Tonelli Full-Regularity in the Calculus of Variations and Optimal Control

Size: px
Start display at page:

Download "Tonelli Full-Regularity in the Calculus of Variations and Optimal Control"

Transcription

1 Tonelli Full-Regularity in the Calculus of Variations and Optimal Control Delfim F. M. Torres Department of Mathematics University of Aveiro Aveiro, Portugal

2 Lagrange Problem of Optimal Control with unrestricted controls b a L (t, x (t),u(t)) dt min ẋ (t) =ϕ (t, x (t),u(t)) (P ) x (a) =A, x (b) =B u ( ) L 1 ([a, b]; IR r ), x ( ) W 1,1 ([a, b]; IR n ) L :[a, b] IR n IR r IR ϕ :[a, b] IR n IR r IR n L(,, ), ϕ(,, ) C L(,,u), ϕ(,,u) C 1 May 3 4, Coimbra 1

3 Necessary Optimality Condition for (P) Pontryagin Maximum Principle (PMP) Definition. The quadruple (x ( ),u( ),ψ 0,ψ( )), ψ 0 0, ψ ( ) W 1,1,(ψ 0,ψ( )) 0,isa Pontryagin extremal if it satisfies: the Hamiltonian system ẋ = H ψ, The maximality condition ψ = H x H (t, x (t),u(t),ψ 0,ψ(t)) = sup u IR r H (t, x (t),u,ψ 0,ψ(t)) with the Hamiltonian H = ψ 0 L (t, x, u)+ ψ, ϕ (t, x, u). PMP. Under (H1) or (H2) or... all minimizers are extremals. (H1) L(,x, ), ϕ(,x, ) C, L(t,,u), ϕ(t,,u) C 1 ; u( ) L (H2) L(,x, ), ϕ(,x, ) Borel measurable; u ( ) L 1 ; c>0andk L x c L + k, ϕ i x c ϕ i + k May 3 4, Coimbra 2

4 You shall not be naive Any theory of necessary optimality conditions is naive until the existence of optimal solutions is clarified. Perron Paradox Theorem. A necessary condition for N to be the largest positive integer is that N =1. Proof. If N 1 then N 2 >N.SoN is not the largest integer, contrary to the hypothesis. Thus, N = 1. There is nothing wrong with this statement = Necessary conditions in optimization may be useless if we do not know that the solution we are talking about exists one may derive a wrong conclusion from a correct necessary condition. May 3 4, Coimbra 3

5 Tonelli Existence Theorem for (P) Theorem. Problem (P) has an absolute minimum in the space u( ) L 1, provided that there exist at least one admissible pair, and the following conditions are satisfied for all (t, x, u). Coercivity: there exists a function θ :IR + 0 below, such that θ (r) lim =+, r + r IR, bounded L (t, x, u) θ ( ϕ(t, x, u) ), lim ϕ(t, x, u) =+. u + Convexity: L (t, x, u) andϕ (t, x, u) are convex w.r.t. u. May 3 4, Coimbra 4

6 The standard method to solve (P) 1. Prove that a solution to the problem exists. 2. Assure that some regularity conditions hold, implying the applicability of necessary optimality conditions. 3. Apply the necessary conditions to identify the extremals (the candidates). Further elimination, if necessary, identifies the minimizer(s) of the problem. Question Is Step 2 really necessary? In particular: does the Pontryagin Maximum Principle hold under just the hypotheses of Tonelli s Existence Theorem? May 3 4, Coimbra 5

7 Tonelli Regularity Theorem. Assume that the Tonelli Existence Hypotheses are satisfied. Take any minimizer ( x( ), ũ( )) of (P ). Then there exists a closed subset Ω [a, b] of zero measure with the following property: for any τ [a, b] \ Ω, ũ(τ) is essentially bounded on a relative neighborhood of τ. Corollary. The Pontryagin Maximum Principle is valid on relatively open subset of [a, b], of full measure. Previous question remain Is it really possible to the Ω set to be nonempty? Is it possible that such ( x( ), ũ( )) fail to be an extremal? May 3 4, Coimbra 6

8 La vita è bella Answer: Yes. Bad behaviour do exist. Ω may be nonempty. Even for polynomial Lagrangians and linear dynamics, minimizers predicted by existence theory may fail to be Pontryagin extremals. What can be done? How to exclude the possibility of bad behaviour? How to obtain full-regularity (Ω = )? Postulate conditions beyond those of the Existence Theorem, assuring that all minimizing controls are bounded. Validity of classical necessary optimality conditions Lipschitzian Regularity of Minimizing Trajectories Possibility of discretization and numerical procedures May 3 4, Coimbra 7

9 Tonelli Full-Regularity Classes of well-behaved problems Theorem. (L. Tonelli& C. B. Morrey) For the basic problem of the Calculus of Variations (CV), b a L (t, x (t),u(t)) dt min, ẋ (t) =u (t), suppose that for certain constants c > 0 and k one has L x + L u c L + k. (1) Then any solution ũ( ) is essentially bounded. F. H. Clarke & R. B. Vinter proved that: The classical Tonelli-Morrey conditions (1) can be generalized: L x c L + k. (2) Tonelli-Morrey type conditions (2) work universally in the CV. May 3 4, Coimbra 8

10 Full-Regularity in Optimal Control Theorem. (A. V. Sarychev & D. F. M. Torres) For the Lagrange Problem of Optimal Control (P) with control affine dynamics, ϕ = f(t, x)+g(t, x) u,ifg(t, x) has complete rank r for all t and x; the coercivity condition holds; and γ>0, β<2, η, and µ max {β 2, 2}, such that ( L t + L x i + Lϕ t L t ϕ + Lϕ x i L x i ϕ ) u µ γl β + η, (3) then all the minimizers ũ ( ) of the problem, which are not abnormal extremal controls, are essentially bounded on [a, b]. Convexity is not required in the regularity theorem Conditions (3) are not of the type of Tonelli-Morrey. Results are possible for general nonlinear dynamics May 3 4, Coimbra 9

