Screening mass of gluons in presence of external Abelian chromomagnetic field

Size: px
Start display at page:

Download "Screening mass of gluons in presence of external Abelian chromomagnetic field"

Transcription

1 Screening mass of gluons in presence of external Abelian chromomagnetic field N. V. Kolomoyets, V. V. Skalozub Dnepropetrovsk National University Ukraine December 5, 2018 N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 1/28

2 Magnetic Mass Magnetic (electric) mass shows how fast magetic (electric) field decreases with distance in plasma. F µν = C(r) e mk r k (1) m = 1, λ screening length (2) λ Example: QED m 2 el = 1 3 e2 T 2 electric (Debye) mass (3) m 2 magn = 0 magnetic mass (4) Screened Long range N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 2/28

3 Magnetic Mass in SU(N) Gauge Theory F µν = 3 a=1 F (a) µν t a, t a generators of SU(N) group (5) 1-loop calculations: m 2 el = 1 ( 3 g2 T 2 N + N ) f 2 m 2 magn = 0 // D. Gross, R. Pisarski, and L. Yaffe, Rev. Mod. Phys. 53, 43 (1981) (6) (7) Higher orders, nonperturbative calculations: m 2 magn g 4 T 2 (8) m magn = 0 is not excluded N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 3/28

4 Hypothesis: not all color components of chromomagnetic field contribute to the magnetic mass N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 4/28

5 Magnetic Mass in the Presence of External Field External chromomagnetic field: H a µ = Hδ µ3 δ a3 High temperature: gh/t 2 << 1 SU(2) Neutral gluon field: m 2 el g2 T 2 ( 1 C gh/t ), m 2 magn = 0 (9) // M. Bordag and V. Skalozub, Phys. Rev. D 75, (2007) [hep-th/ ] // S. Antropov, M. Bordag, V. Demchik and V. Skalozub, Int. J. Mod. Phys. A 26, 4831 (2011) [arxiv: [hep-ph]] Color-charged gluon fields: m 2 el g2 T 2 ( 1 C gh/t gh g 2 T m 2 magn g 4 T 2 ), m 2 magn g 2 T gh (10) // M. Bordag and V. Skalozub, Phys. Rev. D 77, (2008) [arxiv: [hep-th]] // M. Bordag and V. Skalozub, Phys. Rev. D 85, (2012) [arxiv: [hep-th]] Spontaneous field generation N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 5/28

6 Magnetic Mass on the Lattice SU(2) 1 T. A. DeGrand and D. Toussaint, The Behavior of Nonabelian Magnetic Fields at High Temperature, Phys. Rev. D 25, 526 (1982) Screening of the chromomagnetic field of the monopole-antimonopole string was shown Color structure could not be clarified by this method 2 S. Antropov, M. Bordag, V. Demchik and V. Skalozub, Long range chromomagnetic fields at high temperature, Int. J. Mod. Phys. A 26, 4831 (2011) [arxiv: [hep-ph]] Zero magnetic mass of the Abelian chromomagnetic field was shown Non-Abelian components of the chromomagnetic field were not investigated N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 6/28

7 Magetic Mass: Analytical Calculations vs Lattice m 0 m ch 0 m m 2 g 4 T 2 neut = 0 m 2 ch g2 T gh Perturb. On the lattice Perturb. On the lattice Perturb. The aim of this investigation: to show that m magn is produced by the charged components of the gluon field on the lattice N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 7/28

8 Quantum Gluodynamics on the Lattice Continuous Minkovsky space-time Euclidean 4D discrete lattice Continuous operators Discrete operators on the lattice Gluon fields SU(N) matrices at the links of the lattice Expectation value of a measured quantity O: O = 1 DU O[U]e S[U] O 1 O[U k ] (11) Z K U k Z = DU e S[U], DU = du µ(x), configurations U k are distributed with probability e S[U k ]. x,µ Lattice Wilson action: S W = β µ>ν a 0 S W 1 4g 2 x [ 1 1 N Re Tr U µν ] (12) d 4 x F (c) µν (x)f (c) µν (x) (13) U µν (x) = U µ (x)u ν (x + ˆµ)U µ(x + ˆν)U ν(x) plaquette. (14) N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 8/28

9 Idea of the investigation: Two external chromomagnetic fields are introduced on the lattice: field of monopole-antimonopole string; Abelan field flux. Screening of combination of that fields is investigated. N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 9/28

10 Monopole-Antimonopole String on the Lattice S = β n µ>ν Ξ µν (n) Z(N) // T. A. DeGrand and D. Toussaint // M. Srednicki and L. Susskind, Nucl. Phys. B179, 239 (1981) [ 1 1 ] N Re Tr U µν(n)ξ µν (n), Center of the SU(N) group: Z(N) = { N 1 I} SU(2) case: Z(2) = {1 I, 1 I} Ξ µν (n) I Ξ µν (n) = I if string U µν (n) if x = 0, y = 0, z, t SU(3) case: Z(3) = { e 2 3 πi I, 1 I, e 2 3 πi I} N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 10/28

11 Abelian Field Flux on the Lattice Plaquette: U µν (x) = U µ (x)u ν (x + ˆµ)U µ(x + ˆν)U ν(x) U µ (n) = e iaaµ(n) // S. Antropov et al. } U µν (n) = e ia2 F µν(n) U xy = e ia2 (H z+h ext z ) = U xy e ia2 H ext z U y(0, n y, n z, n t ) = U y (0, n y, n z, n t ) e iϕ Twisted boundary conditions: U y (N x, n y, n z, n t ) = U y (0, n y, n z, n t ) e iϕ, U µ (N x, n y, n z, n t ) = U µ (0, n y, n z, n t ), µ y, ϕ = a 2 N x H ext z U µ (n x, N y, n z, n t ) = U µ (n x, 0, n z, n t ), U µ (n x, n y, N z, n t ) = U µ (n x, n y, 0, n t ), U µ (n x, n y, n z, N t ) = U µ (n x, n x, n z, 0). e iϕ = e iϕ 3σ 3 /2 = ( e iϕ 3 /2 0 0 e iϕ 3/2 ) N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 11/28

