Recent Advances in State Constrained Optimal Control

Size: px
Start display at page:

Download "Recent Advances in State Constrained Optimal Control"

Transcription

1 Recent Advances in State Constrained Optimal Control Richard B. Vinter Imperial College London Control for Energy and Sustainability Seminar Cambridge University, 6th November 2009

2 Outline of the talk Overview of techniques for solving optimal control problems. The role of Filippov type estimates in state constrained optimal control Linear estimates for 1 state constraint. Linear estimates for multiple state constraints -: Counter-Examples. New Superlinear estimates for 2 state constraints. Optimality of estimate structure. Linear estimates for strictly convex velocity sets. Future directions. Joint work with Piernicola Bettiol and Alberto Bressan

3 The Classical Optimal Control Minimize g(x(1)) over functions u(.) : [0, 1] R m, and trajectories x(.) s.t. ẋ(t) = f(x(t), u(t)) for [0, 1] u(t) U for t [0, 1] and x(0) = x 0. Data: g : R n R, f : R n R m R n, U R m, x 0 R n. Traditional Application Areas 1. Aerospace: flight trajectories for planetary exploration 2. Resource economics: optimal harvesting (fishing, forestry,..) 3. Chemical engineering: optimize yield, purity etc.

4 Modern Day Applications Areas implementation of Predictive Control schemes and and closed loop response analysis path planning in air traffic control (trajories between way stations) hybrid controllers for wind turbines, engine management systems. In applications, optimal controls are calculated by means of numerical schemes bases on discretization. But continuous time optimal control has an important role: Control problems associated with the physical world are continuous Theory can tell us when when problems are degenerate, and computational schemes will be ill-conditioned Basis for high precision shooting methods Theory provides tests of local optimality for controls obtained by numerical methods

5 Hamilton Jacobi Methods (Dynamic Programming) Analyse minimizers via solutions to the Hamilton Jacobi equation { Minimize g(x(1)) P(0, x 0 ) over trajectories x(.) s.t. x(0) = x 0. Embed in family of problems, parameterized by initial data { Minimize g(x(1)) P(τ, ξ) over trajectories x(.) s.t. x(τ) = ξ. Define V(τ, ξ) = Inf(P(τ, ξ)) (Value Function) V(.,.) is a solution to { Vt (t, x) + min v F(x) V x (t, x) v = 0 (t, x) (0, 1) R n V(1, x) = g(x) x R n.

6 First Order Necessary Conditions Take an optimal pair ( x(.), ū(.)). Define H(x, p, u) = p f(x, u) (The Hamiltonian). Maximum Principle: There exists an arc p(.) and λ 0, s.t. (p(.), λ) 0 ṗ(t) = p(t) f x ( x(t), ū(t)) H( x(t), p(t), ū(t)) = max u U p(1) = λ g x ( x(1)) H( x(t), p(t), u) Widely used to solve optimal control problems, either directly or via numerical methods it inspires (Shooting Methods).

7 Enter State Constraints Consider state constrained control system ẋ(t) f(t, x(t), u(t)) for t [0, 1] u(t) U(t) for t [0, 1] x(t) A t [0, 1]. Assume functional inequality representation : A r i=1 {x hi (x) 0}. for some C 2 functions h i : R n R, i = 1,...,r. Given an arc x(.) : [0, 1] R n write h(x(.)) := max max {h 1 (x(t)) 0,..., h r (x(t)) 0} t [0,1] (the index of constraint violation )

8 Dynamic Programming for State Constrained Problems Minimize g(x(1)) over trajectories x(.) s.t. x(t) A x(0) = x 0. How does state constraint affect optimality conditions? Now, value function V(.,.) : [0, 1] R n R {+ } is a lsc solution to { Vt (t, x) + min v F(x) V x (t, x) v = 0 (t, x) (0, 1) int A V(1, x) = g(x) x A (the unique solution, in fact, in some technical sense)

9 State Constrained Max. Principle Take an optimal pair ( x(.), ū(.)). There exists an arc p(.), bounded variation multiplier µ 0 and λ 0, s.t. (p(.), µ, λ) 0 dµ/dt = 0 when x(t) int A ṗ(t) = p(t) f x ( x(t), ū(t) h x ( x(t))dµ/dt H( x(t), p(t), ū(t)) = max u U p(1) = λ g x ( x(1)). H( x(t), p(t), u) (Formally follows from inserting into cost the penalty term h(x(t))dµ/dt).)

10 The Degeneracy Issue for State Constrained Problems Conditions (Constraint Qualifications) must be imposed on the problem data to ensure: The cost multiplier is non-zero The value function is the unique solution to the Bellman equation adjoint variables in the Max. Principle can be interpreted as gradients of the value function. Typically these take the form: for each x A there exists u U s.t. h j (x) f(x, u) < 0 for active j. Inward Pointing Condition. Major theme in state constrained optimal control: Develop tools for analysing (and excluding!) degeneracy, under inward pointing conditions.

11 Standing Hypotheses Minimize g(x(1)) s.t ẋ(t) f(x(t), u(t)) and u(t) U h j (x(t)) 0 for j = 1,...,r. Assume, for some c > 0 such that f and g are C 1 functions U is a closed, bounded set f(x, u) c(1 + x ) and min u U max j I(x) hx(x) j f(x, u) < 0 for all x A. (I(x) is set of active indices.) Constraint Qualification.