11 Main Result Tonelli-Morrey type conditions work universally in Optimal Control Theorem. Coercivity plus the growth conditions: there exist constants c > 0andk such that L L t c L + k, x c L + k, ϕ ϕ i t c ϕ + k, x c ϕ i + k (i =1,..., n); imply that all minimizers ũ( ) of(p ), which are not abnormal extremal controls, are essentially bounded on [a, b]. Corollary. Under the hypotheses of the Theorem, all minimizers of (P) are Pontryagin extremals. May 3 4, Coimbra 10

12 Problem (P). Our Approach to Full-Regularity b a L (t, x(t), u(t)) dt min, Problem (P τ [ w( )]). ẋ(t) =ϕ (t, x(t), u(t)) b J [t( ), z( ), v( )] = L (t(τ), z(τ), w(τ)) v(τ)dτ min a t (τ) =v(τ), v(τ) [0.5, 1.5] z (τ) =ϕ (t(τ), z(τ), w(τ)) v(τ) Proposition. If ( x(t), ũ(t)) is a minimizer of (P ), then the triple ( t(τ), z(τ), ṽ(τ) ) =(τ, x(τ), 1) furnishes a minimizer to (P τ [ũ( )]). Moreover, if ũ( ) is not an abnormal extremal control, then ṽ 1 is not an abnormal extremal control too. May 3 4, Coimbra 11

13 Proof of the Main Result We know that ( t(τ), z(τ), ṽ(τ) ) =(τ, x(τ), 1) is a normal extremal to problem (P τ [ũ( )]). From the maximality condition [ v L (τ, x(τ), ũ(τ)) + ψ t (τ)+ ψ ] z (τ) ϕ (τ, x(τ), ũ(τ)) v is maximized at v =1.Thisimpliesthat L (τ, x(τ), ũ(τ)) = ψ t (τ)+ ψ z (τ) ϕ (τ, x(τ), ũ(τ)). Let ψ t (τ) M and ψ z (τ) M on [a, b]. Dividing both sides of inequality by ϕ (τ, x(τ), ũ(τ)) and using the coercivity hypothesis one obtains θ ( ϕ (τ, x(τ), ũ(τ)) ) ϕ (τ, x(τ), ũ(τ)) M 1+ ϕ (τ, x(τ), ũ(τ)) ϕ (τ, x(τ), ũ(τ)) Coercivity yields the essential boundedness of ũ( ) on[a, b].. May 3 4, Coimbra 12

14 1 0 An Example ( u 2 1 (t)+u 2 2(t) ) ( e 2(x 1(t)+x 2 (t)) +1) x 1 (t) = u 2 1 (t)+u2 2 (t) x 2 (t) =u 2 (t)e x 1(t)+x 2 (t) dt min x 1 (0) = 0, x 1 (1) = 1, x 2 (0) = 1, x 2 (1) = 1. Dynamics is nonlinear both in the state and control variables All conditions of Tonelli s Existence Theorem are satisfied Previously known regularity conditions fail Our theorem allow us to conclude that all minimizing controls, which are not abnormal extremal controls, are bounded From our Corollary, all minimizing controls of the problem can be identified via the Pontryagin Maximum Principle May 3 4, Coimbra 13

15 Final Remarks Convexity is not required in the regularity theorem Results are valid for general problems of optimal control with nonlinear dynamics It provides Tonelli-Morrey type conditions which are easy to check in practice It is also possible to obtain new regularity conditions, which are not of the type of Tonelli-Morrey: Theorem. Assume the coercivity condition of Tonelli s existence theorem and that the Pontryagin maximum principle is applicable to (P τ [ w( )]). Then, all control minimizers ũ( ) of(p ), which are not abnormal extremal controls, are essentially bounded on [a, b]. May 3 4, Coimbra 14

16 My Contribution to the Call for Problems Open Question The question of how to establish Lipschitzian regularity for the abnormal minimizing trajectories seems to be completely open: For the problems of the calculus of variations studied by L. Tonelli, F. H. Clarke, R. B. Vinter, et. al., no abnormal extremals exist For the optimal control problems considered by A. V. Sarychev and D. F. M. Torres, abnormal extremals are, like here, put aside How to establish Lipschitzian regularity for the abnormal minimizing trajectories? May 3 4, Coimbra 15

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming 1 Value Function Consider the following optimal control problem in Mayer s form: V (t 0, x 0 ) = inf u U J(t 1, x(t 1 )) (1) subject to ẋ(t) = f(t, x(t), u(t)), x(t 0

More information

Joint work with Nguyen Hoang (Univ. Concepción, Chile) Padova, Italy, May 2018

Joint work with Nguyen Hoang (Univ. Concepción, Chile) Padova, Italy, May 2018 EXTENDED EULER-LAGRANGE AND HAMILTONIAN CONDITIONS IN OPTIMAL CONTROL OF SWEEPING PROCESSES WITH CONTROLLED MOVING SETS BORIS MORDUKHOVICH Wayne State University Talk given at the conference Optimization,

More information

Duality and dynamics in Hamilton-Jacobi theory for fully convex problems of control

Duality and dynamics in Hamilton-Jacobi theory for fully convex problems of control Duality and dynamics in Hamilton-Jacobi theory for fully convex problems of control RTyrrell Rockafellar and Peter R Wolenski Abstract This paper describes some recent results in Hamilton- Jacobi theory