12 Abelian Field Flux on the Lattice SU(3) e iϕ = e i(ϕ 3λ 3 +ϕ 8 λ 8 )/2 = e i(ϕ 3+ϕ 8 / 3)/ e i( ϕ 3+ϕ 8 / 3)/ e iϕ 8/ 3 (15) N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 12/28

13 Ext. Field through the Flux vs Ext. Field through the Strength TBC Cosmai & Cea // P. Cea and L. Cosmai, Phys. Rev. D 60, U µν (n) = e ia2 F µν(n) a 2 F xy (n) a 2 [ F xy (n) + Hz ext ] U µ (n) = e iaaµ(n) (1999) [hep-lat/ ] A µ (n) A µ (n) + H ext z xδ µ2 t 3 /2 U µ (x + N x, y, z, t) = U µ (x, y, z, t) Hz ext N x a = 2πk, k Z 2 N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 13/28

14 Outline of the Investigation Lattices: N t N 3, N t = const Measured quantity: U = Re Tr U µν Investigated quantity: f(n) = U field U 0 U µν (n) = e ia2 F µν(n) 1 + ia 2 F µν (n), a 0 (16) U µν (n) ia 2 F µν (n) F (ϕ) = T ln Z(ϕ), free energy, Z(ϕ) = Z(0) S(ϕ) = S(0) + 1 n S(ϕ) n! ϕ n n Z(ϕ) = DU e S(0) e Sϕ(ϕ) F (ϕ) = T S ϕ (ϕ) = T (S(ϕ) S(0)) (17) DU e S(ϕ) (18) ϕ=0 ϕ n = S(0) + S ϕ (ϕ) (19) f(n) F (n) β Z(ϕ) Z(0) = e Sϕ(ϕ) (20) (21) N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 14/28

15 Outline of the Investigation Lattices: N t N 3, N t = const Measured quantity: U = Re Tr U µν Investigated quantity: f(n) = U field U 0 Possibilities for f: f 1/N 2 flux tubes, the flux is conserved; f 1/N 4 Coulombic behavior, flux spreads out over the available area; f e kn 2 screening of the field; k = m 2 magn; f 1/N spontaneous field generation, flux increases with distance. Simulations are performed in absence of external Abelian field flux ϕ; in presence of external Abelian field flux ϕ: ϕ is directed parallel to the monopole-antimonopole string. N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 15/28

16 Simulations Setup; SU(2) Lattices used: 4 N 3, N = 6, 8,..., 72 External Abelian field flux ϕ = 0.08 ( 10 4 MeV 2 ) β = (T 1.2 GeV) β = (T 1.9 GeV) β = (T 2.3 GeV) Simulations are performed with the QCDGPU program ( V. Demchik, N. K., Comp. Sc. and Appl.,1, 1 (2014) [arxiv:hep-lat/ ]) N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 16/28

17 χ 2 -analysis of the Data log f N f i = U field U 0 i The data are fitted through minimization of χ 2 function: K χ 2 [y i log f(n i ; a)] 2 (a) =, (22) i=1 σ 2 i y i = log f i, f(n i ; a) = A N b e kn q. χ 2 min = χ2 (â) χ 2 ν; ν = K L; L = Length a Hypothesis testing: H 0 : f(n i ; a) describes the data; χ 2 min χ2 ν;0.05 H 1 : f(n i ; a) does not describe the data. χ 2 min > χ2 ν;0.05 Functions describing the data χ 2 = χ 2 (a) χ 2 min χ2 L χ 2 (a) χ 2 min + χ2 L; % CIs for a CIs for screening parameters N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 17/28

18 SU(2) Results: Data at ϕ = 0 f(n) = U field U ϕ = 0, β = ϕ = 0, β = ϕ = 0, β = ϕ = 0, β = ϕ = 0, β = ϕ = 0, β = f log f N N N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 18/28

19 SU(2) Results: Fitting at ϕ = 0 Function β = χ 2 min χ2 ν;0.05 a / r ˆk ± 2σ CI 10 2 β = χ 2 min χ2 ν;0.05 a / r ˆk ± 2σ CI 10 2 β = χ 2 min χ2 ν;0.05 a / r ˆk ± 2σ CI 10 2 A/N A/N A/N A e kn ± ± ± 8.0 A e kn ± ± ± 0.45 (A/N) e kn ± ± ± 8.0 (A/N) e kn ± ± ± 0.45 (A/N 2 ) e kn ± ± ± 8.0 (A/N 2 ) e kn ± ± ± 0.45 (A/N 4 ) e kn ± ± ± 7.96 (A/N 4 ) e kn ± ± ± 0.45 N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 19/28

20 SU(2) Results: Fitting at ϕ = 0 Function β = χ 2 min χ2 ν;0.05 a / r ˆk ± 2σ CI 10 2 β = χ 2 min χ2 ν;0.05 a / r ˆk ± 2σ CI 10 2 β = χ 2 min χ2 ν;0.05 a / r ˆk ± 2σ CI 10 2 A/N A/N A/N A e kn ± ± ± 8.0 A e kn ± ± ± 0.45 (A/N) e kn ± ± ± 8.0 (A/N) e kn ± ± ± 0.45 (A/N 2 ) e kn ± ± ± 8.0 (A/N 2 ) e kn ± ± ± 0.45 (A/N 4 ) e kn ± ± ± 7.96 (A/N 4 ) e kn ± ± ± 0.45 N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 20/28

