i.e. is also a submodule of M. Letting N be a complement for N, since N is also a direct summand, it is also stable under C 2 A (M), so N is also a direct summand of M. (ii) If N is another direct summand of M, any A-linear map ϕ : N N is also C 2 A (M)-linear. (iii) For every ψ C 2 A (M), the restriction of ψ to N lies in C2 A (N), i.e. ψ M N = (ψ N ) N. This implies that restriction to N is a morphism of rings ( ) N : C 2 A (M) C2 A (N). Proof. Let π N End A (M) be the projection of M onto N. (i) For ψ C 2 A (M), since elements of C2 A (M) commute with elements of C A(M) = End A (M) by definition, we see that ψ(n) = ψ(π(m)) = π(ψ(m)) π(m) = N. (ii) Let ϕ : N N be an A-linear map. Then ϕ π N End A (M) = C A (M), so for ψ C 2 A (M) and n N, we have ϕ(ψn) = ((ϕ π N ) ψ)(n) = (ψ (ϕ π N ))(n) = ψ(ϕ(n)). (iii) Let ψ CA 2 (M) and ϕ C A(N) = End A (N). By part (ii), if we set N = N, we see that ϕ End C 2 A (M) (N), which means that ψ N ϕ = ϕ ψ N because ψ acts on N via ψ N. This implies ψ N CA 2 (N), so we are done. Definition Let {A i } i I be a family of rings. Their product is the ring A def = i I A i with addition and multiplication defined pointwise, so that its unit element is equal to (1) i I. Given a family {M i } i I where each M i is a left A i -module, the abelian group i I M i is a left i I A i-module via (a i ) i I (m i ) i I def = (a i m i ) i I. Proposition Let A 1, A 2 be rings and M i be a left A i -module, i = 1, 2. Then C A1 A 2 (M 1 M 2 ) = C A1 (M 1 ) C A2 (M 2 ), C 2 A 1 A 2 (M 1 M 2 ) = C 2 A 1 (M 1 ) C 2 A 2 (M 2 ). Proof. The second equality follows from the first since the bicentralizer is the centralizer of the counter- 15

16 Chapter 1 module, hence For the first, note that C 2 A 1 A 2 (M 1 M 2 ) = C CA1 A 2 (M 1 M 2 )(M 1 M 2 ) = C CA1 (M 1 ) C A2 (M 2 )(M 1 M 2 ) = C CA1 (M 1 )(M 1 ) C CA2 (M 2 )(M 2 ) = C 2 A 1 (M 1 ) C 2 A 2 (M 2 ). M 1 M 2 = (M 1 {0}) ({0} M 2 ) }{{}}{{} def = M def 1 = M 2. The element ϕ End Z (M 1 M 2 ) belongs in the set C A1 A 2 (M 1 M 2 ) if and only if for all (a 1, a 2 ) A 1 A 2, we have ϕ(a 1, a 2 ) M = (a 1, a 2 ) M ϕ. Letting π i be the projection onto M i, ϕ C A1 A 2 (M 1 M 2 ) implies that π i ϕ C Ai (M i ), so ϕ = π 1 ϕ+π 2 ϕ C A1 (M 1 ) C A2 (M 2 ). The reverse inclusion is obvious, which proves equality. Example We give an example where the restriction morphism ( ) N : CA 2 (M) C2 A (N) is neither injective or surjective. Consider a field K and the K-algebra End K (K 3 ). After fixing the standard basis {e 1, e 2, e 3 }, this is canonically isomorphic to the ring of 3 3 matrices with coefficients in K, which we denote by Mat 3 3 (K). Consider the K-subalgebra A of matrices of the form a 0 0 b c 0, a, b, c K. 0 0 a Considered as a left A-module, M def = K 3 is the direct sum of the A-submodules N def = K e 1, e 2 and N def = K e 3. Note that elements of C A (M) have to be K-linear maps since they have to commute with elements of the form λ M for λ K. The condition that ϕ End Z (M) commutes with all matrices of the above form gives linear conditions on the coefficients of the matrix form, so solving for it tells us that the matrix form of ϕ over the basis {e 1, e 2, e 3 } is of the form α α 0 β 0 γ One sees that this ring is of the same form as A, where the roles of e 2 and e 3 have been permuted. It follows that A = CA 2 (M). The map ( ) N : CA 2 (M) C2 A (N) is injective since it can be written as a 0 0 [ ] b c 0 a 0 b c 0 0 a However, one sees that C A (N) is the set of 2 2 scalar matrices, so CA 2 (N) is the full ring of 2 2 matrices, which means that ( ) N is not surjective. Similarly, C A (N ) = CA 2 (N ) K, so ( ) N is surjective but not injective. Note that A A is a ring (its unit element is (1, 1)). Consider the left A A-module M M with action given by (a 1, a 2 )(m 1, m 2 ) def = (a 1 m 1, a 2 m 2 ). The subset N N is a direct summand and by Proposition 1.33, we see that CA A 2 (M M) = A A and C A A(N N ) = C A (N) C A (N ). The restriction map ( ) N N : CA 2 (M) C2 A (M) C2 A (N) C2 A (N ) is neither injective or surjective since it is the product of the restriction maps ( ) N ( ) N on each component, the first not being surjective and the second not being injective. 16

17 Lemma Let A be a ring, M a left A-module and N, P two A-submodules such that M = N P. Suppose that there exists two families of A-submodules {P i } i I and {N i } i I of P and N respectively, such that P = i I P i and P i N/N i. (i) We have CA (M) N = M. (ii) The restriction morphism ( ) N : CA 2 (M) C2 A (N) is injective. (iii) If A N = C 2 A (N), then A M = C 2 A (M). Proof. (i) This is clear since CA (M) N contains P i by assumption ; just take the surjective map N N/N i P i and lift it to an endomorphism of M to see that CA (M) N P i, so that C A (M) N P. (ii) Assume ϕ C 2 A (M) satisfies ϕ N = 0. The composition N N/N i P i P is A-linear, thus C 2 A (M)-linear by Proposition 1.31 (ii). If ϕ N = 0, then ϕ(p i ) = ϕ(n/n i ) = 0, which means ϕ(p ) = i I ϕ(p i) = 0. This means ϕ(m) = ϕ(n) + ϕ(p ) = 0, i.e. ϕ = 0, so ( ) N is injective. (iii) Let ϕ C2 A(M). Since A N = CA 2 (N), there exists a A such that ϕ N = a N, i.e. (ϕ a M ) N = 0. Since restriction to N is injective by part (ii), we see that ϕ = a M A M. Since A M C2 A (M), we are done. Proposition Let A be a ring and M a left A-module with an A-submodule such that M A l N (in other words, we assume that M admits a direct summand isomorphic to A l ). Then A M = C 2 A (M). Proof. Consider the restriction map ( ) Al : CA 2 (M) C2 A (A l). By Corollary 1.30, we have CA 2 (A l) = A l, so for any ϕ CA 2 (M), we have ϕ A l = a Al for some a A. Each element n N generates a left A-module A n A l /a n where a n is some left ideal of A (namely, the ideal of all those a A such that an = 0). It follows that the pair (A l, N) satisfies the hypotheses of Lemma 1.35, so ( ) Al is injective, This means ϕ = a M, so we re done. Definition Let A be a ring. A left (resp. right) A-module is said to be free if there exists an isomorphism M i I A l (resp. M i I A r). When I is finite, we write A n def l = i I A l where I = n. Corollary Let A be a ring and M be a left A-module which admits a direct summand isomorphic to A l. Then A M = CA 2 (M) and Z(End A (M)) = Z(A M ), i.e. an element of the center of End A (M) is equal to multiplication by some element of Z(A M ). This holds in particular if M is a free left A-module. Furthermore, if A is commutative, Z(End A (M)) = A M. 17