12 Filippov Estimates for State Constrained Control Systems Important analytical tool for investigating non-degeneracy of optimality conditions, H-J characterizations of the value function, etc. Theorem 1 (Soner 86,.., Frankowska and Rampazzo 00) Assume standing hypotheses. Then, for any trajectory ˆx(.) : [0, 1] R n s.t. x(0) A(0), there exists a feasible trajectory x(.) such that x(0) = ˆx(0) ˆx(.) x(.) L K h(ˆx(.)), where h(ˆx(.)) := max {h 1 (ˆx(t)) 0,..., h r (ˆx(t)) 0} t [0,1] (K is a constant independent of ˆx(.).) Index of Constraint Violation

13 L 1 Estimates on the Controls Soner s estimate was used to show the value function satisfies the HJ equation. For establishing nondegeneracy of the Max. Principle (general case) we need something stronger: Theorem 2 (L 1 Control Estimates for 1 State Constraint) Assume standing hypotheses and r = 1 (one state constraint) Then, for any pair (ˆx(.), û(.)) s.t. ˆx(0) A(0), there exists a feasible pair (x(.), u(.)) such that x(0) = ˆx(0) and û(.) u(.) L 1 K h(ˆx(.)) (K does not depend on ˆx(.))

14 t ˆx(.) h + W set - modify velocity ˆx(.) here only Figure: Construction of the Feasible Trajectory Feasible trajectory x(.): u(t) = { v for t [ t, t + δ] W ū(t) otherwise where v is inward pointing control, W = {t d/dt h(ˆx(t)) > 0} and δ > 0 is chosen so that meas {[ t, t + δ] W } = c h(ˆx(.))

15 L 1 Control Estimates for 2 or more State Constraints? Conjecture Preceding L 1 control estimate is valid for multiple state constraints. Plausible, but 1 state constraint proof does not adapt! (At least five papers, over the past 12 years claim validity of this conjecture, but are all based on erroneous proofs!)

16 L 1 Control Estimate Counter-Example The set A Velocity Set F=f(x,U) Figure: Example where Linear L 1 Estimate is not Valid

17 L 1 Control Estimate Counter-Example, Cont. x 1 1 x 1 (.) ǫ 2 (0,0) 1 t 1 ˆx 1 (.) 2 Velocity Set F Figure: Example where L 1 control Estimate is not Valid

18 Counter-Example: Details f(x, u) = u, U = co ({(1, +2)}, {(1, 2)}, {(0, 0)}) A = {(y, x) R 2 x y} Then h(ˆx(.)) = ǫ and û(.) u(.) L 1 N (ˆx(t i+1 ) x(t i+1 )) (ˆx(t i ) x(t i )) i=1 2 ǫ N, where N = number of switches: 3 N 1 2 ( 1 ǫ + 1). So û(.) u(.) L 1 const. h(ˆx(.)) log h(ˆx(.)).

19 A Superlinear, L 1 Control Estimate Theorem 3 (h + log(h + ) Estimates For Two State Constraints) Assume r = 2 (Two State Constraints) f(x, U) closed, bounded; active h j (x) s lin. indep. and co f(x, U) int A for x A ( inward pointing ) Then, given any pair (ˆx(.), û(.)) with ˆx(0) A, there exists a feasible (x(, ), u(.)) such that x(0) = ˆx(0) and u(.) û(.) L 1 K h(x(.)) log e h(x(.)).

20 The Strictly Convex Case Theorem 4 (Strictly Convex F ) Assume r = 2 (two state constraints) f(x, U) R n is compact and strictly convex; active h j (x) s lin. indep. and co f(x, U) int A for x A ( inward pointing ) Then, given any (ˆx(.), û(.)) pair with ˆx(0) A, there exists a feasible (x(.), u(.)) such that x(0) = ˆx(0) and u(.) û(.) L 1 K h(ˆx(.)), Linear, L 1 Control Estimate!

21 Earlier Counter Example Recall earlier example: The set F The Set A Figure: Example where Linear L 1 Estimate is not Valid

22 Optimality of Estimates Consider earlier example f(x, U) = co {(1, +2), (1, 2), (0, 0)} A = {(y, x) R 2 x y} We showed: for any ǫ > 0, there exists a (ˆx(.), û(.)) pair s.t. ˆx(0) = 0, h(ˆx(.)) = ǫ and û(.) u(.) L 1 K h(ˆx(.)) log(h(ˆx(.))), for all (x(.), u(.)) pairs with x(0) = ˆx(0).

23 Optimality of Estimates, Cont. Data for example: satisfies hypotheses for Thm. 3 ( h + log h + estimate) violates strict convexity hypothesis of Thm. 4 (linear estimate) Implications Thm. 4 h(ˆx(.)) log h(ˆx(.)) estimate is optimal: for any constant K > 0, ǫ > 0 and modulus θ(.) : (0, ) (0, ) such that lim ǫ 0 θ(ǫ) ǫ log e (ǫ) 0, there exists an F -trajectory ˆx(.) such that such that h(ˆx(.)) ǫ and û(.) u(.) L 1 > K θ(h(ˆx(.)) for all feasible F -trajectories x(.) with left endpoint ˆx(0). Thm. 4 (linear, W 1,1 estimate): strict convexity hypothesis cannot be dropped

24 Concluding Remarks Filippov estimates have an important role in the derivation of optimality conditions for state constrained optimal control (first order necessary conditions and Hamilton Jacobi conditions). Linear estimates valid for single state constraint. It surprised the optimal control community that similar linear estimates are not valid, for multiple constraints. For two constraints (simple edge ) Filippov type estimates can be established involving a superlinear modulus h log(h) function. It remains an open question, what kinds of estimates are valid when there are 3 or more state constraints. The Holy Grail is this area is to validate L 1 estimates for control systems, when the constraint set is a general closed convex set (say) in R n.