More information

A Remarkable Property of the Dynamic Optimization Extremals

A Remarkable Property of the Dynamic Optimization Extremals A Remarkable Property of the Dynamic Optimization Extremals Delfim F. M. Torres delfim@mat.ua.pt R&D Unit Mathematics and Applications Department of Mathematics University of Aveiro 3810-193 Aveiro, Portugal

More information

Existence of Minimizers for Fractional Variational Problems Containing Caputo Derivatives

Existence of Minimizers for Fractional Variational Problems Containing Caputo Derivatives Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 8, Number 1, pp. 3 12 (2013) http://campus.mst.edu/adsa Existence of Minimizers for Fractional Variational Problems Containing Caputo

More information

An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints

An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints An Integral-type Constraint Qualification for Optimal Control Problems with State Constraints S. Lopes, F. A. C. C. Fontes and M. d. R. de Pinho Officina Mathematica report, April 4, 27 Abstract Standard

More information

SOLVING NONLINEAR OPTIMAL CONTROL PROBLEMS WITH STATE AND CONTROL DELAYS BY SHOOTING METHODS COMBINED WITH NUMERICAL CONTINUATION ON THE DELAYS

SOLVING NONLINEAR OPTIMAL CONTROL PROBLEMS WITH STATE AND CONTROL DELAYS BY SHOOTING METHODS COMBINED WITH NUMERICAL CONTINUATION ON THE DELAYS 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 36 SOLVING NONLINEAR OPTIMAL CONTROL PROBLEMS WITH STATE AND CONTROL DELAYS BY SHOOTING METHODS COMBINED WITH

More information

Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability

Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability p. 1/1 Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability p. 2/1 Perturbed Systems: Nonvanishing Perturbation Nominal System: Perturbed System: ẋ = f(x), f(0) = 0 ẋ

More information

Mañé s Conjecture from the control viewpoint

Mañé s Conjecture from the control viewpoint Mañé s Conjecture from the control viewpoint Université de Nice - Sophia Antipolis Setting Let M be a smooth compact manifold of dimension n 2 be fixed. Let H : T M R be a Hamiltonian of class C k, with

More information

Necessary optimality conditions for optimal control problems with nonsmooth mixed state and control constraints

Necessary optimality conditions for optimal control problems with nonsmooth mixed state and control constraints Necessary optimality conditions for optimal control problems with nonsmooth mixed state and control constraints An Li and Jane J. Ye Abstract. In this paper we study an optimal control problem with nonsmooth

More information

Min-Max Certainty Equivalence Principle and Differential Games

Min-Max Certainty Equivalence Principle and Differential Games Min-Max Certainty Equivalence Principle and Differential Games Pierre Bernhard and Alain Rapaport INRIA Sophia-Antipolis August 1994 Abstract This paper presents a version of the Certainty Equivalence

More information

An introduction to Mathematical Theory of Control

An introduction to Mathematical Theory of Control An introduction to Mathematical Theory of Control Vasile Staicu University of Aveiro UNICA, May 2018 Vasile Staicu (University of Aveiro) An introduction to Mathematical Theory of Control UNICA, May 2018

More information

OPTIMAL CONTROL CHAPTER INTRODUCTION

OPTIMAL CONTROL CHAPTER INTRODUCTION CHAPTER 3 OPTIMAL CONTROL What is now proved was once only imagined. William Blake. 3.1 INTRODUCTION After more than three hundred years of evolution, optimal control theory has been formulated as an extension

More information

HAMILTON-JACOBI THEORY AND PARAMETRIC ANALYSIS IN FULLY CONVEX PROBLEMS OF OPTIMAL CONTROL. R. T. Rockafellar 1

HAMILTON-JACOBI THEORY AND PARAMETRIC ANALYSIS IN FULLY CONVEX PROBLEMS OF OPTIMAL CONTROL. R. T. Rockafellar 1 HAMILTON-JACOBI THEORY AND PARAMETRIC ANALYSIS IN FULLY CONVEX PROBLEMS OF OPTIMAL CONTROL R. T. Rockafellar 1 Department of Mathematics, Box 354350 University of Washington, Seattle, WA 98195-4350 rtr@math.washington.edu

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

BOLZA PROBLEMS WITH GENERAL TIME CONSTRAINTS P. D. LOEWEN AND R. T. ROCKAFELLAR

BOLZA PROBLEMS WITH GENERAL TIME CONSTRAINTS P. D. LOEWEN AND R. T. ROCKAFELLAR PREPRINT, Prepared on 5 February 1996 c 1996 P. D. LOEWEN AND R. T. ROCKAFELLAR BOLZA PROBLEMS WITH GENERAL TIME CONSTRAINTS P. D. LOEWEN AND R. T. ROCKAFELLAR Abstract. This work provides necessary conditions

More information

Limit solutions for control systems

Limit solutions for control systems Limit solutions for control systems M. Soledad Aronna Escola de Matemática Aplicada, FGV-Rio Oktobermat XV, 19 e 20 de Outubro de 2017, PUC-Rio 1 Introduction & motivation 2 Limit solutions 3 Commutative

More information

Convexity of the Reachable Set of Nonlinear Systems under L 2 Bounded Controls

Convexity of the Reachable Set of Nonlinear Systems under L 2 Bounded Controls 1 1 Convexity of the Reachable Set of Nonlinear Systems under L 2 Bounded Controls B.T.Polyak Institute for Control Science, Moscow, Russia e-mail boris@ipu.rssi.ru Abstract Recently [1, 2] the new convexity

More information

Necessary conditions in optimal control and in the calculus of variations

Necessary conditions in optimal control and in the calculus of variations Necessary conditions in optimal control and in the calculus of variations Francis Clarke Institut universitaire de France et Institut Camille Jordan Université Claude Bernard Lyon 1 69622 Villeurbanne,