21 SU(2) Results: Data at ϕ = 0.08 f(n) = U field U ϕ = 0, β = ϕ = 0, β = ϕ = 0, β = ϕ = 0. 08, β = ϕ = 0. 08, β = ϕ = 0. 08, β = ϕ = 0, β = ϕ = 0, β = ϕ = 0, β = ϕ = 0. 08, β = ϕ = 0. 08, β = ϕ = 0. 08, β = f log f N N N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 21/28

22 SU(2) Results: Fitting at ϕ = 0.08 β = β = β = Function χ 2 min χ2 ν;0.05 a /r χ 2 min χ2 ν;0.05 a /r χ 2 min χ2 ν;0.05 a /r A/N b (A/N b ) e kn (A/N b ) e kn A e B/N e kn B = 20.3 ± 2.64 k = (1.09 ± 0.91) 10 2 B = 20.1 ± 1.84 k = (1.08 ± 0.75) 10 2 B = 21.3 ± 2.01 k = (6.90 ± 6.76) B, GeV k, GeV T, GeV T, GeV N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 22/28

23 Comparison of the results f(n) = A e B/N e kn χ 2 min β = χ2 ν;0.05 a /r χ 2 min β = χ2 ν;0.05 a /r χ 2 min β = χ2 ν;0.05 a /r ϕ = B = 2.81 ± 37.6 k = (6.83 ± 5.76) 10 1 B = 4.95 ± 14.2 k = (6.29 ± 2.46) 10 1 B = 5.04 ± 23.9 k = (4.92 ± 3.66) 10 1 ϕ = B = 20.3 ± 2.64 k = (1.09 ± 0.91) 10 2 B = 20.1 ± 1.84 k = (1.08 ± 0.75) 10 2 B = 21.3 ± 2.01 k = (6.90 ± 6.76) B, GeV k, GeV m 0 = 1.26 ± 0.41 GeV m 0.08 = (1.83 ± 0.87) 10 2 GeV at 95% CL T, GeV T, GeV N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 23/28

24 SU(3) Results: Data at ϕ = 0 4 N 3 lattices, N = 6,..., 88 f(l s ) β = 6.4 (T 580 MeV) L s χ 2 = 20.2 χ 2 ν;0.05 = 32.7 b = 2.00 ± 0.02 flux tubes χ 2 > χ 2 ν;0.05 rejection at 95% CL N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 24/28

25 SU(3) Results: Data at ϕ = 0 4 N 3 lattices, N = 6,..., 88 f(l s ) β = 6.4 (T 580 MeV) χ 2 = 3.05 χ 2 ν;0.05 = 12.6 b = 1.99 ± L s χ 2 = 20.2 χ 2 ν;0.05 = 32.7 b = 2.00 ± 0.02 flux tubes χ 2 > χ 2 ν;0.05 rejection at 95% CL χ 2 = 2.24 χ 2 ν;0.05 = 12.6 b = (2.70 ± 0.32) 10 2 N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 25/28

26 Comparison with Literature SU(3) B. Grossman, S. Gupta, U. M. Heller and F. Karsch, Glueball - like screening masses in pure SU(3) at finite temperatures, Nucl. Phys. B 417, 289 (1994) [hep-lat/ ]. External field sources are not introduced m el and m magn are measured through Plyakov loop correlators 2m magn = T = 1.5T c N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 26/28

27 Conclusions Both monopole-antimonopole string and external Abelian field flux are introduced on the lattice. Results of the previous investigations for SU(2) gauge group are reproduced. In SU(2) it is shown that adding of the Abelian field flux weakens the screening of the string field. This confirms that for the Abelian field m magn = 0; m magn of the monopole-antimonopole string field is produced by its non-abelian components. In SU(3) formation of flux tubes is obtained. N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 27/28

28 Conclusions Both monopole-antimonopole string and external Abelian field flux are introduced on the lattice. Results of the previous investigations for SU(2) gauge group are reproduced. In SU(2) it is shown that adding of the Abelian field flux weakens the screening of the string field. This confirms that for the Abelian field m magn = 0; m magn of the monopole-antimonopole string field is produced by its non-abelian components. In SU(3) formation of flux tubes is obtained. Thank you for your attention! N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 28/28

Gauge invariance of the Abelian dual Meissner effect in pure SU(2) QCD

Gauge invariance of the Abelian dual Meissner effect in pure SU(2) QCD arxiv:hep-lat/51127v1 15 Nov 25 Gauge invariance of the Abelian dual Meissner effect in pure SU(2) QCD Institute for Theoretical Physics, Kanazawa University, Kanazawa 92-1192, Japan and RIKEN, Radiation

More information

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

t Hooft-Polyakov Monopoles on the Lattice

t Hooft-Polyakov Monopoles on the Lattice t Hooft-Polyakov Monopoles on the Lattice Davis,Kibble,Rajantie&Shanahan, JHEP11(2000) Davis,Hart,Kibble&Rajantie, PRD65(2002) Rajantie, in progress 19 May 2005 University of Wales, Swansea Introduction

More information

String Dynamics in Yang-Mills Theory

String Dynamics in Yang-Mills Theory String Dynamics in Yang-Mills Theory Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics, Bern University Workshop on Strongly Interacting Field Theories Jena,

More information

Gluon propagators and center vortices at finite temperature arxiv: v1 [hep-lat] 26 Oct 2009

Gluon propagators and center vortices at finite temperature arxiv: v1 [hep-lat] 26 Oct 2009 ITEP-LAT-29-5 at finite temperature arxiv:9.4828v [hep-lat] 26 Oct 29 Integrated Information Center, Kochi University, Akebono-cho, Kochi, 78-852, Japan E-mail: tsaito@rcnp.osaka-u.ac.jp M. N. Chernodub

More information

A MONTE CARLO STUDY OF SU(2) YANG-MILLS THEORY AT FINITE

A MONTE CARLO STUDY OF SU(2) YANG-MILLS THEORY AT FINITE SLAC-PUB-2572 July 1980 CT) A MONTE CARLO STUDY OF SU(2) YANG-MILLS THEORY AT FINITE TEMPERATURE* Larry D. McLerran and Benjamin Svetitsky Stanford Linear Accelerator Center Stanford University, Stanford,

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

arxiv:hep-lat/ Feb 2000

arxiv:hep-lat/ Feb 2000 February 2000 Monopole classical solutions and the vacuum structure in lattice gauge theories Λ V.K. Mitrjushkin ariv:hep-lat/0002027 23 Feb 2000 Joint Institute for Nuclear Research, 141980 Dubna, Russia

More information

Orientifold planar equivalence.