25 Some references [1]. P. Bettiol, A. Bressan and R. Vinter, On Trajectories Satisfying a State Constraint: W 1,1 Estimates and Counter-Examples, SIAM J. Control and Optim. (submitted) [2]. P. Bettiol, A. Bressan and R. Vinter, Estimates for Trajectories Confined to a Cone in R n, SIAM J. Control and Optim. (submitted) [3]. P. Bettiol and R. Vinter, Sensitivity Interpretations of the Co-state Variable for Optimal Control Problems with State Constraints, SIAM J. Control and Optim. (in press). [4]. P. Bettiol and R. Vinter, Sensitivity Interpretations of the Co-state Variable for Optimal Control Problems with State Constraints, IEEE TAC (submitted). Richard Vinter (Investigator) and Piernicola Bettiol (RA1.A), Control for Energy and Sustainability Programme (Project Optimal Control ).

Neighboring feasible trajectories in infinite dimension

Neighboring feasible trajectories in infinite dimension Neighboring feasible trajectories in infinite dimension Marco Mazzola Université Pierre et Marie Curie (Paris 6) H. Frankowska and E. M. Marchini Control of State Constrained Dynamical Systems Padova,

More information

An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints

An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints S. Lopes, F. A. C. C. Fontes and M. d. R. de Pinho Officina Mathematica report, April 4, 27 Abstract Standard

More information

Normality and Nondegeneracy for Optimal Control Problems with State Constraints

Normality and Nondegeneracy for Optimal Control Problems with State Constraints Normality and Nondegeneracy for Optimal Control Problems with State Constraints Fernando Fontes, Hélène Frankowska To cite this version: Fernando Fontes, Hélène Frankowska. Normality and Nondegeneracy

More information

Joint work with Nguyen Hoang (Univ. Concepción, Chile) Padova, Italy, May 2018

Joint work with Nguyen Hoang (Univ. Concepción, Chile) Padova, Italy, May 2018 EXTENDED EULER-LAGRANGE AND HAMILTONIAN CONDITIONS IN OPTIMAL CONTROL OF SWEEPING PROCESSES WITH CONTROLLED MOVING SETS BORIS MORDUKHOVICH Wayne State University Talk given at the conference Optimization,

More information

Value Function and Optimal Trajectories for some State Constrained Control Problems

Value Function and Optimal Trajectories for some State Constrained Control Problems Value Function and Optimal Trajectories for some State Constrained Control Problems Hasnaa Zidani ENSTA ParisTech, Univ. of Paris-saclay "Control of State Constrained Dynamical Systems" Università di Padova,

More information

Value Function in deterministic optimal control : sensitivity relations of first and second order

Value Function in deterministic optimal control : sensitivity relations of first and second order Séminaire de Calcul Scientifique du CERMICS Value Function in deterministic optimal control : sensitivity relations of first and second order Hélène Frankowska (IMJ-PRG) 8mars2018 Value Function in deterministic

More information

Duality and dynamics in Hamilton-Jacobi theory for fully convex problems of control

Duality and dynamics in Hamilton-Jacobi theory for fully convex problems of control Duality and dynamics in Hamilton-Jacobi theory for fully convex problems of control RTyrrell Rockafellar and Peter R Wolenski Abstract This paper describes some recent results in Hamilton- Jacobi theory

More information

Journal of Differential Equations

Journal of Differential Equations J. Differential Equations 252 2012 1912 1933 Contents lists available at SciVerse ScienceDirect Journal of Differential Equations www.elsevier.com/locate/jde L estimates on trajectories confined to a closed

More information

Semiconcavity and optimal control: an intrinsic approach

Semiconcavity and optimal control: an intrinsic approach Semiconcavity and optimal control: an intrinsic approach Peter R. Wolenski joint work with Piermarco Cannarsa and Francesco Marino Louisiana State University SADCO summer school, London September 5-9,

More information

Normality and Nondegeneracy for Optimal Control Problems with State Constraints

Normality and Nondegeneracy for Optimal Control Problems with State Constraints Normality and Nondegeneracy for Optimal Control Problems with State Constraints Fernando Fontes, Hélène Frankowska To cite this version: Fernando Fontes, Hélène Frankowska. Normality and Nondegeneracy

More information

LINEAR-CONVEX CONTROL AND DUALITY

LINEAR-CONVEX CONTROL AND DUALITY 1 LINEAR-CONVEX CONTROL AND DUALITY R.T. Rockafellar Department of Mathematics, University of Washington Seattle, WA 98195-4350, USA Email: rtr@math.washington.edu R. Goebel 3518 NE 42 St., Seattle, WA

More information

8. Constrained Optimization

8. Constrained Optimization 8. Constrained Optimization Daisuke Oyama Mathematics II May 11, 2018 Unconstrained Maximization Problem Let X R N be a nonempty set. Definition 8.1 For a function f : X R, x X is a (strict) local maximizer

More information

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints.