More information

Lecture Note 13:Continuous Time Switched Optimal Control: Embedding Principle and Numerical Algorithms

Lecture Note 13:Continuous Time Switched Optimal Control: Embedding Principle and Numerical Algorithms ECE785: Hybrid Systems:Theory and Applications Lecture Note 13:Continuous Time Switched Optimal Control: Embedding Principle and Numerical Algorithms Wei Zhang Assistant Professor Department of Electrical

More information

Dichotomy, the Closed Range Theorem and Optimal Control

Dichotomy, the Closed Range Theorem and Optimal Control Dichotomy, the Closed Range Theorem and Optimal Control Pavel Brunovský (joint work with Mária Holecyová) Comenius University Bratislava, Slovakia Praha 13. 5. 2016 Brunovsky Praha 13. 5. 2016 Closed Range

More information

Strong and Weak Augmentability in Calculus of Variations

Strong and Weak Augmentability in Calculus of Variations Strong and Weak Augmentability in Calculus of Variations JAVIER F ROSENBLUETH National Autonomous University of Mexico Applied Mathematics and Systems Research Institute Apartado Postal 20-126, Mexico

More information

Chapter III. Stability of Linear Systems

Chapter III. Stability of Linear Systems 1 Chapter III Stability of Linear Systems 1. Stability and state transition matrix 2. Time-varying (non-autonomous) systems 3. Time-invariant systems 1 STABILITY AND STATE TRANSITION MATRIX 2 In this chapter,

More information

Neighboring feasible trajectories in infinite dimension

Neighboring feasible trajectories in infinite dimension Neighboring feasible trajectories in infinite dimension Marco Mazzola Université Pierre et Marie Curie (Paris 6) H. Frankowska and E. M. Marchini Control of State Constrained Dynamical Systems Padova,

More information

A Generalization of Barbalat s Lemma with Applications to Robust Model Predictive Control

A Generalization of Barbalat s Lemma with Applications to Robust Model Predictive Control A Generalization of Barbalat s Lemma with Applications to Robust Model Predictive Control Fernando A. C. C. Fontes 1 and Lalo Magni 2 1 Officina Mathematica, Departamento de Matemática para a Ciência e

More information

PREPRINT 2009:10. Continuous-discrete optimal control problems KJELL HOLMÅKER

PREPRINT 2009:10. Continuous-discrete optimal control problems KJELL HOLMÅKER PREPRINT 2009:10 Continuous-discrete optimal control problems KJELL HOLMÅKER Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG Göteborg

More information

CONVEXITY IN HAMILTON-JACOBI THEORY 1: DYNAMICS AND DUALITY

CONVEXITY IN HAMILTON-JACOBI THEORY 1: DYNAMICS AND DUALITY CONVEXITY IN HAMILTON-JACOBI THEORY 1: DYNAMICS AND DUALITY R. TYRRELL ROCKAFELLAR and PETER R. WOLENSKI * University of Washington and Louisiana State University Abstract. Value functions propagated from

More information

1 The Observability Canonical Form

1 The Observability Canonical Form NONLINEAR OBSERVERS AND SEPARATION PRINCIPLE 1 The Observability Canonical Form In this Chapter we discuss the design of observers for nonlinear systems modelled by equations of the form ẋ = f(x, u) (1)

More information

Hamilton-Jacobi theory for optimal control problems on stratified domains

Hamilton-Jacobi theory for optimal control problems on stratified domains Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2010 Hamilton-Jacobi theory for optimal control problems on stratified domains Richard Charles Barnard Louisiana

More information

Recent Trends in Differential Inclusions

Recent Trends in Differential Inclusions Recent Trends in Alberto Bressan Department of Mathematics, Penn State University (Aveiro, June 2016) (Aveiro, June 2016) 1 / Two main topics ẋ F (x) differential inclusions with upper semicontinuous,

More information

Input to state Stability

Input to state Stability Input to state Stability Mini course, Universität Stuttgart, November 2004 Lars Grüne, Mathematisches Institut, Universität Bayreuth Part IV: Applications ISS Consider with solutions ϕ(t, x, w) ẋ(t) =

More information

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1 Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems p. 1/1 p. 2/1 Converse Lyapunov Theorem Exponential Stability Let x = 0 be an exponentially stable equilibrium

More information

Locally Lipschitzian Guiding Function Method for ODEs.

Locally Lipschitzian Guiding Function Method for ODEs. Locally Lipschitzian Guiding Function Method for ODEs. Marta Lewicka International School for Advanced Studies, SISSA, via Beirut 2-4, 3414 Trieste, Italy. E-mail: lewicka@sissa.it 1 Introduction Let f

More information

Differential Games II. Marc Quincampoix Université de Bretagne Occidentale ( Brest-France) SADCO, London, September 2011

Differential Games II. Marc Quincampoix Université de Bretagne Occidentale ( Brest-France) SADCO, London, September 2011 Differential Games II Marc Quincampoix Université de Bretagne Occidentale ( Brest-France) SADCO, London, September 2011 Contents 1. I Introduction: A Pursuit Game and Isaacs Theory 2. II Strategies 3.