Orientifold planar equivalence. Orientifold planar equivalence. An overview and some hints from the lattice**. Agostino Patella* Scuola Normale Superiore, Pisa INFN, Pisa 21/3/2007 * PhD advisor: Adriano Di Giacomo ** Based on: - A.

More information

Instantons and Monopoles in Maximal Abelian Projection of SU(2) Gluodynamics

Instantons and Monopoles in Maximal Abelian Projection of SU(2) Gluodynamics ITEP-95-34 hep-th/9506026 arxiv:hep-th/9506026v2 11 Jun 1995 Instantons and Monopoles in Maximal Abelian Projection of SU(2) Gluodynamics M.N. Chernodub and F.V. Gubarev ITEP, Moscow, 117259, Russia and

More information

Probing the non-perturbative dynamics of SU(2) vacuum

Probing the non-perturbative dynamics of SU(2) vacuum BARI-TH 34/99 Probing the non-perturbative dynamics of SU() vacuum Paolo Cea 1,, and Leonardo Cosmai, 1 Dipartimento di Fisica, Università di Bari, I-716 Bari, Italy INFN - Sezione di Bari, I-716 Bari,

More information

Deconfinement Phase Transition in QCD

Deconfinement Phase Transition in QCD Deconfinement Phase Transition in QCD Weicheng Lv Department of Physics, University of Illinois (Dated: May 5, 2008) At low energy, the interactions between quarks are so strong that they have to form

More information

The adjoint potential in the pseudoparticle approach: string breaking and Casimir scaling

The adjoint potential in the pseudoparticle approach: string breaking and Casimir scaling The adjoint potential in the pseudoparticle approach: string breaking and Casimir scaling Christian Szasz University of Erlangen-Nürnberg christian.szasz@theorie3.physik.uni-erlangen.de Marc Wagner Humboldt

More information

arxiv: v1 [hep-lat] 1 May 2011

arxiv: v1 [hep-lat] 1 May 2011 arxiv:1.17v1 [hep-lat] 1 May 11 Electric and magnetic Landau-gauge gluon propagators in finite-temperature SU() gauge theory Attilio Cucchieri ab, a a Instituto de Física de São Carlos, Universidade de

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract SUNY-NTG-01-03 Possible Color Octet Quark-Anti-Quark Condensate in the Instanton Model Thomas Schäfer Department of Physics, SUNY Stony Brook, Stony Brook, NY 11794 and Riken-BNL Research Center, Brookhaven

More information

arxiv: v2 [hep-lat] 13 Dec 2010

arxiv: v2 [hep-lat] 13 Dec 2010 BA-TH3, BI-TP/37 Chromoelectric flux tubes in QCD Mario Salvatore Cardaci,, Paolo Cea,, Leonardo Cosmai, 3, Rossella Falcone,, and Alessandro Papa 5, Dipartimento di Fisica dell Università della Calabria,

More information

Lattice Gauge Theory: A Non-Perturbative Approach to QCD

Lattice Gauge Theory: A Non-Perturbative Approach to QCD Lattice Gauge Theory: A Non-Perturbative Approach to QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 Non-Perturbative Tools in Quantum Field Theory Limited: 1 Semi-classical

More information

QCD Vacuum, Centre Vortices and Flux Tubes

QCD Vacuum, Centre Vortices and Flux Tubes QCD Vacuum, Centre Vortices and Flux Tubes Derek Leinweber Centre for the Subatomic Structure of Matter and Department of Physics University of Adelaide QCD Vacuum, Centre Vortices and Flux Tubes p.1/50

More information

Non-perturbative beta-function in SU(2) lattice gauge fields thermodynamics

Non-perturbative beta-function in SU(2) lattice gauge fields thermodynamics Non-perturbative beta-function in SU(2) lattice gauge fields thermodynamics O. Mogilevsky, N.N.Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 25243 Kiev, Ukraine

More information

arxiv: v1 [hep-lat] 18 Nov 2013

arxiv: v1 [hep-lat] 18 Nov 2013 t Hooft loop and the phases of SU(2) LGT arxiv:1311.437v1 [hep-lat] 18 Nov 213 G. Burgio Institut für Theoretische Physik Auf der Morgenstelle 14 7276 Tübingen Germany E-mail: giuseppe.burgio@uni-tuebingen.de

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Institut für Theoretische Physik, ETH Zürich, CH-809 Zürich, Switzerland E-mail: kurkela@phys.ethz.ch It is expected that incorporating the

More information

The Confinement Problem: Critical discussion of Tomboulis s approach

The Confinement Problem: Critical discussion of Tomboulis s approach The Confinement Problem: Critical discussion of Tomboulis s approach Erhard Seiler Max-Planck-Institut für Physik, München (Werner-Heisenberg-Institut) work done in collaboration with K. R. Ito (Setsunan

More information

A comparison between compact and noncompact formulation of the three dimensional lattice QED

A comparison between compact and noncompact formulation of the three dimensional lattice QED A comparison between compact and noncompact formulation of the three dimensional lattice QED Pietro Giudice giudice@cs.infn.it. niversità della Calabria & INN - Cosenza Swansea, 0/06/200 p.1/26 IN COLLABORATION