18 Chapter 1 Proof. We have Z(End A (M)) = C EndZ (M)(End A (M)) End A (M) = C EndZ (M)(C A (M)) End A (M) = C 2 A(M) End A (M) = A M End A (M) = Z(A M ). The last equality is clear since saying that a M is an A-linear map is exactly saying that it commutes with all other b M for b A, i.e. lies in Z(A M ). Remark We have Z(A) M Z(A M ), but we don t have equality in general. The point is, two endomorphisms a M and b M may commute without a and b commuting in A. Definition Let A be a ring and M a left A-module. We say that M is finitely generated or is a finite A-module if there exists a surjective map A n l M of left A-modules for some n 1. Corollary Let A be a PID (note that principal ideal domains are assumed commutative by definition!) and M be a finitely generated left A-module. Then A M = C 2 A (M) and Z(End A(M)) A/Ann A (M) (recall that Ann A (M) = ker(a a M )). Proof. By the classification of finitely generated modules over a PID, we have an isomorphism M n i=1 A/a i where we can choose the ideals such that a 1 a 2 a n. It follows that Ann A (M) = a 1, so we can interpret M as an A/a 1 -module. Without loss of generality, assume a 1 = 0. We can then apply Proposition 1.36 and Corollary Corollary Let V be a finite-dimensional vector space over a field K and ϕ 1, ϕ 2 End K (V ). The following are equivalent : (i) There exists a polynomial p K[T ] such that p(ϕ 1 ) = ϕ 2 (ii) For all ψ End K (V ) which commutes with ϕ 1, ψ commutes with ϕ 2. Proof. Turn V into a K[T ]-module V ϕ1 by setting pv def = p(ϕ 1 )(v). The ring End K[T ] (V ) equals the set of K-linear endomorphisms of V which commute with polynomials in ϕ 1 ; this is equivalent to commuting with ϕ 1. By Corollary 1.41, we have K[T ] V /Ann K[T ] (V ) Z(End K[T ] (V )), so after translating both sides of this equality into the statements (i) and (ii), we are done. 1.3 Tensor products and Hom For the rest of this chapter, A denotes a ring. Definition Let M be a right A-module and N be a left A-module. If L is an abelian group, a map ϕ : M N L is called A-balanced if for any m 1, m 2 M, n 1, n 2 N and a A, the following holds : ϕ(m 1 + m 2, n 1 ) = ϕ(m 1, n 1 ) + ϕ(m 2, n 1 ) ϕ(m 1, n 1 + n 2 ) = ϕ(m 1, n 1 ) + ϕ(m 1, n 2 ) ϕ(m 1 a, n 1 ) = ϕ(m 1, an 1 ). In other words, it is a Z-bilinear map for which the action of a A can be done either on M or on N without changing the result of the application of ϕ. 18

19 The tensor product of M and N over A is the abelian group M A N defined as the quotient of the free abelian group Z (M N) modulo the subgroup generated by the relations (m 1 + m 2, n 1 ) (m 1, n 1 ) (m 2, n 1 ) (m 1, n 1 + n 2 ) (m 1, n 1 ) (m 1, n 2 ) (m 1 a, n 1 ) (m 1, an 1 ). The coset of the Z-module basis element (m, n) M N in M A N is denoted by m n. It comes with a canonical A-balanced map ι : M N M N given by (m, n) m n. Proposition (Universal property of the tensor product) Let M be a right A-module, N a left A-module and L an abelian group. There is a canonical bijection {ϕ : M N L ϕ is A-balanced} Hom Z (M A N, L) sending ϕ to ϕ in such a way that the following diagram commutes : M N ι ϕ M A N L ϕ Proof. Obvious from our definition of M A N. Details are left to the reader. Remark Since we have shown that M A N satisfies the above universal property, the pair (M A N, ι) is unique up to a unique isomorphism making a commutative triangle with M N as above. More generally, if we assume additionally that we have rings B, C, that M is a left B-module, N a right C-module and L a (B, C)-bimodule, then M A N is a (B, C)-bimodule via b B, c C, m M, n N, b(m n)c def = bm nc and the set of A-balanced maps ϕ : M N L satisfying ϕ(bm, nc) = bϕ(m, n)c are in bijection with Hom (B,C) (M A N, L). Even more generally, the module structures on M and N which are compatible with their respective A-module structures induce module structures on M A N (if the module structure on M is on the right or the structure on N is on the left, just replace it by the corresponding structure on the opposite ring and use the same construction). Furthermore, the construction (M, N) M A N gives a bifunctor : Mod-A A-Mod Ab. If any of M or N admits module structures compatible with their A-module structure, will also be functorial in the category of pairs of A-modules admitting those structures. Note that is an additive functor in both of its arguments, meaning that if f, f End A (M) and g, g End A (N), then (f + f ) g = f g + f g, f (g + g ) = f g + f g. Definition Let A, B be rings and M, N be (A, B)-modules. The abelian group Hom (A,B) (M, N) automatically becomes an (End (A,B) (N), End (A,B) (M))-bimodule via post-/pre-composition : for (ϕ B, ϕ A ) End B (N) End A (M), f Hom (A,B) (M, N) ϕ B fϕ A def = ϕ B f ϕ A. One easily checks that this is still a morphism of (A, B)-bimodules : for (a, b) A B and m M, (ϕ B fϕ A )(amb) = (ϕ B f)(aϕ A (m)b) = ϕ B (a(fϕ A )(m)b) = a(ϕ B fϕ A )(m)b. 19