More information

Normality and Nondegeneracy for Optimal Control Problems with State Constraints

Normality and Nondegeneracy for Optimal Control Problems with State Constraints Normality and Nondegeneracy for Optimal Control Problems with State Constraints Fernando Fontes, Hélène Frankowska To cite this version: Fernando Fontes, Hélène Frankowska. Normality and Nondegeneracy

More information

RELAXATION AND REGULARITY IN THE CALCULUS OF VARIATIONS

RELAXATION AND REGULARITY IN THE CALCULUS OF VARIATIONS RELAXATION AND REGULARITY IN THE CALCULUS OF VARIATIONS ALESSANDRO FERRIERO Abstract. In this work we prove that, if L(t, u, ξ) is a continuous function in t and u, Borel measurable in ξ, with bounded

More information

DUALIZATION OF SUBGRADIENT CONDITIONS FOR OPTIMALITY

DUALIZATION OF SUBGRADIENT CONDITIONS FOR OPTIMALITY DUALIZATION OF SUBGRADIENT CONDITIONS FOR OPTIMALITY R. T. Rockafellar* Abstract. A basic relationship is derived between generalized subgradients of a given function, possibly nonsmooth and nonconvex,

More information

APPLICATIONS OF DIFFERENTIABILITY IN R n.

APPLICATIONS OF DIFFERENTIABILITY IN R n. APPLICATIONS OF DIFFERENTIABILITY IN R n. MATANIA BEN-ARTZI April 2015 Functions here are defined on a subset T R n and take values in R m, where m can be smaller, equal or greater than n. The (open) ball

More information

2 Statement of the problem and assumptions

2 Statement of the problem and assumptions Mathematical Notes, 25, vol. 78, no. 4, pp. 466 48. Existence Theorem for Optimal Control Problems on an Infinite Time Interval A.V. Dmitruk and N.V. Kuz kina We consider an optimal control problem on

More information

Linear Differential Equations. Problems

Linear Differential Equations. Problems Chapter 1 Linear Differential Equations. Problems 1.1 Introduction 1.1.1 Show that the function ϕ : R R, given by the expression ϕ(t) = 2e 3t for all t R, is a solution of the Initial Value Problem x =

More information

Direct and indirect methods for optimal control problems and applications in engineering

Direct and indirect methods for optimal control problems and applications in engineering Direct and indirect methods for optimal control problems and applications in engineering Matthias Gerdts Computational Optimisation Group School of Mathematics The University of Birmingham gerdtsm@maths.bham.ac.uk

More information

Introduction to Optimal Control Theory and Hamilton-Jacobi equations. Seung Yeal Ha Department of Mathematical Sciences Seoul National University

Introduction to Optimal Control Theory and Hamilton-Jacobi equations. Seung Yeal Ha Department of Mathematical Sciences Seoul National University Introduction to Optimal Control Theory and Hamilton-Jacobi equations Seung Yeal Ha Department of Mathematical Sciences Seoul National University 1 A priori message from SYHA The main purpose of these series

More information

Objective. 1 Specification/modeling of the controlled system. 2 Specification of a performance criterion

Objective. 1 Specification/modeling of the controlled system. 2 Specification of a performance criterion Optimal Control Problem Formulation Optimal Control Lectures 17-18: Problem Formulation Benoît Chachuat Department of Chemical Engineering Spring 2009 Objective Determine the control

More information

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 1/5 Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 2/5 Time-varying Systems ẋ = f(t, x) f(t, x) is piecewise continuous in t and locally Lipschitz in x for all t

More information

Introduction to Optimization Techniques. Nonlinear Optimization in Function Spaces

Introduction to Optimization Techniques. Nonlinear Optimization in Function Spaces Introduction to Optimization Techniques Nonlinear Optimization in Function Spaces X : T : Gateaux and Fréchet Differentials Gateaux and Fréchet Differentials a vector space, Y : a normed space transformation

More information

Value Function and Optimal Trajectories for some State Constrained Control Problems

Value Function and Optimal Trajectories for some State Constrained Control Problems Value Function and Optimal Trajectories for some State Constrained Control Problems Hasnaa Zidani ENSTA ParisTech, Univ. of Paris-saclay "Control of State Constrained Dynamical Systems" Università di Padova,

More information

arxiv: v1 [math.oc] 7 May 2007

arxiv: v1 [math.oc] 7 May 2007 Conjugate points in Euler s elastic problem arxiv:0705.1003v1 [math.oc] 7 May 2007 Yu. L. Sachkov Program Systems Institute Russian Academy of Sciences Pereslavl-Zalessky 152020 Russia E-mail: sachkov@sys.botik.ru

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

On the Euler Lagrange Equation in Calculus of Variations

On the Euler Lagrange Equation in Calculus of Variations On the Euler Lagrange Equation in Calculus of Variations Ivar Ekeland Vietnam Journal of Mathematics ISSN 235-221X Vietnam J. Math. DOI 1.17/s113-18-285-z 1 23 Your article is protected by copyright and

More information

MODULE 13. Topics: Linear systems

MODULE 13. Topics: Linear systems Topics: Linear systems MODULE 13 We shall consider linear operators and the associated linear differential equations. Specifically we shall have operators of the form i) Lu u A(t)u where A(t) is an n n

More information

Energy-based Swing-up of the Acrobot and Time-optimal Motion

Energy-based Swing-up of the Acrobot and Time-optimal Motion Energy-based Swing-up of the Acrobot and Time-optimal Motion Ravi N. Banavar Systems and Control Engineering Indian Institute of Technology, Bombay Mumbai-476, India Email: banavar@ee.iitb.ac.in Telephone:(91)-(22)

More information

On the validity of the Euler Lagrange equation

On the validity of the Euler Lagrange equation J. Math. Anal. Appl. 304 (2005) 356 369 www.elsevier.com/locate/jmaa On the validity of the Euler Lagrange equation A. Ferriero, E.M. Marchini Dipartimento di Matematica e Applicazioni, Università degli

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

On some nonlinear parabolic equation involving variable exponents

On some nonlinear parabolic equation involving variable exponents On some nonlinear parabolic equation involving variable exponents Goro Akagi (Kobe University, Japan) Based on a joint work with Giulio Schimperna (Pavia Univ., Italy) Workshop DIMO-2013 Diffuse Interface

More information

The Implicit and Inverse Function Theorems Notes to supplement Chapter 13.