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints. 1 Optimization Mathematical programming refers to the basic mathematical problem of finding a maximum to a function, f, subject to some constraints. 1 In other words, the objective is to find a point,

More information

Second Order Sufficient Conditions for Optimal Control Problems with Non-unique Minimizers

Second Order Sufficient Conditions for Optimal Control Problems with Non-unique Minimizers 2 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 2 WeA22. Second Order Sufficient Conditions for Optimal Control Problems with Non-unique Minimizers Christos Gavriel

More information

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems Robert M. Freund February 2016 c 2016 Massachusetts Institute of Technology. All rights reserved. 1 1 Introduction

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Optimal Control. Macroeconomics II SMU. Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112

Optimal Control. Macroeconomics II SMU. Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112 Optimal Control Ömer Özak SMU Macroeconomics II Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112 Review of the Theory of Optimal Control Section 1 Review of the Theory of Optimal Control Ömer

More information

Linear conic optimization for nonlinear optimal control

Linear conic optimization for nonlinear optimal control Linear conic optimization for nonlinear optimal control Didier Henrion 1,2,3, Edouard Pauwels 1,2 Draft of July 15, 2014 Abstract Infinite-dimensional linear conic formulations are described for nonlinear

More information

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles HYBRID PREDICTIVE OUTPUT FEEDBACK STABILIZATION OF CONSTRAINED LINEAR SYSTEMS Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides Department of Chemical Engineering University of California,

More information

Enhanced Fritz John Optimality Conditions and Sensitivity Analysis

Enhanced Fritz John Optimality Conditions and Sensitivity Analysis Enhanced Fritz John Optimality Conditions and Sensitivity Analysis Dimitri P. Bertsekas Laboratory for Information and Decision Systems Massachusetts Institute of Technology March 2016 1 / 27 Constrained

More information

ON LICQ AND THE UNIQUENESS OF LAGRANGE MULTIPLIERS

ON LICQ AND THE UNIQUENESS OF LAGRANGE MULTIPLIERS ON LICQ AND THE UNIQUENESS OF LAGRANGE MULTIPLIERS GERD WACHSMUTH Abstract. Kyparisis proved in 1985 that a strict version of the Mangasarian- Fromovitz constraint qualification (MFCQ) is equivalent to

More information

The Relation Between Pseudonormality and Quasiregularity in Constrained Optimization 1

The Relation Between Pseudonormality and Quasiregularity in Constrained Optimization 1 October 2003 The Relation Between Pseudonormality and Quasiregularity in Constrained Optimization 1 by Asuman E. Ozdaglar and Dimitri P. Bertsekas 2 Abstract We consider optimization problems with equality,

More information

Thuong Nguyen. SADCO Internal Review Metting

Thuong Nguyen. SADCO Internal Review Metting Asymptotic behavior of singularly perturbed control system: non-periodic setting Thuong Nguyen (Joint work with A. Siconolfi) SADCO Internal Review Metting Rome, Nov 10-12, 2014 Thuong Nguyen (Roma Sapienza)

More information

The Euler Method for Linear Control Systems Revisited

The Euler Method for Linear Control Systems Revisited The Euler Method for Linear Control Systems Revisited Josef L. Haunschmied, Alain Pietrus, and Vladimir M. Veliov Research Report 2013-02 March 2013 Operations Research and Control Systems Institute of

More information

Hamilton-Jacobi theory for optimal control problems on stratified domains

Hamilton-Jacobi theory for optimal control problems on stratified domains Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2010 Hamilton-Jacobi theory for optimal control problems on stratified domains Richard Charles Barnard Louisiana

More information

EXISTENCE AND UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH LINEAR PROGRAMS EMBEDDED

EXISTENCE AND UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH LINEAR PROGRAMS EMBEDDED EXISTENCE AND UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH LINEAR PROGRAMS EMBEDDED STUART M. HARWOOD AND PAUL I. BARTON Key words. linear programs, ordinary differential equations, embedded

More information

Hamilton-Jacobi-Bellman equations for optimal control processes with convex state constraints

Hamilton-Jacobi-Bellman equations for optimal control processes with convex state constraints Hamilton-Jacobi-Bellman equations for optimal control processes with convex state constraints Cristopher Hermosilla a, Richard Vinter b, Hasnaa Zidani c a Departamento de Matemática, Universidad Técnica

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

Delay-independent stability via a reset loop

Delay-independent stability via a reset loop Delay-independent stability via a reset loop S. Tarbouriech & L. Zaccarian (LAAS-CNRS) Joint work with F. Perez Rubio & A. Banos (Universidad de Murcia) L2S Paris, 20-22 November 2012 L2S Paris, 20-22

More information

In view of (31), the second of these is equal to the identity I on E m, while this, in view of (30), implies that the first can be written

In view of (31), the second of these is equal to the identity I on E m, while this, in view of (30), implies that the first can be written 11.8 Inequality Constraints 341 Because by assumption x is a regular point and L x is positive definite on M, it follows that this matrix is nonsingular (see Exercise 11). Thus, by the Implicit Function

More information

A Remark on IVP and TVP Non-Smooth Viscosity Solutions to Hamilton-Jacobi Equations