20 Chapter 1 Remark When M, N are two left A-modules, we can define module structures on Hom A (M, N) using module structures on M and N compatible with their A-module structures. For instance, if M is also a left C-module, N a left B-module and the structures are compatible, we can turn Hom A (M, N) into a (B, C)-bimodule via m M, b B, c C, (bfc)(m) def = bf(cm). This is possible because the compatibility condition is equivalent to asking that the endomorphisms c M and b N are A-linear, giving rise to morphisms of rings C End A (M) and B End A (N). The (End A (N), End A (M))-bimodule structure on Hom A (M, N) can therefore be restricted to a (B, C)-bimodule structure. We can also apply this technique if one of the module structures on M or N is a right module structure instead of a left one, as long as it is compatible with the left A-module structures on M or N ; it suffices to replace these right module structures by left module structures on the opposite ring. This is possible, in particular, when M is an (A, B)-bimodule and N a (A, C)-bimodule, making Hom A (M, N) a (C, B)- bimodule via m M, b B, c C, (cfb)(m) def = f(mb)c. Furthermore, the construction (M, N) Hom A (M, N) gives a bifunctor : A-Mod opp A-Mod Ab. If any of M or N admits module structures compatible with their A-module structure, Hom A (, ) will also be functorial in the category of pairs of A-modules admitting those structures. By linearity of composition, Hom A (, ) is also additive in both of its arguments. Lemma Let M, N, {M i } i I, {N i } i I be left A-modules. We have natural isomorphisms Hom A ( i I M i, N) i I Hom A (M i, N), Hom A (M, i I N i ) i I Hom A (M, N i ). Proof. The first statement is equivalent to saying that a morphism of left A-modules ϕ : M N is determined by its restrictions ϕ Mi : M i N since ϕ = i I ϕ M i. For the second one, letting π i : N N i be the canonical projection, this is the fact that a morphism ϕ : M N is determined by its components π i ϕ : M N i. Corollary Let M, N be two left A-modules and assume N = i I N i for a family {N i } i I submodules. If M is finitely generated, then the isomorphism of Hom A (M, i I N i ) i I Hom A (M, N i ) restricts to the following isomorphism on the two following subsets : Hom A (M, i I N i ) i I Hom A (M, N i ). Proof. The isomorphism of Lemma 1.48 puts in correspondence a morphism ϕ : M i I N i with its projections {π i ϕ} i I. Since M is finitely generated, such a morphism ϕ is determined by the image of a subset {m 1,, m k }. Because ϕ(m i ) = i I n i, only finitely many indices i I contain non-zero components of the elements ϕ(m 1 ),, ϕ(m k ). It follows that only finitely many of the maps π i ϕ are non-zero. Conversely, if only π i1 ϕ,, π is ϕ are non-zero, then the corresponding map ϕ : M i I N i satisfies ϕ(m) s j=1 N i j, so ϕ(m) lands inside N in a well-defined manner. 20

21 Theorem (Tensor-hom adjunction) Let A, B be rings, M a right A-bimodule, N a (A, B)-bimodule and P a right B-bimodule. (It follows that M A N is a right B-module and Hom B (N, P ) is a right A-module.) There is a natural isomorphism of abelian groups Hom B (M A N, P ) Hom A (M, Hom B (N, P )). Moreover, this is an isomorphism of right End A (M)-modules, End (A,B) (N)-modules and End B (P )- modules. This implies that if C is a ring and any of M, N or P admit a C-module structure which is compatible with the module structures we already gave on that module, then both sides admit that corresponding C-module structure and the natural isomorphism above is an isomorphism of C-modules. Proof. Working out the details is easy but long and pointless. Seeing the main idea is the most useful part. A morphism of right B-modules ϕ : M A N P corresponds to an A-balanced map ϕ : M N P for which the restriction ϕ m : N P given by ϕ m (n) = ϕ(m, n) is B-linear. The fact that it is A-balanced implies that for a A, ϕ am (n) = ϕ m (an) = (ϕ m a)(n) by definition of the A-module structure on Hom B (N, P ), which means that the construction m ϕ m is A-linear. This process can be reversed, thus gives the isomorphism. Naturality is obvious. The fact that this is an isomorphism of End A (M)-modules (resp. End (A,B) (N), End B (P )) follows from the naturality of this isomorphism in all three arguments. Restricting this property to any subring of one of these three rings gives the statement about compatible module structures. Theorem Let M be a right A-module and N be a left A-module. (i) The functor of left A-modules to abelian groups given by N M A N is right-exact. (ii) The functor of right A-modules to abelian groups M M A N is right-exact. Proof. Let P be a left A-module. Recall that Hom A (N, P ) is an (A, A)-bimodule since both N and P are left A-modules. Since M is a right A-module, the functor Hom A (M, Hom A (, P )) = Hom Z (M, ) Hom A (, P ) is a composition of left-exact functors, namely Hom A (, P ) : A-Mod A-Mod-A and Hom A (M, ) A-Mod-A : A-Mod-A A-Mod-A (because both M and Hom A (N, P ) are right A-modules). The first functor sends a right-exact sequence to a left-exact one, and the second functor preserves left-exact sequences. Therefore, the composition is a contravariant functor mapping a right-exact sequence to a left-exact one and it is naturally isomorphic to Hom A (M A, P ) by Theorem Since the latter is exact for all left A-modules P, it follows that the functor M A is right-exact by Proposition 1.16 since the functor Hom A (, P ) is contravariant. This proves part (i). For part (ii), note that the functor Hom A (, Hom A (N, P )) is contravariant left-exact for all left A- modules N,P and it is naturally isomorphic to Hom A ( A N, P ). Since the latter is left-exact for all P, the functor A N is right-exact. Definition Let M 0,, M n be abelian groups and A 1,, A n be rings with the following relations : (i) M 0 is a right A 1 -module (ii) M n is a left A n -module (iii) For each 1 i n 1, M i is a (A i, A i+1 )-bimodule. 21