More information

arxiv:hep-lat/ v1 30 May 1995

arxiv:hep-lat/ v1 30 May 1995 MONOPOLES IN COMPACT U(1) ANATOMY OF THE PHASE TRANSITION A. Bode Physics Department, Humboldt University D-10115 Berlin, Germany E-mail: achim@eiche.physik.hu-berlin.de arxiv:hep-lat/9505026v1 30 May

More information

arxiv: v2 [hep-lat] 12 Jul 2007

arxiv: v2 [hep-lat] 12 Jul 2007 New Phases of SU(3) and SU(4) at Finite Temperature Joyce C. Myers and Michael C. Ogilvie Department of Physics, Washington University, St. Louis, MO 63130, USA (Dated: October 29, 2018) Abstract arxiv:0707.1869v2

More information

Suitable operator to test the Abelian dominance for sources in higher representation

Suitable operator to test the Abelian dominance for sources in higher representation Suitable operator to test the Abelian dominance for sources in higher representation Ryutaro Matsudo Graduate School of Science and Engineering, Chiba University May 31, 2018 New Frontiers in QCD 2018

More information

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies Nan Su p. 1 QCD Thermodynamics at Intermediate Coupling Nan Su Frankfurt Institute for Advanced Studies Collaborators: Jens O. Andersen & Lars E. Leganger (NTNU), Michael Strickland (Gettysburg) Phys.

More information

Pushing dimensional reduction of QCD to lower temperatures

Pushing dimensional reduction of QCD to lower temperatures Intro DimRed Center symm. SU(2) Outlook Pushing dimensional reduction of QCD to lower temperatures Philippe de Forcrand ETH Zürich and CERN arxiv:0801.1566 with A. Kurkela and A. Vuorinen Really: hep-ph/0604100,

More information

SU(2) Lattice Gauge Theory with a Topological Action

SU(2) Lattice Gauge Theory with a Topological Action SU(2) Lattice Gauge Theory with a Topological Action Lorinc Szikszai in collaboration with Zoltan Varga Supervisor Daniel Nogradi November 08, 2017 Outline Gauge Theory Lattice Gauge Theory Universality

More information

arxiv:hep-lat/ v1 18 May 2001

arxiv:hep-lat/ v1 18 May 2001 Leipzig NTZ 6/2001 LU-ITP 2001/011 UNITU THEP 15/2001 May 18, 2001 arxiv:hep-lat/0105021v1 18 May 2001 A lattice study of 3D compact QED at finite temperature M. N. Chernodub 1,a, E.-M. Ilgenfritz 2,b

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

Various Abelian Projections of SU(2) Lattice Gluodynamics and Aharonov-Bohm Effect in the Field Theory

Various Abelian Projections of SU(2) Lattice Gluodynamics and Aharonov-Bohm Effect in the Field Theory arxiv:hep-lat/9401027v1 24 Jan 1994 Various Abelian Projections of SU(2) Lattice Gluodynamics and Aharonov-Bohm Effect in the Field Theory M.N.Chernodub, M.I.Polikarpov, M.A.Zubkov Abstract We show that

More information

PoS(Confinement X)058

PoS(Confinement X)058 Confining gauge theories with adjoint scalars on R 3 S 1 University of Bielefeld E-mail: nishimura@physik.uni-bielefeld.de Michael Ogilvie Washington University, St. Louis E-mail: mco@physics.wustl.edu

More information

arxiv:hep-lat/ v2 5 Dec 1998

arxiv:hep-lat/ v2 5 Dec 1998 Confinement Physics in Quantum Chromodynamics arxiv:hep-lat/9807034v2 5 Dec 1998 H. Suganuma, H. Ichie, K. Amemiya and A. Tanaka Research Center for Nuclear Physics (RCNP), Osaka University Ibaraki, Osaka

More information

Many faces of the Landau gauge gluon propagator at zero and finite temperature

Many faces of the Landau gauge gluon propagator at zero and finite temperature Many faces of the Landau gauge gluon propagator at zero and finite temperature positivity violation, spectral density and mass scales Pedro Bicudo 3, Nuno Cardoso 3, David Dudal 2, Orlando Oliveira 1,

More information

arxiv:hep-lat/ v1 24 Jun 1998

arxiv:hep-lat/ v1 24 Jun 1998 COLO-HEP-407 arxiv:hep-lat/9806026v1 24 Jun 1998 Instanton Content of the SU(3) Vacuum Anna Hasenfratz and Chet Nieter Department of Physics University of Colorado, Boulder CO 80309-390 February 2008 Abstract

More information

arxiv: v2 [hep-lat] 23 Dec 2008

arxiv: v2 [hep-lat] 23 Dec 2008 arxiv:8.964v2 [hep-lat] 23 Dec 28, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud University of Münster, Institute for Theoretical Physics Wilhelm-Klemm-Strasse 9, D-4849 Münster, Germany E-mail: k_demm@uni-muenster.de

More information

Q Q dynamics with external magnetic fields

Q Q dynamics with external magnetic fields Q Q dynamics with external magnetic fields Marco Mariti University of Pisa 33rd International Symposium on Lattice Field Theory, Kobe 15/07/2015 In collaboration with: C. Bonati, M. D Elia, M. Mesiti,

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Aleksi Kurkela, Univ. of Helsinki Lattice 2008 arxiv:0704.1416, arxiv:0801.1566 with Philippe de Forcrand and Aleksi Vuorinen Aleksi Kurkela,Univ.