The Implicit and Inverse Function Theorems Notes to supplement Chapter 13. The Implicit and Inverse Function Theorems Notes to supplement Chapter 13. Remark: These notes are still in draft form. Examples will be added to Section 5. If you see any errors, please let me know. 1.

More information

Chap. 3. Controlled Systems, Controllability

Chap. 3. Controlled Systems, Controllability Chap. 3. Controlled Systems, Controllability 1. Controllability of Linear Systems 1.1. Kalman s Criterion Consider the linear system ẋ = Ax + Bu where x R n : state vector and u R m : input vector. A :

More information

2 Sequences, Continuity, and Limits

2 Sequences, Continuity, and Limits 2 Sequences, Continuity, and Limits In this chapter, we introduce the fundamental notions of continuity and limit of a real-valued function of two variables. As in ACICARA, the definitions as well as proofs

More information

arxiv: v1 [math.oc] 5 Feb 2013

arxiv: v1 [math.oc] 5 Feb 2013 arxiv:1302.1225v1 [math.oc] 5 Feb 2013 On Barriers in State and Input Constrained Nonlinear Systems José A. De Doná Jean Lévine February 5, 2013 Abstract In this paper, the problem of state and input constrained

More information

ON THE ESSENTIAL BOUNDEDNESS OF SOLUTIONS TO PROBLEMS IN PIECEWISE LINEAR-QUADRATIC OPTIMAL CONTROL. R.T. Rockafellar*

ON THE ESSENTIAL BOUNDEDNESS OF SOLUTIONS TO PROBLEMS IN PIECEWISE LINEAR-QUADRATIC OPTIMAL CONTROL. R.T. Rockafellar* ON THE ESSENTIAL BOUNDEDNESS OF SOLUTIONS TO PROBLEMS IN PIECEWISE LINEAR-QUADRATIC OPTIMAL CONTROL R.T. Rockafellar* Dedicated to J-L. Lions on his 60 th birthday Abstract. Primal and dual problems of

More information

LINEAR-CONVEX CONTROL AND DUALITY

LINEAR-CONVEX CONTROL AND DUALITY 1 LINEAR-CONVEX CONTROL AND DUALITY R.T. Rockafellar Department of Mathematics, University of Washington Seattle, WA 98195-4350, USA Email: rtr@math.washington.edu R. Goebel 3518 NE 42 St., Seattle, WA

More information

c 2018 Society for Industrial and Applied Mathematics

c 2018 Society for Industrial and Applied Mathematics SIAM J. CONTROL OPTIM. Vol. 56, No. 2, pp. 1386 1411 c 2018 Society for Industrial and Applied Mathematics CONVERGENCE RATE FOR A GAUSS COLLOCATION METHOD APPLIED TO CONSTRAINED OPTIMAL CONTROL WILLIAM

More information

CONVEXITY IN HAMILTON-JACOBI THEORY 2: ENVELOPE REPRESENTATIONS

CONVEXITY IN HAMILTON-JACOBI THEORY 2: ENVELOPE REPRESENTATIONS CONVEXITY IN HAMILTON-JACOBI THEORY 2: ENVELOPE REPRESENTATIONS R. TYRRELL ROCKAFELLAR and PETER R. WOLENSKI * University of Washington and Louisiana State University Abstract. Upper and lower envelope

More information

A generic property of families of Lagrangian systems

A generic property of families of Lagrangian systems Annals of Mathematics, 167 (2008), 1099 1108 A generic property of families of Lagrangian systems By Patrick Bernard and Gonzalo Contreras * Abstract We prove that a generic Lagrangian has finitely many

More information

The Pontryagin Maximum Principle and a Unified Theory of Dynamic Optimization

The Pontryagin Maximum Principle and a Unified Theory of Dynamic Optimization The Pontryagin Maximum Principle and a Unified Theory of Dynamic Optimization Francis Clarke February 10, 2009 Abstract The Pontryagin maximum principle is the central result of optimal control theory.

More information

The first order quasi-linear PDEs

The first order quasi-linear PDEs Chapter 2 The first order quasi-linear PDEs The first order quasi-linear PDEs have the following general form: F (x, u, Du) = 0, (2.1) where x = (x 1, x 2,, x 3 ) R n, u = u(x), Du is the gradient of u.

More information

Dynamical Systems and Energy Minimization. c John Ball

Dynamical Systems and Energy Minimization. c John Ball Dynamical Systems and Energy Minimization c John Ball May 22, 214 2 Contents 1 Approach to equilibrium of thermomechanical systems 5 1.1 Macroscopic examples......................... 5 1.2 The microscopic

More information

Switching, sparse and averaged control

Switching, sparse and averaged control Switching, sparse and averaged control Enrique Zuazua Ikerbasque & BCAM Basque Center for Applied Mathematics Bilbao - Basque Country- Spain zuazua@bcamath.org http://www.bcamath.org/zuazua/ WG-BCAM, February

More information

Converse Lyapunov theorem and Input-to-State Stability

Converse Lyapunov theorem and Input-to-State Stability Converse Lyapunov theorem and Input-to-State Stability April 6, 2014 1 Converse Lyapunov theorem In the previous lecture, we have discussed few examples of nonlinear control systems and stability concepts

More information

L 2 -induced Gains of Switched Systems and Classes of Switching Signals

L 2 -induced Gains of Switched Systems and Classes of Switching Signals L 2 -induced Gains of Switched Systems and Classes of Switching Signals Kenji Hirata and João P. Hespanha Abstract This paper addresses the L 2-induced gain analysis for switched linear systems. We exploit