22 Chapter 1 Then we can form the abelian group M 0 A1 M 1 A2 M 2 A2 An M n as follows. Consider the free abelian group Z n i=0 M i on the set n + 1-tuples (m 0,, m n ) n i=0 M i. Quotient out by the submodule generated by the relations (m 0,, m i,, m n ) + (m 0,, m i,, m n ) (m 0,, m i + m i,, m n ) (m 0,, m i a i, m i+1,, m n ) (m 0,, m i, a i m i+1,, m n ). This gives us the abelian group. It is a bimodule for each ring A i by allowing multiplication on the M i 1 - factor on the right and on the M i -factor on the left. If A 0 (resp. A n+1 ) is a ring and M 0 is a left A 0 -module (resp. if M n is a right A n+1 -module), then the corresponding tensor product also admits this structure. Proposition (Associativity of the tensor product) Let A 0, A 1, A 2, A 3 be rings, M 0 a (A 0, A 1 )-bimodule, M 1 a (A 1, A 2 )-bimodule and M 2 a (A 2, A 3 )-bimodule. We have two isomorphism of abelian groups which is simultaneously an isomorphism of A 0, A 1, A 2 and A 3 -bimodules : M 0 A1 (M 1 A2 M 2 ) M 0 A1 M 1 A2 M 2 (M 0 A1 M 1 ) A2 M 2. Proof. It suffices to see that the correspondences m 0 (m 1 m 2 ) m 0 m 1 m 2 (m 0 m 1 ) m 2 produce well-defined maps in each direction and they are inverse to each other, as can be seen when applied on the generators of the respective modules given above. Proposition (Tensor product with respect to opp ) Given a left (resp. right) A-module M, recall Remark 1.6 for the definition of the opposite module structure M opp on its opposite ring A opp. Let M 0 be an (A 0, A 1 )-bimodule and M 1 be an (A 1, A 2 )-bimodule. We have an isomorphism of (A opp 2, A opp 0 )-bimodules (M 0 A1 M 1 ) opp M opp 1 A opp M opp 1 0. In particular, if A 0, A 1, A 2 are commutative rings, the tensor product is commutative up to the natural isomorphism given in the proof. Proof. Given m M 0, write m opp M opp 0 for the same element but which gets affected by multiplication from the opposite side in the reversed order. It suffices to map (m 0 m 1 ) opp to m opp 1 m opp 0. The (A opp 2, A opp 0 )-linearity becomes obvious since for a 2 A 2, m 0 M 0 and m 1 M 1, denoting the opposite multiplication with the symbol, we have a 2 (m 0 m 1 ) opp = (m 0 m 1 a 2 ) opp (m 1 a 2 ) opp m opp 0 = a 2 m opp 1 m opp 0. The argument is similar for a 0 A Isotypical modules Isotypical modules are to be seen as generalizations of free modules over a ring. We will see their importance in Theorem 1.59, where we establish a correspondence between the free modules over End A (M) = C A (M) and the isotypical modules of type M. Definition Let M, N be two left A-modules. We say that M is isotypical of type N if M i I N i where N i N. When this is the case, we write M N I. 22

and this makes M into an R-module by (1.2). 2

and this makes M into an R-module by (1.2). 2 1. Modules Definition 1.1. Let R be a commutative ring. A module over R is set M together with a binary operation, denoted +, which makes M into an abelian group, with 0 as the identity element, together

More information

Morita Equivalence. Eamon Quinlan

Morita Equivalence. Eamon Quinlan Morita Equivalence Eamon Quinlan Given a (not necessarily commutative) ring, you can form its category of right modules. Take this category and replace the names of all the modules with dots. The resulting

More information

REPRESENTATION THEORY, LECTURE 0. BASICS

REPRESENTATION THEORY, LECTURE 0. BASICS REPRESENTATION THEORY, LECTURE 0. BASICS IVAN LOSEV Introduction The aim of this lecture is to recall some standard basic things about the representation theory of finite dimensional algebras and finite

More information

Formal power series rings, inverse limits, and I-adic completions of rings

Formal power series rings, inverse limits, and I-adic completions of rings Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely

More information

ALGEBRA EXERCISES, PhD EXAMINATION LEVEL

ALGEBRA EXERCISES, PhD EXAMINATION LEVEL ALGEBRA EXERCISES, PhD EXAMINATION LEVEL 1. Suppose that G is a finite group. (a) Prove that if G is nilpotent, and H is any proper subgroup, then H is a proper subgroup of its normalizer. (b) Use (a)

More information

Modules Over Principal Ideal Domains

Modules Over Principal Ideal Domains Modules Over Principal Ideal Domains Brian Whetter April 24, 2014 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this

More information

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d The Algebraic Method 0.1. Integral Domains. Emmy Noether and others quickly realized that the classical algebraic number theory of Dedekind could be abstracted completely. In particular, rings of integers

More information

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND

More information

REPRESENTATION THEORY WEEK 9

REPRESENTATION THEORY WEEK 9 REPRESENTATION THEORY WEEK 9 1. Jordan-Hölder theorem and indecomposable modules Let M be a module satisfying ascending and descending chain conditions (ACC and DCC). In other words every increasing sequence

More information

MATH5735 Modules and Representation Theory Lecture Notes

MATH5735 Modules and Representation Theory Lecture Notes MATH5735 Modules and Representation Theory Lecture Notes Joel Beeren Semester 1, 2012 Contents 1 Why study modules? 4 1.1 Setup............................................. 4 1.2 How do you study modules?.................................

More information

NOTES ON SPLITTING FIELDS

NOTES ON SPLITTING FIELDS NOTES ON SPLITTING FIELDS CİHAN BAHRAN I will try to define the notion of a splitting field of an algebra over a field using my words, to understand it better. The sources I use are Peter Webb s and T.Y

More information

COURSE SUMMARY FOR MATH 504, FALL QUARTER : MODERN ALGEBRA

COURSE SUMMARY FOR MATH 504, FALL QUARTER : MODERN ALGEBRA COURSE SUMMARY FOR MATH 504, FALL QUARTER 2017-8: MODERN ALGEBRA JAROD ALPER Week 1, Sept 27, 29: Introduction to Groups Lecture 1: Introduction to groups. Defined a group and discussed basic properties

More information

A TALE OF TWO FUNCTORS. Marc Culler. 1. Hom and Tensor

A TALE OF TWO FUNCTORS. Marc Culler. 1. Hom and Tensor A TALE OF TWO FUNCTORS Marc Culler 1. Hom and Tensor It was the best of times, it was the worst of times, it was the age of covariance, it was the age of contravariance, it was the epoch of homology, it

More information

Math 121 Homework 5: Notes on Selected Problems

Math 121 Homework 5: Notes on Selected Problems Math 121 Homework 5: Notes on Selected Problems 12.1.2. Let M be a module over the integral domain R. (a) Assume that M has rank n and that x 1,..., x n is any maximal set of linearly independent elements

More information

FILTERED RINGS AND MODULES. GRADINGS AND COMPLETIONS.