A Remark on IVP and TVP Non-Smooth Viscosity Solutions to Hamilton-Jacobi Equations 2005 American Control Conference June 8-10, 2005. Portland, OR, USA WeB10.3 A Remark on IVP and TVP Non-Smooth Viscosity Solutions to Hamilton-Jacobi Equations Arik Melikyan, Andrei Akhmetzhanov and Naira

More information

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Karush-Kuhn-Tucker Conditions Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given a minimization problem Last time: duality min x subject to f(x) h i (x) 0, i = 1,... m l j (x) = 0, j =

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

Solving Dual Problems

Solving Dual Problems Lecture 20 Solving Dual Problems We consider a constrained problem where, in addition to the constraint set X, there are also inequality and linear equality constraints. Specifically the minimization problem

More information

Chain differentials with an application to the mathematical fear operator

Chain differentials with an application to the mathematical fear operator Chain differentials with an application to the mathematical fear operator Pierre Bernhard I3S, University of Nice Sophia Antipolis and CNRS, ESSI, B.P. 145, 06903 Sophia Antipolis cedex, France January

More information

Dynamic Blocking Problems for Models of Fire Propagation

Dynamic Blocking Problems for Models of Fire Propagation Dynamic Blocking Problems for Models of Fire Propagation Alberto Bressan Department of Mathematics, Penn State University bressan@math.psu.edu Alberto Bressan (Penn State) Dynamic Blocking Problems 1 /

More information

Brockett s condition for stabilization in the state constrained case

Brockett s condition for stabilization in the state constrained case Brockett s condition for stabilization in the state constrained case R. J. Stern CRM-2839 March 2002 Department of Mathematics and Statistics, Concordia University, Montreal, Quebec H4B 1R6, Canada Research

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

Suboptimality of minmax MPC. Seungho Lee. ẋ(t) = f(x(t), u(t)), x(0) = x 0, t 0 (1)

Suboptimality of minmax MPC. Seungho Lee. ẋ(t) = f(x(t), u(t)), x(0) = x 0, t 0 (1) Suboptimality of minmax MPC Seungho Lee In this paper, we consider particular case of Model Predictive Control (MPC) when the problem that needs to be solved in each sample time is the form of min max

More information

Necessary optimality conditions for optimal control problems with nonsmooth mixed state and control constraints

Necessary optimality conditions for optimal control problems with nonsmooth mixed state and control constraints Necessary optimality conditions for optimal control problems with nonsmooth mixed state and control constraints An Li and Jane J. Ye Abstract. In this paper we study an optimal control problem with nonsmooth

More information

SECTION C: CONTINUOUS OPTIMISATION LECTURE 9: FIRST ORDER OPTIMALITY CONDITIONS FOR CONSTRAINED NONLINEAR PROGRAMMING

SECTION C: CONTINUOUS OPTIMISATION LECTURE 9: FIRST ORDER OPTIMALITY CONDITIONS FOR CONSTRAINED NONLINEAR PROGRAMMING Nf SECTION C: CONTINUOUS OPTIMISATION LECTURE 9: FIRST ORDER OPTIMALITY CONDITIONS FOR CONSTRAINED NONLINEAR PROGRAMMING f(x R m g HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY HILARY TERM 5, DR RAPHAEL

More information

Second Order Optimality Conditions for Constrained Nonlinear Programming

Second Order Optimality Conditions for Constrained Nonlinear Programming Second Order Optimality Conditions for Constrained Nonlinear Programming Lecture 10, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

More information

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

More information

DUALIZATION OF SUBGRADIENT CONDITIONS FOR OPTIMALITY

DUALIZATION OF SUBGRADIENT CONDITIONS FOR OPTIMALITY DUALIZATION OF SUBGRADIENT CONDITIONS FOR OPTIMALITY R. T. Rockafellar* Abstract. A basic relationship is derived between generalized subgradients of a given function, possibly nonsmooth and nonconvex,

More information

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018 EN530.603 Applied Optimal Control Lecture 8: Dynamic Programming October 0, 08 Lecturer: Marin Kobilarov Dynamic Programming (DP) is conerned with the computation of an optimal policy, i.e. an optimal

More information

Constraint qualifications for nonlinear programming

Constraint qualifications for nonlinear programming Constraint qualifications for nonlinear programming Consider the standard nonlinear program min f (x) s.t. g i (x) 0 i = 1,..., m, h j (x) = 0 1 = 1,..., p, (NLP) with continuously differentiable functions

More information

Lecture 2: Convex Sets and Functions

Lecture 2: Convex Sets and Functions Lecture 2: Convex Sets and Functions Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming 1 Value Function Consider the following optimal control problem in Mayer s form: V (t 0, x 0 ) = inf u U J(t 1, x(t 1 )) (1) subject to ẋ(t) = f(t, x(t), u(t)), x(t 0

More information

Constrained Optimization Theory

Constrained Optimization Theory Constrained Optimization Theory Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Constrained Optimization Theory IMA, August

More information

Implications of the Constant Rank Constraint Qualification

Implications of the Constant Rank Constraint Qualification Mathematical Programming manuscript No. (will be inserted by the editor) Implications of the Constant Rank Constraint Qualification Shu Lu Received: date / Accepted: date Abstract This paper investigates

More information

Econ 508-A FINITE DIMENSIONAL OPTIMIZATION - NECESSARY CONDITIONS. Carmen Astorne-Figari Washington University in St. Louis.