More information

First Order Initial Value Problems

First Order Initial Value Problems First Order Initial Value Problems A first order initial value problem is the problem of finding a function xt) which satisfies the conditions x = x,t) x ) = ξ 1) where the initial time,, is a given real

More information

A convergence result for an Outer Approximation Scheme

A convergence result for an Outer Approximation Scheme A convergence result for an Outer Approximation Scheme R. S. Burachik Engenharia de Sistemas e Computação, COPPE-UFRJ, CP 68511, Rio de Janeiro, RJ, CEP 21941-972, Brazil regi@cos.ufrj.br J. O. Lopes Departamento

More information

Viscosity Iterative Approximating the Common Fixed Points of Non-expansive Semigroups in Banach Spaces

Viscosity Iterative Approximating the Common Fixed Points of Non-expansive Semigroups in Banach Spaces Viscosity Iterative Approximating the Common Fixed Points of Non-expansive Semigroups in Banach Spaces YUAN-HENG WANG Zhejiang Normal University Department of Mathematics Yingbing Road 688, 321004 Jinhua

More information

Second Order Sufficient Conditions for Optimal Control Problems with Non-unique Minimizers

Second Order Sufficient Conditions for Optimal Control Problems with Non-unique Minimizers 2 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 2 WeA22. Second Order Sufficient Conditions for Optimal Control Problems with Non-unique Minimizers Christos Gavriel

More information

BEST PROXIMITY POINT RESULTS VIA SIMULATION FUNCTIONS IN METRIC-LIKE SPACES

BEST PROXIMITY POINT RESULTS VIA SIMULATION FUNCTIONS IN METRIC-LIKE SPACES Kragujevac Journal of Mathematics Volume 44(3) (2020), Pages 401 413. BEST PROXIMITY POINT RESULTS VIA SIMULATION FUNCTIONS IN METRIC-LIKE SPACES G. V. V. J. RAO 1, H. K. NASHINE 2, AND Z. KADELBURG 3

More information

Solution of Stochastic Optimal Control Problems and Financial Applications

Solution of Stochastic Optimal Control Problems and Financial Applications Journal of Mathematical Extension Vol. 11, No. 4, (2017), 27-44 ISSN: 1735-8299 URL: http://www.ijmex.com Solution of Stochastic Optimal Control Problems and Financial Applications 2 Mat B. Kafash 1 Faculty

More information

BORIS MORDUKHOVICH Wayne State University Detroit, MI 48202, USA. Talk given at the SPCOM Adelaide, Australia, February 2015

BORIS MORDUKHOVICH Wayne State University Detroit, MI 48202, USA. Talk given at the SPCOM Adelaide, Australia, February 2015 CODERIVATIVE CHARACTERIZATIONS OF MAXIMAL MONOTONICITY BORIS MORDUKHOVICH Wayne State University Detroit, MI 48202, USA Talk given at the SPCOM 2015 Adelaide, Australia, February 2015 Based on joint papers

More information

Minimal time mean field games

Minimal time mean field games based on joint works with Samer Dweik and Filippo Santambrogio PGMO Days 2017 Session Mean Field Games and applications EDF Lab Paris-Saclay November 14th, 2017 LMO, Université Paris-Sud Université Paris-Saclay

More information

Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings

Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings Mathematica Moravica Vol. 20:1 (2016), 125 144 Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings G.S. Saluja Abstract. The aim of

More information

The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle

The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle A.V. Dmitruk, A.M. Kaganovich Lomonosov Moscow State University, Russia 119992, Moscow, Leninskie Gory, VMK MGU e-mail: dmitruk@member.ams.org,

More information

SPACES ENDOWED WITH A GRAPH AND APPLICATIONS. Mina Dinarvand. 1. Introduction

SPACES ENDOWED WITH A GRAPH AND APPLICATIONS. Mina Dinarvand. 1. Introduction MATEMATIČKI VESNIK MATEMATIQKI VESNIK 69, 1 (2017), 23 38 March 2017 research paper originalni nauqni rad FIXED POINT RESULTS FOR (ϕ, ψ)-contractions IN METRIC SPACES ENDOWED WITH A GRAPH AND APPLICATIONS

More information

University of Houston, Department of Mathematics Numerical Analysis, Fall 2005

University of Houston, Department of Mathematics Numerical Analysis, Fall 2005 3 Numerical Solution of Nonlinear Equations and Systems 3.1 Fixed point iteration Reamrk 3.1 Problem Given a function F : lr n lr n, compute x lr n such that ( ) F(x ) = 0. In this chapter, we consider

More information

Remarks on Extremization Problems Related To Young s Inequality

Remarks on Extremization Problems Related To Young s Inequality Remarks on Extremization Problems Related To Young s Inequality Michael Christ University of California, Berkeley University of Wisconsin May 18, 2016 Part 1: Introduction Young s convolution inequality

More information

Regularity and approximations of generalized equations; applications in optimal control

Regularity and approximations of generalized equations; applications in optimal control SWM ORCOS Operations Research and Control Systems Regularity and approximations of generalized equations; applications in optimal control Vladimir M. Veliov (Based on joint works with A. Dontchev, M. Krastanov,

More information

Nonsmooth Analysis in Systems and Control Theory

Nonsmooth Analysis in Systems and Control Theory Nonsmooth Analysis in Systems and Control Theory Francis Clarke Institut universitaire de France et Université de Lyon [January 2008. To appear in the Encyclopedia of Complexity and System Science, Springer.]