FILTERED RINGS AND MODULES. GRADINGS AND COMPLETIONS. FILTERED RINGS AND MODULES. GRADINGS AND COMPLETIONS. Let A be a ring, for simplicity assumed commutative. A filtering, or filtration, of an A module M means a descending sequence of submodules M = M 0

More information

Structure of rings. Chapter Algebras

Structure of rings. Chapter Algebras Chapter 5 Structure of rings 5.1 Algebras It is time to introduce the notion of an algebra over a commutative ring. So let R be a commutative ring. An R-algebra is a ring A (unital as always) together

More information

12. Projective modules The blanket assumptions about the base ring k, the k-algebra A, and A-modules enumerated at the start of 11 continue to hold.

12. Projective modules The blanket assumptions about the base ring k, the k-algebra A, and A-modules enumerated at the start of 11 continue to hold. 12. Projective modules The blanket assumptions about the base ring k, the k-algebra A, and A-modules enumerated at the start of 11 continue to hold. 12.1. Indecomposability of M and the localness of End

More information

A Primer on Homological Algebra

A Primer on Homological Algebra A Primer on Homological Algebra Henry Y Chan July 12, 213 1 Modules For people who have taken the algebra sequence, you can pretty much skip the first section Before telling you what a module is, you probably

More information

MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA

MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA These are notes for our first unit on the algebraic side of homological algebra. While this is the last topic (Chap XX) in the book, it makes sense to

More information

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra D. R. Wilkins Contents 3 Topics in Commutative Algebra 2 3.1 Rings and Fields......................... 2 3.2 Ideals...............................

More information

TCC Homological Algebra: Assignment #3 (Solutions)

TCC Homological Algebra: Assignment #3 (Solutions) TCC Homological Algebra: Assignment #3 (Solutions) David Loeffler, d.a.loeffler@warwick.ac.uk 30th November 2016 This is the third of 4 problem sheets. Solutions should be submitted to me (via any appropriate

More information

Ring Theory Problems. A σ

Ring Theory Problems. A σ Ring Theory Problems 1. Given the commutative diagram α A σ B β A σ B show that α: ker σ ker σ and that β : coker σ coker σ. Here coker σ = B/σ(A). 2. Let K be a field, let V be an infinite dimensional

More information

The tensor product of commutative monoids

The tensor product of commutative monoids The tensor product of commutative monoids We work throughout in the category Cmd of commutative monoids. In other words, all the monoids we meet are commutative, and consequently we say monoid in place

More information

Notes on p-divisible Groups

Notes on p-divisible Groups Notes on p-divisible Groups March 24, 2006 This is a note for the talk in STAGE in MIT. The content is basically following the paper [T]. 1 Preliminaries and Notations Notation 1.1. Let R be a complete

More information

Topics in Module Theory

Topics in Module Theory Chapter 7 Topics in Module Theory This chapter will be concerned with collecting a number of results and constructions concerning modules over (primarily) noncommutative rings that will be needed to study

More information

INTRO TO TENSOR PRODUCTS MATH 250B

INTRO TO TENSOR PRODUCTS MATH 250B INTRO TO TENSOR PRODUCTS MATH 250B ADAM TOPAZ 1. Definition of the Tensor Product Throughout this note, A will denote a commutative ring. Let M, N be two A-modules. For a third A-module Z, consider the

More information

CHARACTERS AS CENTRAL IDEMPOTENTS

CHARACTERS AS CENTRAL IDEMPOTENTS CHARACTERS AS CENTRAL IDEMPOTENTS CİHAN BAHRAN I have recently noticed (while thinking about the skewed orthogonality business Theo has mentioned) that the irreducible characters of a finite group G are

More information

1 Fields and vector spaces

1 Fields and vector spaces 1 Fields and vector spaces In this section we revise some algebraic preliminaries and establish notation. 1.1 Division rings and fields A division ring, or skew field, is a structure F with two binary

More information

φ(a + b) = φ(a) + φ(b) φ(a b) = φ(a) φ(b),

φ(a + b) = φ(a) + φ(b) φ(a b) = φ(a) φ(b), 16. Ring Homomorphisms and Ideals efinition 16.1. Let φ: R S be a function between two rings. We say that φ is a ring homomorphism if for every a and b R, and in addition φ(1) = 1. φ(a + b) = φ(a) + φ(b)

More information

Projective and Injective Modules

Projective and Injective Modules Projective and Injective Modules Push-outs and Pull-backs. Proposition. Let P be an R-module. The following conditions are equivalent: (1) P is projective. (2) Hom R (P, ) is an exact functor. (3) Every

More information

ALGEBRA II: RINGS AND MODULES OVER LITTLE RINGS.

ALGEBRA II: RINGS AND MODULES OVER LITTLE RINGS. ALGEBRA II: RINGS AND MODULES OVER LITTLE RINGS. KEVIN MCGERTY. 1. RINGS The central characters of this course are algebraic objects known as rings. A ring is any mathematical structure where you can add

More information

A GLIMPSE OF ALGEBRAIC K-THEORY: Eric M. Friedlander

A GLIMPSE OF ALGEBRAIC K-THEORY: Eric M. Friedlander A GLIMPSE OF ALGEBRAIC K-THEORY: Eric M. Friedlander During the first three days of September, 1997, I had the privilege of giving a series of five lectures at the beginning of the School on Algebraic

More information

MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA 23

MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA 23 MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA 23 6.4. Homotopy uniqueness of projective resolutions. Here I proved that the projective resolution of any R-module (or any object of an abelian category

More information

An introduction to Algebra and Topology

An introduction to Algebra and Topology An introduction to Algebra and Topology Pierre Schapira http://www.math.jussieu.fr/ schapira/lectnotes schapira@math.jussieu.fr Course at University of Luxemburg 1/3/2012 30/4/2012, v5 2 Contents 1 Linear

More information

Equivalence Relations

Equivalence Relations Equivalence Relations Definition 1. Let X be a non-empty set. A subset E X X is called an equivalence relation on X if it satisfies the following three properties: 1. Reflexive: For all x X, (x, x) E.