More information

Real time lattice simulations and heavy quarkonia beyond deconfinement

Real time lattice simulations and heavy quarkonia beyond deconfinement Real time lattice simulations and heavy quarkonia beyond deconfinement Institute for Theoretical Physics Westfälische Wilhelms-Universität, Münster August 20, 2007 The static potential of the strong interactions

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential Partha Bagchi Institute Of Physics December 9, 2014 XXI DAE-BRNS High Energy Physics Symposium 2014, 8-12 December 2014, IIT Guwahati,

More information

Progress in Gauge-Higgs Unification on the Lattice

Progress in Gauge-Higgs Unification on the Lattice Progress in Gauge-Higgs Unification on the Lattice Kyoko Yoneyama (Wuppertal University) in collaboration with Francesco Knechtli(Wuppertal University) ikos Irges(ational Technical University of Athens)

More information

The Equation of State for QCD with 2+1 Flavors of Quarks

The Equation of State for QCD with 2+1 Flavors of Quarks The Equation of State for QCD with 2+1 Flavors of Quarks arxiv:hep-lat/0509053v1 16 Sep 2005 C. Bernard a, T. Burch b, C. DeTar c, Steven Gottlieb d, U. M. Heller e, J. E. Hetrick f, d, F. Maresca c, D.

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

Gluon Propagator and Gluonic Screening around Deconfinement

Gluon Propagator and Gluonic Screening around Deconfinement Gluon Propagator and Gluonic Screening around Deconfinement Tereza Mendes Instituto de Física de São Carlos University of São Paulo Work in collaboration with Attilio Cucchieri Screening at High T At high

More information

Electric Screening Mass of the Gluon with Gluon Condensate at Finite Temperature

Electric Screening Mass of the Gluon with Gluon Condensate at Finite Temperature USM-TH-80 Electric Screening Mass of the Gluon with Gluon Condensate at Finite Temperature arxiv:hep-ph/9906510v1 25 Jun 1999 Iván Schmidt 1 and Jian-Jun Yang 1,2 1 Departamento de Física, Universidad

More information

Some selected results of lattice QCD

Some selected results of lattice QCD Some selected results of lattice QCD Heidelberg, October 12, 27 Kurt Langfeld School of Mathematics and Statistics University of Plymouth p.1/3 Glueball spectrum: no quarks (quenched approximation) 12

More information

Scale hierarchy in high-temperature QCD

Scale hierarchy in high-temperature QCD Scale hierarchy in high-temperature QCD Philippe de Forcrand ETH Zurich & CERN with Oscar Åkerlund (ETH) Twelfth Workshop on Non-Perturbative QCD, Paris, June 2013 QCD is asymptotically free g 2 4 = High

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

arxiv:hep-lat/ v1 13 Sep 1995

arxiv:hep-lat/ v1 13 Sep 1995 Submitted to Phys. Rev. D TRI-PP-95-62 Abelian dominance of chiral symmetry breaking in lattice QCD Frank X. Lee, R.M. Woloshyn TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 arxiv:hep-lat/9509028v1

More information

Lattice computation for the QCD Lambda parameter

Lattice computation for the QCD Lambda parameter Lattice computation for the QCD Lambda parameter twisted gradient flow scheme for quenched system Issaku Kanamori (Hiroshima Univ.) Workshop on Hadron Physics & QCD July 17, 2017 at Academia Sineca based

More information

Analytic continuation from an imaginary chemical potential

Analytic continuation from an imaginary chemical potential Analytic continuation from an imaginary chemical potential A numerical study in 2-color QCD (hep-lat/0612018, to appear on JHEP) P. Cea 1,2, L. Cosmai 2, M. D Elia 3 and A. Papa 4 1 Dipartimento di Fisica,

More information

Interaction of electric charges in (2+1)D magnetic dipole gas

Interaction of electric charges in (2+1)D magnetic dipole gas ITEP-TH-9/ Interaction of electric charges in (+)D magnetic dipole gas arxiv:hep-th/697v 4 Jun M.N. Chernodub Institute of Theoretical and Experimental Physics, B.Cheremushkinskaya 5, Moscow, 759, Russia

More information

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel Effective Field Theory Seminar Technische Universität München, Germany Marc Wagner, Owe Philipsen

More information

New Mexico State University & Vienna University of Technology

New Mexico State University & Vienna University of Technology New Mexico State University & Vienna University of Technology work in progress, in coop. with Michael Engelhardt 25. Juni 2014 non-trivial QCD vacuum project out important degrees of freedom start with

More information

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice Coulomb gauge studies of SU() Yang-Mills theory on the lattice a,b, Ernst-Michael Ilgenfritz a, Michael Müller-Preussker a and Andre Sternbeck c a Humboldt Universität zu Berlin, Institut für Physik, 489

More information

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory Continuity of the Deconfinement Transition in (Super) Yang Mills Theory Thomas Schaefer, North Carolina State University 1.0 1.0 1.0 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0 0.5 0.0 0.5 1.0 0.5

More information

Spontaneous magnetization of the vacuum and the strength of the magnetic field in the hot Universe

Spontaneous magnetization of the vacuum and the strength of the magnetic field in the hot Universe arxiv:1202.3895v1 [hep-ph] 17 Feb 2012 Spontaneous magnetization of the vacuum and the strength of the magnetic field in the hot Universe E. Elizalde a and V. Skalozub b a Institute for Space Science,

More information

Termodynamics and Transport in Improved Holographic QCD

Termodynamics and Transport in Improved Holographic QCD Termodynamics and Transport in Improved Holographic QCD p. 1 Termodynamics and Transport in Improved Holographic QCD Francesco Nitti APC, U. Paris VII Large N @ Swansea July 07 2009 Work with E. Kiritsis,

More information

Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge

Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge hep-lat/0008026 NYU-TH-PH-19.8.00 BI-TP 2000/19 arxiv:hep-lat/0008026v1 31 Aug 2000 Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge Attilio Cucchieri and Daniel Zwanziger

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Isospin and Electromagnetism

Isospin and Electromagnetism Extreme Scale Computing Workshop, December 9 11, 2008 p. 1/11 Isospin and Electromagnetism Steven Gottlieb Extreme Scale Computing Workshop, December 9 11, 2008 p. 2/11 Questions In the exascale era, for