Econ 508-A FINITE DIMENSIONAL OPTIMIZATION - NECESSARY CONDITIONS. Carmen Astorne-Figari Washington University in St. Louis. Econ 508-A FINITE DIMENSIONAL OPTIMIZATION - NECESSARY CONDITIONS Carmen Astorne-Figari Washington University in St. Louis August 12, 2010 INTRODUCTION General form of an optimization problem: max x f

More information

Tonelli Full-Regularity in the Calculus of Variations and Optimal Control

Tonelli Full-Regularity in the Calculus of Variations and Optimal Control Tonelli Full-Regularity in the Calculus of Variations and Optimal Control Delfim F. M. Torres delfim@mat.ua.pt Department of Mathematics University of Aveiro 3810 193 Aveiro, Portugal http://www.mat.ua.pt/delfim

More information

Written Examination

Written Examination Division of Scientific Computing Department of Information Technology Uppsala University Optimization Written Examination 202-2-20 Time: 4:00-9:00 Allowed Tools: Pocket Calculator, one A4 paper with notes

More information

The Liapunov Method for Determining Stability (DRAFT)

The Liapunov Method for Determining Stability (DRAFT) 44 The Liapunov Method for Determining Stability (DRAFT) 44.1 The Liapunov Method, Naively Developed In the last chapter, we discussed describing trajectories of a 2 2 autonomous system x = F(x) as level

More information

Lecture 5: The Bellman Equation

Lecture 5: The Bellman Equation Lecture 5: The Bellman Equation Florian Scheuer 1 Plan Prove properties of the Bellman equation (In particular, existence and uniqueness of solution) Use this to prove properties of the solution Think

More information

On Optimality Conditions for Pseudoconvex Programming in Terms of Dini Subdifferentials

On Optimality Conditions for Pseudoconvex Programming in Terms of Dini Subdifferentials Int. Journal of Math. Analysis, Vol. 7, 2013, no. 18, 891-898 HIKARI Ltd, www.m-hikari.com On Optimality Conditions for Pseudoconvex Programming in Terms of Dini Subdifferentials Jaddar Abdessamad Mohamed

More information

Nonlinear and robust MPC with applications in robotics

Nonlinear and robust MPC with applications in robotics Nonlinear and robust MPC with applications in robotics Boris Houska, Mario Villanueva, Benoît Chachuat ShanghaiTech, Texas A&M, Imperial College London 1 Overview Introduction to Robust MPC Min-Max Differential

More information

Finite Dimensional Optimization Part III: Convex Optimization 1

Finite Dimensional Optimization Part III: Convex Optimization 1 John Nachbar Washington University March 21, 2017 Finite Dimensional Optimization Part III: Convex Optimization 1 1 Saddle points and KKT. These notes cover another important approach to optimization,

More information

Strong and Weak Augmentability in Calculus of Variations

Strong and Weak Augmentability in Calculus of Variations Strong and Weak Augmentability in Calculus of Variations JAVIER F ROSENBLUETH National Autonomous University of Mexico Applied Mathematics and Systems Research Institute Apartado Postal 20-126, Mexico

More information

VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS, AND ASYMPTOTICS FOR HAMILTONIAN SYSTEMS

VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS, AND ASYMPTOTICS FOR HAMILTONIAN SYSTEMS VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS, AND ASYMPTOTICS FOR HAMILTONIAN SYSTEMS DIOGO AGUIAR GOMES U.C. Berkeley - CA, US and I.S.T. - Lisbon, Portugal email:dgomes@math.ist.utl.pt Abstract.

More information

1. Introduction. We analyze a trust region version of Newton s method for the optimization problem

1. Introduction. We analyze a trust region version of Newton s method for the optimization problem SIAM J. OPTIM. Vol. 9, No. 4, pp. 1100 1127 c 1999 Society for Industrial and Applied Mathematics NEWTON S METHOD FOR LARGE BOUND-CONSTRAINED OPTIMIZATION PROBLEMS CHIH-JEN LIN AND JORGE J. MORÉ To John

More information

On Linear Copositive Lyapunov Functions and the Stability of Switched Positive Linear Systems

On Linear Copositive Lyapunov Functions and the Stability of Switched Positive Linear Systems 1 On Linear Copositive Lyapunov Functions and the Stability of Switched Positive Linear Systems O. Mason and R. Shorten Abstract We consider the problem of common linear copositive function existence for

More information

ON NECESSARY OPTIMALITY CONDITIONS IN MULTIFUNCTION OPTIMIZATION WITH PARAMETERS

ON NECESSARY OPTIMALITY CONDITIONS IN MULTIFUNCTION OPTIMIZATION WITH PARAMETERS ACTA MATHEMATICA VIETNAMICA Volume 25, Number 2, 2000, pp. 125 136 125 ON NECESSARY OPTIMALITY CONDITIONS IN MULTIFUNCTION OPTIMIZATION WITH PARAMETERS PHAN QUOC KHANH AND LE MINH LUU Abstract. We consider

More information

Introduction. 1 Minimize g(x(0), x(1)) +

Introduction. 1 Minimize g(x(0), x(1)) + ESAIM: Control, Optimisation and Calculus of Variations URL: http://www.emath.fr/cocv/ Will be set by the publisher, UNMAXIMIZED INCLUSION TYPE CONDITIONS FOR NONCONVEX CONSTRAINED OPTIMAL CONTROL PROBLEMS