More information

MATH 326: RINGS AND MODULES STEFAN GILLE

MATH 326: RINGS AND MODULES STEFAN GILLE MATH 326: RINGS AND MODULES STEFAN GILLE 1 2 STEFAN GILLE 1. Rings We recall first the definition of a group. 1.1. Definition. Let G be a non empty set. The set G is called a group if there is a map called

More information

NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

More information

IDEAL CLASSES AND RELATIVE INTEGERS

IDEAL CLASSES AND RELATIVE INTEGERS IDEAL CLASSES AND RELATIVE INTEGERS KEITH CONRAD The ring of integers of a number field is free as a Z-module. It is a module not just over Z, but also over any intermediate ring of integers. That is,

More information

Homological Methods in Commutative Algebra

Homological Methods in Commutative Algebra Homological Methods in Commutative Algebra Olivier Haution Ludwig-Maximilians-Universität München Sommersemester 2017 1 Contents Chapter 1. Associated primes 3 1. Support of a module 3 2. Associated primes

More information

Math 762 Spring h Y (Z 1 ) (1) h X (Z 2 ) h X (Z 1 ) Φ Z 1. h Y (Z 2 )

Math 762 Spring h Y (Z 1 ) (1) h X (Z 2 ) h X (Z 1 ) Φ Z 1. h Y (Z 2 ) Math 762 Spring 2016 Homework 3 Drew Armstrong Problem 1. Yoneda s Lemma. We have seen that the bifunctor Hom C (, ) : C C Set is analogous to a bilinear form on a K-vector space, : V V K. Recall that

More information

COURSE NOTES: HOMOLOGICAL ALGEBRA

COURSE NOTES: HOMOLOGICAL ALGEBRA COURSE NOTES: HOMOLOGICAL ALGEBRA AMNON YEKUTIELI Contents 1. Introduction 1 2. Categories 2 3. Free Modules 13 4. Functors 18 5. Natural Transformations 23 6. Equivalence of Categories 29 7. Opposite

More information

Note that a unit is unique: 1 = 11 = 1. Examples: Nonnegative integers under addition; all integers under multiplication.

Note that a unit is unique: 1 = 11 = 1. Examples: Nonnegative integers under addition; all integers under multiplication. Algebra fact sheet An algebraic structure (such as group, ring, field, etc.) is a set with some operations and distinguished elements (such as 0, 1) satisfying some axioms. This is a fact sheet with definitions

More information

Collected trivialities on algebra derivations

Collected trivialities on algebra derivations Collected trivialities on algebra derivations Darij Grinberg December 4, 2017 Contents 1. Derivations in general 1 1.1. Definitions and conventions....................... 1 1.2. Basic properties..............................

More information

4.1. Paths. For definitions see section 2.1 (In particular: path; head, tail, length of a path; concatenation;

4.1. Paths. For definitions see section 2.1 (In particular: path; head, tail, length of a path; concatenation; 4 The path algebra of a quiver 41 Paths For definitions see section 21 (In particular: path; head, tail, length of a path; concatenation; oriented cycle) Lemma Let Q be a quiver If there is a path of length

More information

The Diamond Category of a Locally Discrete Ordered Set.

The Diamond Category of a Locally Discrete Ordered Set. The Diamond Category of a Locally Discrete Ordered Set Claus Michael Ringel Let k be a field Let I be a ordered set (what we call an ordered set is sometimes also said to be a totally ordered set or a

More information

Winter School on Galois Theory Luxembourg, February INTRODUCTION TO PROFINITE GROUPS Luis Ribes Carleton University, Ottawa, Canada

Winter School on Galois Theory Luxembourg, February INTRODUCTION TO PROFINITE GROUPS Luis Ribes Carleton University, Ottawa, Canada Winter School on alois Theory Luxembourg, 15-24 February 2012 INTRODUCTION TO PROFINITE ROUPS Luis Ribes Carleton University, Ottawa, Canada LECTURE 2 2.1 ENERATORS OF A PROFINITE ROUP 2.2 FREE PRO-C ROUPS

More information

7 Rings with Semisimple Generators.

7 Rings with Semisimple Generators. 7 Rings with Semisimple Generators. It is now quite easy to use Morita to obtain the classical Wedderburn and Artin-Wedderburn characterizations of simple Artinian and semisimple rings. We begin by reminding

More information

Thus we get. ρj. Nρj i = δ D(i),j.

Thus we get. ρj. Nρj i = δ D(i),j. 1.51. The distinguished invertible object. Let C be a finite tensor category with classes of simple objects labeled by a set I. Since duals to projective objects are projective, we can define a map D :

More information

Joseph Muscat Universal Algebras. 1 March 2013

Joseph Muscat Universal Algebras. 1 March 2013 Joseph Muscat 2015 1 Universal Algebras 1 Operations joseph.muscat@um.edu.mt 1 March 2013 A universal algebra is a set X with some operations : X n X and relations 1 X m. For example, there may be specific

More information

LECTURE 3: RELATIVE SINGULAR HOMOLOGY

LECTURE 3: RELATIVE SINGULAR HOMOLOGY LECTURE 3: RELATIVE SINGULAR HOMOLOGY In this lecture we want to cover some basic concepts from homological algebra. These prove to be very helpful in our discussion of singular homology. The following

More information

0.2 Vector spaces. J.A.Beachy 1

0.2 Vector spaces. J.A.Beachy 1 J.A.Beachy 1 0.2 Vector spaces I m going to begin this section at a rather basic level, giving the definitions of a field and of a vector space in much that same detail as you would have met them in a

More information

Derivations and differentials

Derivations and differentials Derivations and differentials Johan Commelin April 24, 2012 In the following text all rings are commutative with 1, unless otherwise specified. 1 Modules of derivations Let A be a ring, α : A B an A algebra,

More information

Injective Modules and Matlis Duality

Injective Modules and Matlis Duality Appendix A Injective Modules and Matlis Duality Notes on 24 Hours of Local Cohomology William D. Taylor We take R to be a commutative ring, and will discuss the theory of injective R-modules. The following

More information

INFINITE-DIMENSIONAL DIAGONALIZATION AND SEMISIMPLICITY

INFINITE-DIMENSIONAL DIAGONALIZATION AND SEMISIMPLICITY INFINITE-DIMENSIONAL DIAGONALIZATION AND SEMISIMPLICITY MIODRAG C. IOVANOV, ZACHARY MESYAN, AND MANUEL L. REYES Abstract. We characterize the diagonalizable subalgebras of End(V ), the full ring of linear

More information

Algebraic Geometry Spring 2009

Algebraic Geometry Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

More information

Representations of quivers

Representations of quivers Representations of quivers Gwyn Bellamy October 13, 215 1 Quivers Let k be a field. Recall that a k-algebra is a k-vector space A with a bilinear map A A A making A into a unital, associative ring. Notice

More information

Correct classes of modules

Correct classes of modules Algebra and Discrete Mathematics Number?. (????). pp. 1 13 c Journal Algebra and Discrete Mathematics RESEARCH ARTICLE Correct classes of modules Robert Wisbauer Abstract. For a ring R, call a class C

More information

CATEGORICAL GROTHENDIECK RINGS AND PICARD GROUPS. Contents. 1. The ring K(R) and the group Pic(R)

CATEGORICAL GROTHENDIECK RINGS AND PICARD GROUPS. Contents. 1. The ring K(R) and the group Pic(R) CATEGORICAL GROTHENDIECK RINGS AND PICARD GROUPS J. P. MAY Contents 1. The ring K(R) and the group Pic(R) 1 2. Symmetric monoidal categories, K(C), and Pic(C) 2 3. The unit endomorphism ring R(C ) 5 4.