More information

Contact interactions in string theory and a reformulation of QED

Contact interactions in string theory and a reformulation of QED Contact interactions in string theory and a reformulation of QED James Edwards QFT Seminar November 2014 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Worldline formalism

More information

arxiv: v1 [hep-lat] 25 Apr 2012

arxiv: v1 [hep-lat] 25 Apr 2012 arxiv:14.5586v1 [hep-lat] 5 Apr 1 Dual Meissner effect and non-abelian dual superconductivity in SU(3) Yang-Mills theory High Energy Accelerator Research Organization (KEK) E-mail: Akihiro.Shibata@kek.jp

More information

Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates

Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates Amir H. Fatollahi Department of Physics, Alzahra University, P. O. Box 19938, Tehran 91167, Iran fath@alzahra.ac.ir Abstract

More information

Light quark masses, chiral condensate and quark-gluon condensate in quenched lattice QCD with exact chiral symmetry

Light quark masses, chiral condensate and quark-gluon condensate in quenched lattice QCD with exact chiral symmetry NTUTH-03-505C May 2003 arxiv:hep-lat/0305016v1 19 May 2003 Light quark masses, chiral condensate and quark-gluon condensate in quenched lattice QCD with exact chiral symmetry Ting-Wai Chiu and Tung-Han

More information

arxiv:hep-lat/ v1 29 Sep 1997

arxiv:hep-lat/ v1 29 Sep 1997 1 Topology without cooling: instantons and monopoles near to deconfinement M. Feurstein a, E.-M. Ilgenfritz b, H. Markum a, M. Müller-Preussker b and S. Thurner a HUB EP 97/66 September 19, 1997 arxiv:hep-lat/9709140v1

More information

Quasi-particle degrees of freedom in finite temperature SU(N) gauge theories

Quasi-particle degrees of freedom in finite temperature SU(N) gauge theories Quasi-particle degrees of freedom in finite temperature SU(N) gauge theories P. Castorina a,b, V. Greco a,c, D. Jaccarino a,c,d, D. Zappalà b1 a Dipart. Fisica, Università di Catania, Via S. Sofia 64,

More information

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT BI-TP 2000/41 Quark Mass and Flavour Dependence of the QCD Phase Transition F. Karsch, E. Laermann and A. Peikert Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany ABSTRACT We analyze

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Prepotential Formulation of Lattice Gauge Theory

Prepotential Formulation of Lattice Gauge Theory of Lattice Gauge Theory and Ramesh Anishetty Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India E-mail: indrakshi@imsc.res.in, ramesha@imsc.res.in Within the Hamiltonian formulation

More information

arxiv:hep-lat/ v1 17 Jan 2000

arxiv:hep-lat/ v1 17 Jan 2000 ADP-00-03/T391 hep-lat/0001018 Calibration of Smearing and Cooling Algorithms in SU(3)-Color Gauge Theory arxiv:hep-lat/0001018v1 17 Jan 2000 Frédéric D.R. Bonnet 1, Patrick Fitzhenry 1, Derek B. Leinweber

More information

QGP, Hydrodynamics and the AdS/CFT correspondence

QGP, Hydrodynamics and the AdS/CFT correspondence QGP, Hydrodynamics and the AdS/CFT correspondence Adrián Soto Stony Brook University October 25th 2010 Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT October 25th 2010 1 / 18 Outline

More information

The three-quark potential and perfect Abelian dominance in SU(3) lattice QCD

The three-quark potential and perfect Abelian dominance in SU(3) lattice QCD The three-quark potential and perfect Abelian dominance in SU(3) lattice QCD, Department of Physics & Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kitashirakawaoiwake,

More information

Chiral symmetry breaking, instantons, and monopoles

Chiral symmetry breaking, instantons, and monopoles Chiral symmetry breaking, instantons, and monopoles Adriano Di Giacomo 1 and Masayasu Hasegawa 2 1 University of Pisa, Department of Physics and INFN 2 Joint Institute for Nuclear Research, Bogoliubov

More information

PoS(LAT2005)324. D-branes and Topological Charge in QCD. H. B. Thacker University of Virginia

PoS(LAT2005)324. D-branes and Topological Charge in QCD. H. B. Thacker University of Virginia D-branes and Topological Charge in QCD University of Virginia E-mail: hbt8r@virginia.edu The recently observed long-range coherent structure of topological charge fluctuations in QCD is compared with theoretical

More information

Quantum Nambu Geometry in String Theory

Quantum Nambu Geometry in String Theory in String Theory Centre for Particle Theory and Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, UK E-mail: chong-sun.chu@durham.ac.uk Proceedings of the Corfu Summer Institute

More information

arxiv: v1 [nucl-th] 4 Nov 2018

arxiv: v1 [nucl-th] 4 Nov 2018 arxiv:1811.0139v1 [nucl-th] 4 Nov 018 * Department of physics and astronomy, Wayne State University, Detroit, MI, USA E-mail: kumar.amit@wayne.edu Abhijit Majumder Department of physics and astronomy,

More information

Beta function of three-dimensional QED

Beta function of three-dimensional QED Beta function of three-dimensional QED, Ohad Raviv, and Yigal Shamir Raymond and Beverly School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel E-mail: bqs@julian.tau.ac.il We have

More information

Superinsulator: a new topological state of matter

Superinsulator: a new topological state of matter Superinsulator: a new topological state of matter M. Cristina Diamantini Nips laboratory, INFN and Department of Physics and Geology University of Perugia Coll: Igor Lukyanchuk, University of Picardie

More information

The SU(2) quark-antiquark potential in the pseudoparticle approach

The SU(2) quark-antiquark potential in the pseudoparticle approach The SU(2) quark-antiquark potential in the pseudoparticle approach Marc Wagner mcwagner@theorie3.physik.uni-erlangen.de http://theorie3.physik.uni-erlangen.de/ mcwagner 3 th March 26 Outline PP = pseudoparticle