More information

Outline. Roadmap for the NPP segment: 1 Preliminaries: role of convexity. 2 Existence of a solution

Outline. Roadmap for the NPP segment: 1 Preliminaries: role of convexity. 2 Existence of a solution Outline Roadmap for the NPP segment: 1 Preliminaries: role of convexity 2 Existence of a solution 3 Necessary conditions for a solution: inequality constraints 4 The constraint qualification 5 The Lagrangian

More information

Viscosity Solutions for Dummies (including Economists)

Viscosity Solutions for Dummies (including Economists) Viscosity Solutions for Dummies (including Economists) Online Appendix to Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach written by Benjamin Moll August 13, 2017 1 Viscosity

More information

Finite Convergence for Feasible Solution Sequence of Variational Inequality Problems

Finite Convergence for Feasible Solution Sequence of Variational Inequality Problems Mathematical and Computational Applications Article Finite Convergence for Feasible Solution Sequence of Variational Inequality Problems Wenling Zhao *, Ruyu Wang and Hongxiang Zhang School of Science,

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian

More information

Chapter 2 Convex Analysis

Chapter 2 Convex Analysis Chapter 2 Convex Analysis The theory of nonsmooth analysis is based on convex analysis. Thus, we start this chapter by giving basic concepts and results of convexity (for further readings see also [202,

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 16.323 Principles of Optimal Control Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.323 Lecture

More information

Characterizations of Solution Sets of Fréchet Differentiable Problems with Quasiconvex Objective Function

Characterizations of Solution Sets of Fréchet Differentiable Problems with Quasiconvex Objective Function Characterizations of Solution Sets of Fréchet Differentiable Problems with Quasiconvex Objective Function arxiv:1805.03847v1 [math.oc] 10 May 2018 Vsevolod I. Ivanov Department of Mathematics, Technical

More information

The Linear Quadratic Regulator

The Linear Quadratic Regulator 10 The Linear Qadratic Reglator 10.1 Problem formlation This chapter concerns optimal control of dynamical systems. Most of this development concerns linear models with a particlarly simple notion of optimality.

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

Nonlinear L 2 -gain analysis via a cascade

Nonlinear L 2 -gain analysis via a cascade 9th IEEE Conference on Decision and Control December -7, Hilton Atlanta Hotel, Atlanta, GA, USA Nonlinear L -gain analysis via a cascade Peter M Dower, Huan Zhang and Christopher M Kellett Abstract A nonlinear

More information

Nonlinear Programming and the Kuhn-Tucker Conditions

Nonlinear Programming and the Kuhn-Tucker Conditions Nonlinear Programming and the Kuhn-Tucker Conditions The Kuhn-Tucker (KT) conditions are first-order conditions for constrained optimization problems, a generalization of the first-order conditions we

More information

Geometric Optimal Control with Applications

Geometric Optimal Control with Applications Geometric Optimal Control with Applications Accelerated Graduate Course Institute of Mathematics for Industry, Kyushu University, Bernard Bonnard Inria Sophia Antipolis et Institut de Mathématiques de

More information

Adaptive Nonlinear Model Predictive Control with Suboptimality and Stability Guarantees

Adaptive Nonlinear Model Predictive Control with Suboptimality and Stability Guarantees Adaptive Nonlinear Model Predictive Control with Suboptimality and Stability Guarantees Pontus Giselsson Department of Automatic Control LTH Lund University Box 118, SE-221 00 Lund, Sweden pontusg@control.lth.se

More information

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014 Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,

More information

CHAPTER 3 THE MAXIMUM PRINCIPLE: MIXED INEQUALITY CONSTRAINTS. p. 1/73

CHAPTER 3 THE MAXIMUM PRINCIPLE: MIXED INEQUALITY CONSTRAINTS. p. 1/73 CHAPTER 3 THE MAXIMUM PRINCIPLE: MIXED INEQUALITY CONSTRAINTS p. 1/73 THE MAXIMUM PRINCIPLE: MIXED INEQUALITY CONSTRAINTS Mixed Inequality Constraints: Inequality constraints involving control and possibly

More information

FIRST- AND SECOND-ORDER OPTIMALITY CONDITIONS FOR MATHEMATICAL PROGRAMS WITH VANISHING CONSTRAINTS 1. Tim Hoheisel and Christian Kanzow

FIRST- AND SECOND-ORDER OPTIMALITY CONDITIONS FOR MATHEMATICAL PROGRAMS WITH VANISHING CONSTRAINTS 1. Tim Hoheisel and Christian Kanzow FIRST- AND SECOND-ORDER OPTIMALITY CONDITIONS FOR MATHEMATICAL PROGRAMS WITH VANISHING CONSTRAINTS 1 Tim Hoheisel and Christian Kanzow Dedicated to Jiří Outrata on the occasion of his 60th birthday Preprint

More information

BOLZA PROBLEMS WITH GENERAL TIME CONSTRAINTS P. D. LOEWEN AND R. T. ROCKAFELLAR

BOLZA PROBLEMS WITH GENERAL TIME CONSTRAINTS P. D. LOEWEN AND R. T. ROCKAFELLAR PREPRINT, Prepared on 5 February 1996 c 1996 P. D. LOEWEN AND R. T. ROCKAFELLAR BOLZA PROBLEMS WITH GENERAL TIME CONSTRAINTS P. D. LOEWEN AND R. T. ROCKAFELLAR Abstract. This work provides necessary conditions