More information

Commutative Algebra. Contents. B Totaro. Michaelmas Basics Rings & homomorphisms Modules Prime & maximal ideals...

Commutative Algebra. Contents. B Totaro. Michaelmas Basics Rings & homomorphisms Modules Prime & maximal ideals... Commutative Algebra B Totaro Michaelmas 2011 Contents 1 Basics 4 1.1 Rings & homomorphisms.............................. 4 1.2 Modules........................................ 6 1.3 Prime & maximal ideals...............................

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

Projective modules: Wedderburn rings

Projective modules: Wedderburn rings Projective modules: Wedderburn rings April 10, 2008 8 Wedderburn rings A Wedderburn ring is an artinian ring which has no nonzero nilpotent left ideals. Note that if R has no left ideals I such that I

More information

SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT

SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT Contents 1. Group Theory 1 1.1. Basic Notions 1 1.2. Isomorphism Theorems 2 1.3. Jordan- Holder Theorem 2 1.4. Symmetric Group 3 1.5. Group action on Sets 3 1.6.

More information

COHEN-MACAULAY RINGS SELECTED EXERCISES. 1. Problem 1.1.9

COHEN-MACAULAY RINGS SELECTED EXERCISES. 1. Problem 1.1.9 COHEN-MACAULAY RINGS SELECTED EXERCISES KELLER VANDEBOGERT 1. Problem 1.1.9 Proceed by induction, and suppose x R is a U and N-regular element for the base case. Suppose now that xm = 0 for some m M. We

More information

Commutative Algebra Lecture 3: Lattices and Categories (Sept. 13, 2013)

Commutative Algebra Lecture 3: Lattices and Categories (Sept. 13, 2013) Commutative Algebra Lecture 3: Lattices and Categories (Sept. 13, 2013) Navid Alaei September 17, 2013 1 Lattice Basics There are, in general, two equivalent approaches to defining a lattice; one is rather

More information

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35 Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35 1. Let R be a commutative ring with 1 0. (a) Prove that the nilradical of R is equal to the intersection of the prime

More information

Math 210B. Profinite group cohomology

Math 210B. Profinite group cohomology Math 210B. Profinite group cohomology 1. Motivation Let {Γ i } be an inverse system of finite groups with surjective transition maps, and define Γ = Γ i equipped with its inverse it topology (i.e., the

More information

LECTURE 3: TENSORING WITH FINITE DIMENSIONAL MODULES IN CATEGORY O

LECTURE 3: TENSORING WITH FINITE DIMENSIONAL MODULES IN CATEGORY O LECTURE 3: TENSORING WITH FINITE DIMENSIONAL MODULES IN CATEGORY O CHRISTOPHER RYBA Abstract. These are notes for a seminar talk given at the MIT-Northeastern Category O and Soergel Bimodule seminar (Autumn

More information

Lecture 7. This set is the set of equivalence classes of the equivalence relation on M S defined by

Lecture 7. This set is the set of equivalence classes of the equivalence relation on M S defined by Lecture 7 1. Modules of fractions Let S A be a multiplicative set, and A M an A-module. In what follows, we will denote by s, t, u elements from S and by m, n elements from M. Similar to the concept of

More information

Matsumura: Commutative Algebra Part 2

Matsumura: Commutative Algebra Part 2 Matsumura: Commutative Algebra Part 2 Daniel Murfet October 5, 2006 This note closely follows Matsumura s book [Mat80] on commutative algebra. Proofs are the ones given there, sometimes with slightly more

More information

COMMUTATIVE ALGEBRA LECTURE 1: SOME CATEGORY THEORY

COMMUTATIVE ALGEBRA LECTURE 1: SOME CATEGORY THEORY COMMUTATIVE ALGEBRA LECTURE 1: SOME CATEGORY THEORY VIVEK SHENDE A ring is a set R with two binary operations, an addition + and a multiplication. Always there should be an identity 0 for addition, an

More information

Graduate Preliminary Examination

Graduate Preliminary Examination Graduate Preliminary Examination Algebra II 18.2.2005: 3 hours Problem 1. Prove or give a counter-example to the following statement: If M/L and L/K are algebraic extensions of fields, then M/K is algebraic.

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES. ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES. ANDREW SALCH 1. Affine schemes. About notation: I am in the habit of writing f (U) instead of f 1 (U) for the preimage of a subset

More information

De Rham Cohomology. Smooth singular cochains. (Hatcher, 2.1)

De Rham Cohomology. Smooth singular cochains. (Hatcher, 2.1) II. De Rham Cohomology There is an obvious similarity between the condition d o q 1 d q = 0 for the differentials in a singular chain complex and the condition d[q] o d[q 1] = 0 which is satisfied by the

More information

The Proj Construction

The Proj Construction The Proj Construction Daniel Murfet May 16, 2006 Contents 1 Basic Properties 1 2 Functorial Properties 2 3 Products 6 4 Linear Morphisms 9 5 Projective Morphisms 9 6 Dimensions of Schemes 11 7 Points of

More information

Commutative Algebra. B Totaro. Michaelmas Basics Rings & homomorphisms Modules Prime & maximal ideals...

Commutative Algebra. B Totaro. Michaelmas Basics Rings & homomorphisms Modules Prime & maximal ideals... Commutative Algebra B Totaro Michaelmas 2011 Contents 1 Basics 2 1.1 Rings & homomorphisms................... 2 1.2 Modules............................. 4 1.3 Prime & maximal ideals....................

More information

The most important result in this section is undoubtedly the following theorem.

The most important result in this section is undoubtedly the following theorem. 28 COMMUTATIVE ALGEBRA 6.4. Examples of Noetherian rings. So far the only rings we can easily prove are Noetherian are principal ideal domains, like Z and k[x], or finite. Our goal now is to develop theorems

More information

Direct Limits. Mathematics 683, Fall 2013

Direct Limits. Mathematics 683, Fall 2013 Direct Limits Mathematics 683, Fall 2013 In this note we define direct limits and prove their basic properties. This notion is important in various places in algebra. In particular, in algebraic geometry

More information

ALGEBRA QUALIFYING EXAM, FALL 2017: SOLUTIONS

ALGEBRA QUALIFYING EXAM, FALL 2017: SOLUTIONS ALGEBRA QUALIFYING EXAM, FALL 2017: SOLUTIONS Your Name: Conventions: all rings and algebras are assumed to be unital. Part I. True or false? If true provide a brief explanation, if false provide a counterexample

More information

CATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths.

CATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths. CATEGORY THEORY PROFESSOR PETER JOHNSTONE Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths. Definition 1.1. A category C consists

More information

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31 Contents 1 Lecture 1: Introduction 2 2 Lecture 2: Logical statements and proof by contradiction 7 3 Lecture 3: Induction and Well-Ordering Principle 11 4 Lecture 4: Definition of a Group and examples 15

More information

Azumaya Algebras. Dennis Presotto. November 4, Introduction: Central Simple Algebras

Azumaya Algebras. Dennis Presotto. November 4, Introduction: Central Simple Algebras Azumaya Algebras Dennis Presotto November 4, 2015 1 Introduction: Central Simple Algebras Azumaya algebras are introduced as generalized or global versions of central simple algebras. So the first part

More information

BASIC GROUP THEORY : G G G,

BASIC GROUP THEORY : G G G, BASIC GROUP THEORY 18.904 1. Definitions Definition 1.1. A group (G, ) is a set G with a binary operation : G G G, and a unit e G, possessing the following properties. (1) Unital: for g G, we have g e

More information

Introduction to modules

Introduction to modules Chapter 3 Introduction to modules 3.1 Modules, submodules and homomorphisms The problem of classifying all rings is much too general to ever hope for an answer. But one of the most important tools available

More information

NOTES ON BASIC HOMOLOGICAL ALGEBRA 0 L M N 0

NOTES ON BASIC HOMOLOGICAL ALGEBRA 0 L M N 0 NOTES ON BASIC HOMOLOGICAL ALGEBRA ANDREW BAKER 1. Chain complexes and their homology Let R be a ring and Mod R the category of right R-modules; a very similar discussion can be had for the category of

More information

Part IV. Rings and Fields

Part IV. Rings and Fields IV.18 Rings and Fields 1 Part IV. Rings and Fields Section IV.18. Rings and Fields Note. Roughly put, modern algebra deals with three types of structures: groups, rings, and fields. In this section we

More information

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES CHAPTER 1. AFFINE ALGEBRAIC VARIETIES During this first part of the course, we will establish a correspondence between various geometric notions and algebraic ones. Some references for this part of the

More information

EXAMPLES AND EXERCISES IN BASIC CATEGORY THEORY

EXAMPLES AND EXERCISES IN BASIC CATEGORY THEORY EXAMPLES AND EXERCISES IN BASIC CATEGORY THEORY 1. Categories 1.1. Generalities. I ve tried to be as consistent as possible. In particular, throughout the text below, categories will be denoted by capital

More information

3. Categories and Functors We recall the definition of a category: Definition 3.1. A category C is the data of two collections. The first collection

3. Categories and Functors We recall the definition of a category: Definition 3.1. A category C is the data of two collections. The first collection 3. Categories and Functors We recall the definition of a category: Definition 3.1. A category C is the data of two collections. The first collection is called the objects of C and is denoted Obj(C). Given

More information

AN ALGEBRAIC APPROACH TO GENERALIZED MEASURES OF INFORMATION

AN ALGEBRAIC APPROACH TO GENERALIZED MEASURES OF INFORMATION AN ALGEBRAIC APPROACH TO GENERALIZED MEASURES OF INFORMATION Daniel Halpern-Leistner 6/20/08 Abstract. I propose an algebraic framework in which to study measures of information. One immediate consequence

More information

Chapter 2 Linear Transformations

Chapter 2 Linear Transformations Chapter 2 Linear Transformations Linear Transformations Loosely speaking, a linear transformation is a function from one vector space to another that preserves the vector space operations. Let us be more

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2 RAVI VAKIL CONTENTS 1. Where we were 1 2. Yoneda s lemma 2 3. Limits and colimits 6 4. Adjoints 8 First, some bureaucratic details. We will move to 380-F for Monday

More information

Exploring the Exotic Setting for Algebraic Geometry

Exploring the Exotic Setting for Algebraic Geometry Exploring the Exotic Setting for Algebraic Geometry Victor I. Piercey University of Arizona Integration Workshop Project August 6-10, 2010 1 Introduction In this project, we will describe the basic topology

More information

3.1. Derivations. Let A be a commutative k-algebra. Let M be a left A-module. A derivation of A in M is a linear map D : A M such that

3.1. Derivations. Let A be a commutative k-algebra. Let M be a left A-module. A derivation of A in M is a linear map D : A M such that ALGEBRAIC GROUPS 33 3. Lie algebras Now we introduce the Lie algebra of an algebraic group. First, we need to do some more algebraic geometry to understand the tangent space to an algebraic variety at

More information

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples Chapter 3 Rings Rings are additive abelian groups with a second operation called multiplication. The connection between the two operations is provided by the distributive law. Assuming the results of Chapter

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics PICARD VESSIOT EXTENSIONS WITH SPECIFIED GALOIS GROUP TED CHINBURG, LOURDES JUAN AND ANDY R. MAGID Volume 243 No. 2 December 2009 PACIFIC JOURNAL OF MATHEMATICS Vol. 243,

More information

Homework #05, due 2/17/10 = , , , , , Additional problems recommended for study: , , 10.2.

Homework #05, due 2/17/10 = , , , , , Additional problems recommended for study: , , 10.2. Homework #05, due 2/17/10 = 10.3.1, 10.3.3, 10.3.4, 10.3.5, 10.3.7, 10.3.15 Additional problems recommended for study: 10.2.1, 10.2.2, 10.2.3, 10.2.5, 10.2.6, 10.2.10, 10.2.11, 10.3.2, 10.3.9, 10.3.12,

More information

x y B =. v u Note that the determinant of B is xu + yv = 1. Thus B is invertible, with inverse u y v x On the other hand, d BA = va + ub 2

x y B =. v u Note that the determinant of B is xu + yv = 1. Thus B is invertible, with inverse u y v x On the other hand, d BA = va + ub 2 5. Finitely Generated Modules over a PID We want to give a complete classification of finitely generated modules over a PID. ecall that a finitely generated module is a quotient of n, a free module. Let

More information

5 Dedekind extensions

5 Dedekind extensions 18.785 Number theory I Fall 2016 Lecture #5 09/22/2016 5 Dedekind extensions In this lecture we prove that the integral closure of a Dedekind domain in a finite extension of its fraction field is also

More information

3. The Sheaf of Regular Functions

3. The Sheaf of Regular Functions 24 Andreas Gathmann 3. The Sheaf of Regular Functions After having defined affine varieties, our next goal must be to say what kind of maps between them we want to consider as morphisms, i. e. as nice

More information