More information

Optimal Control. Macroeconomics II SMU. Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112

Optimal Control. Macroeconomics II SMU. Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112 Optimal Control Ömer Özak SMU Macroeconomics II Ömer Özak (SMU) Economic Growth Macroeconomics II 1 / 112 Review of the Theory of Optimal Control Section 1 Review of the Theory of Optimal Control Ömer

More information

Stability of optimization problems with stochastic dominance constraints

Stability of optimization problems with stochastic dominance constraints Stability of optimization problems with stochastic dominance constraints D. Dentcheva and W. Römisch Stevens Institute of Technology, Hoboken Humboldt-University Berlin www.math.hu-berlin.de/~romisch SIAM

More information

An homotopy method for exact tracking of nonlinear nonminimum phase systems: the example of the spherical inverted pendulum

An homotopy method for exact tracking of nonlinear nonminimum phase systems: the example of the spherical inverted pendulum 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -, 9 FrA.5 An homotopy method for exact tracking of nonlinear nonminimum phase systems: the example of the spherical inverted

More information

Random Inspections and Periodic Reviews: Optimal Dynamic Monitoring.

Random Inspections and Periodic Reviews: Optimal Dynamic Monitoring. Random Inspections and Periodic Reviews: Optimal Dynamic Monitoring. Online Appendix: Discrete Time Model November 4, 27 In this appendix we consider a discrete version of the model. We show that the solution

More information

Geometric Optimal Control with Applications

Geometric Optimal Control with Applications Geometric Optimal Control with Applications Accelerated Graduate Course Institute of Mathematics for Industry, Kyushu University, Bernard Bonnard Inria Sophia Antipolis et Institut de Mathématiques de

More information

ON CALCULATING THE VALUE OF A DIFFERENTIAL GAME IN THE CLASS OF COUNTER STRATEGIES 1,2

ON CALCULATING THE VALUE OF A DIFFERENTIAL GAME IN THE CLASS OF COUNTER STRATEGIES 1,2 URAL MATHEMATICAL JOURNAL, Vol. 2, No. 1, 2016 ON CALCULATING THE VALUE OF A DIFFERENTIAL GAME IN THE CLASS OF COUNTER STRATEGIES 1,2 Mikhail I. Gomoyunov Krasovskii Institute of Mathematics and Mechanics,

More information

AN EFFECTIVE METRIC ON C(H, K) WITH NORMAL STRUCTURE. Mona Nabiei (Received 23 June, 2015)

AN EFFECTIVE METRIC ON C(H, K) WITH NORMAL STRUCTURE. Mona Nabiei (Received 23 June, 2015) NEW ZEALAND JOURNAL OF MATHEMATICS Volume 46 (2016), 53-64 AN EFFECTIVE METRIC ON C(H, K) WITH NORMAL STRUCTURE Mona Nabiei (Received 23 June, 2015) Abstract. This study first defines a new metric with

More information

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents MATHEMATICAL ECONOMICS: OPTIMIZATION JOÃO LOPES DIAS Contents 1. Introduction 2 1.1. Preliminaries 2 1.2. Optimal points and values 2 1.3. The optimization problems 3 1.4. Existence of optimal points 4

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

A LOCALIZATION PROPERTY AT THE BOUNDARY FOR MONGE-AMPERE EQUATION

A LOCALIZATION PROPERTY AT THE BOUNDARY FOR MONGE-AMPERE EQUATION A LOCALIZATION PROPERTY AT THE BOUNDARY FOR MONGE-AMPERE EQUATION O. SAVIN. Introduction In this paper we study the geometry of the sections for solutions to the Monge- Ampere equation det D 2 u = f, u

More information

Controllability of the linear 1D wave equation with inner moving for

Controllability of the linear 1D wave equation with inner moving for Controllability of the linear D wave equation with inner moving forces ARNAUD MÜNCH Université Blaise Pascal - Clermont-Ferrand - France Toulouse, May 7, 4 joint work with CARLOS CASTRO (Madrid) and NICOLAE

More information

A CHARACTERIZATION OF STRICT LOCAL MINIMIZERS OF ORDER ONE FOR STATIC MINMAX PROBLEMS IN THE PARAMETRIC CONSTRAINT CASE

A CHARACTERIZATION OF STRICT LOCAL MINIMIZERS OF ORDER ONE FOR STATIC MINMAX PROBLEMS IN THE PARAMETRIC CONSTRAINT CASE Journal of Applied Analysis Vol. 6, No. 1 (2000), pp. 139 148 A CHARACTERIZATION OF STRICT LOCAL MINIMIZERS OF ORDER ONE FOR STATIC MINMAX PROBLEMS IN THE PARAMETRIC CONSTRAINT CASE A. W. A. TAHA Received

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. CONTROL OPTIM. Vol. 46, No. 4, pp. 1483 1517 c 2007 Society for Industrial and Applied Mathematics A SMALL-GAIN THEOREM FOR A WIDE CLASS OF FEEDBACK SYSTEMS WITH CONTROL APPLICATIONS IASSON KARAFYLLIS

More information

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. Printed Name: Signature: Applied Math Qualifying Exam 11 October 2014 Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. 2 Part 1 (1) Let Ω be an open subset of R

More information

Nonlinear Control Systems

Nonlinear Control Systems Nonlinear Control Systems António Pedro Aguiar pedro@isr.ist.utl.pt 3. Fundamental properties IST-DEEC PhD Course http://users.isr.ist.utl.pt/%7epedro/ncs2012/ 2012 1 Example Consider the system ẋ = f

More information

1 Relative degree and local normal forms

1 Relative degree and local normal forms THE ZERO DYNAMICS OF A NONLINEAR SYSTEM 1 Relative degree and local normal orms The purpose o this Section is to show how single-input single-output nonlinear systems can be locally given, by means o a

More information