More information

Generalized Pattern Search Algorithms : unconstrained and constrained cases

Generalized Pattern Search Algorithms : unconstrained and constrained cases IMA workshop Optimization in simulation based models Generalized Pattern Search Algorithms : unconstrained and constrained cases Mark A. Abramson Air Force Institute of Technology Charles Audet École Polytechnique

More information

Optimization. A first course on mathematics for economists

Optimization. A first course on mathematics for economists Optimization. A first course on mathematics for economists Xavier Martinez-Giralt Universitat Autònoma de Barcelona xavier.martinez.giralt@uab.eu II.3 Static optimization - Non-Linear programming OPT p.1/45

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

15. Conic optimization

15. Conic optimization L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 15-1 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone

More information

Chapter 5. Pontryagin s Minimum Principle (Constrained OCP)

Chapter 5. Pontryagin s Minimum Principle (Constrained OCP) Chapter 5 Pontryagin s Minimum Principle (Constrained OCP) 1 Pontryagin s Minimum Principle Plant: (5-1) u () t U PI: (5-2) Boundary condition: The goal is to find Optimal Control. 2 Pontryagin s Minimum

More information

You should be able to...

You should be able to... Lecture Outline Gradient Projection Algorithm Constant Step Length, Varying Step Length, Diminishing Step Length Complexity Issues Gradient Projection With Exploration Projection Solving QPs: active set

More information

Second Welfare Theorem

Second Welfare Theorem Second Welfare Theorem Econ 2100 Fall 2015 Lecture 18, November 2 Outline 1 Second Welfare Theorem From Last Class We want to state a prove a theorem that says that any Pareto optimal allocation is (part

More information

Symbolic Control of Incrementally Stable Systems

Symbolic Control of Incrementally Stable Systems Symbolic Control of Incrementally Stable Systems Antoine Girard Laboratoire Jean Kuntzmann, Université Joseph Fourier Grenoble, France Workshop on Formal Verification of Embedded Control Systems LCCC,

More information

FINITE-DIFFERENCE APPROXIMATIONS AND OPTIMAL CONTROL OF THE SWEEPING PROCESS. BORIS MORDUKHOVICH Wayne State University, USA

FINITE-DIFFERENCE APPROXIMATIONS AND OPTIMAL CONTROL OF THE SWEEPING PROCESS. BORIS MORDUKHOVICH Wayne State University, USA FINITE-DIFFERENCE APPROXIMATIONS AND OPTIMAL CONTROL OF THE SWEEPING PROCESS BORIS MORDUKHOVICH Wayne State University, USA International Workshop Optimization without Borders Tribute to Yurii Nesterov

More information

Regularity and approximations of generalized equations; applications in optimal control

Regularity and approximations of generalized equations; applications in optimal control SWM ORCOS Operations Research and Control Systems Regularity and approximations of generalized equations; applications in optimal control Vladimir M. Veliov (Based on joint works with A. Dontchev, M. Krastanov,

More information

The Minimum Speed for a Blocking Problem on the Half Plane

The Minimum Speed for a Blocking Problem on the Half Plane The Minimum Speed for a Blocking Problem on the Half Plane Alberto Bressan and Tao Wang Department of Mathematics, Penn State University University Park, Pa 16802, USA e-mails: bressan@mathpsuedu, wang

More information

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization MATHEMATICS OF OPERATIONS RESEARCH Vol. 29, No. 3, August 2004, pp. 479 491 issn 0364-765X eissn 1526-5471 04 2903 0479 informs doi 10.1287/moor.1040.0103 2004 INFORMS Some Properties of the Augmented

More information

Numerical Computational Techniques for Nonlinear Optimal Control

Numerical Computational Techniques for Nonlinear Optimal Control Seminar at LAAS Numerical Computational echniques for Nonlinear Optimal Control Yasuaki Oishi (Nanzan University) July 2, 2018 * Joint work with N. Sakamoto and. Nakamura 1. Introduction Optimal control

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Nonsmooth Analysis in Systems and Control Theory

Nonsmooth Analysis in Systems and Control Theory Nonsmooth Analysis in Systems and Control Theory Francis Clarke Institut universitaire de France et Université de Lyon [January 2008. To appear in the Encyclopedia of Complexity and System Science, Springer.]

More information

Mathematical Economics. Lecture Notes (in extracts)

Mathematical Economics. Lecture Notes (in extracts) Prof. Dr. Frank Werner Faculty of Mathematics Institute of Mathematical Optimization (IMO) http://math.uni-magdeburg.de/ werner/math-ec-new.html Mathematical Economics Lecture Notes (in extracts) Winter

More information

L 2 -induced Gains of Switched Systems and Classes of Switching Signals

L 2 -induced Gains of Switched Systems and Classes of Switching Signals L 2 -induced Gains of Switched Systems and Classes of Switching Signals Kenji Hirata and João P. Hespanha Abstract This paper addresses the L 2-induced gain analysis for switched linear systems. We exploit

More information

An Introduction to Noncooperative Games

An Introduction to Noncooperative Games An Introduction to Noncooperative Games Alberto Bressan Department of Mathematics, Penn State University Alberto Bressan (Penn State) Noncooperative Games 1 / 29 introduction to non-cooperative games:

More information