More information

arxiv: v1 [hep-lat] 15 Nov 2016

arxiv: v1 [hep-lat] 15 Nov 2016 Few-Body Systems manuscript No. (will be inserted by the editor) arxiv:6.966v [hep-lat] Nov 6 P. J. Silva O. Oliveira D. Dudal P. Bicudo N. Cardoso Gluons at finite temperature Received: date / Accepted:

More information

Generalized Gaugino Condensation: Discrete R-Symmetries and Supersymmetric Vacua

Generalized Gaugino Condensation: Discrete R-Symmetries and Supersymmetric Vacua Generalized Gaugino Condensation: Discrete R-Symmetries and Supersymmetric Vacua John Kehayias Department of Physics University of California, Santa Cruz SUSY 10 August 23, 2010 Bonn, Germany [1] Generalized

More information

Aharonov Bohm Effect in Lattice Abelian Higgs Theory

Aharonov Bohm Effect in Lattice Abelian Higgs Theory KANAZAWA-97-08 Aharonov Bohm Effect in Lattice Abelian Higgs Theory M.N. Chernodub a,b, F.V. Gubarev a and M.I. Polikarpov a,b a ITEP, B.Cheremushkinskaya 25, Moscow, 117259, Russia b Department of Physics,

More information

The lattice SU(2) confining string as an Abrikosov vortex

The lattice SU(2) confining string as an Abrikosov vortex ITEP-TH-43/99 KANAZAWA 99-22 The lattice SU(2) confining string as an Abrikosov vortex F. V. Gubarev a, E. M. Ilgenfritz b, M. I. Polikarpov a, T. Suzuki b a ITEP, B. Cheremushkinskaya 25, Moscow 117259,

More information

Monopole Condensation and Confinement in SU(2) QCD (1) Abstract

Monopole Condensation and Confinement in SU(2) QCD (1) Abstract KANAZAWA 93-09 Monopole Condensation and Confinement in SU(2) QCD (1) Hiroshi Shiba and Tsuneo Suzuki Department of Physics, Kanazawa University, Kanazawa 920-11, Japan (September 10, 2018) arxiv:hep-lat/9310010v1

More information

Topological symmetry breaking and the confinement of anyons. P.W. Irwin. Groupe de Physique des Particules, Département de Physique,

Topological symmetry breaking and the confinement of anyons. P.W. Irwin. Groupe de Physique des Particules, Département de Physique, Topological symmetry breaking and the confinement of anyons P.W. Irwin Groupe de Physique des Particules, Département de Physique, Université de Montréal, C.P. 6128 succ. centre-ville, Montréal, Québec,

More information

Ising Lattice Gauge Theory with a Simple Matter Field

Ising Lattice Gauge Theory with a Simple Matter Field Ising Lattice Gauge Theory with a Simple Matter Field F. David Wandler 1 1 Department of Physics, University of Toronto, Toronto, Ontario, anada M5S 1A7. (Dated: December 8, 2018) I. INTRODUTION Quantum

More information

Large N reduction in deformed Yang-Mills theories

Large N reduction in deformed Yang-Mills theories Large N reduction in deformed Yang-Mills theories Centro de Física do Porto, Universidade do Porto, Porto, Portugal E-mail: hvairinhos@fc.up.pt We explore, at the nonperturbative level, the large N equivalence

More information

arxiv:hep-ph/ v1 19 Feb 1999

arxiv:hep-ph/ v1 19 Feb 1999 ELECTRICAL CONDUCTION IN THE EARLY UNIVERSE arxiv:hep-ph/9902398v1 19 Feb 1999 H. HEISELBERG Nordita, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark E-mail: hh@nordita.dk The electrical conductivity has been

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

arxiv:hep-ph/ v1 31 May 1999

arxiv:hep-ph/ v1 31 May 1999 CCNY-HEP-99/4 hep-ph/9905569 arxiv:hep-ph/9905569v1 31 May 1999 Plasmon interactions in the quark-gluon plasma D. METAXAS and V.P. NAIR Physics Department City College of the City University of New York

More information

Exceptional Deconfinement in G(2) Gauge Theory

Exceptional Deconfinement in G(2) Gauge Theory Exceptional Deconfinement in G(2) Gauge Theory M. Pepe a and U.-J. Wiese b arxiv:hep-lat/6176v1 12 Oct 26 a Istituto Nazionale di Fisica Nucleare and Dipartimento di Fisica, Università di Milano-Bicocca,

More information

Gauge theories on a five-dimensional orbifold

Gauge theories on a five-dimensional orbifold arxiv:hep-lat/0509071v1 21 Sep 2005 and Burkhard Bunk Institut für Physik, Humboldt Universität, Newtonstr. 15, 12489 Berlin, Germany E-mail: knechtli@physik.hu-berlin.de, bunk@physik.hu-berlin.de Nikos

More information

arxiv: v1 [hep-lat] 14 Jan 2009

arxiv: v1 [hep-lat] 14 Jan 2009 Casimir energy in the compact QED on the lattice Oleg Pavlovsky and Maxim Ulybyshev Institute for Theoretical Problems of Microphysics, Moscow State University, Moscow, Russia E-mail: ovp@goa.bog.msu.ru

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

Chemical composition of the decaying glasma

Chemical composition of the decaying glasma Chemical composition of the decaying glasma Tuomas Lappi BNL tvv@quark.phy.bnl.gov with F. Gelis and K. Kajantie Strangeness in Quark Matter, UCLA, March 2006 Abstract I will present results of a nonperturbative

More information

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation V.V. Braguta ITEP 20 April, 2017 Outline: Introduction Details of the calculation Shear viscocity Fitting of the

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information