Problem 1. Suppose we calculate the response of an LTI system to an input signal x(n), using the convolution sum:

Size: px
Start display at page:

Download "Problem 1. Suppose we calculate the response of an LTI system to an input signal x(n), using the convolution sum:"

Transcription

1 EE 438 Homework 4. Corrections in Problems 2(a)(iii) and (iv) and Problem 3(c): Sunday, 9/9, 10pm. EW DUE DATE: Monday, Sept 17 at 5pm (you see, that suggestion box does work!) Problem 1. Suppose we calculate the response of an LTI system to an input signal x(n), using the convolution sum: y(n) = + k= x(k)h(n k), where h(n) is the impulse response of the system. Suppose that both x(n) and h(n) are finiteduration signals: the duration of x(n) is samples, and the duration of h(n) ism samples. How many multiplications and how many additions will it take to calculate y(n) for <n<+? (Your answer should be an expression involving and M.) Problem 2. (a) Consider a DT LTI system with a known frequency response H(e jω ). It was shown in class that the response of such a system to an everlasting complex exponential input signal g(n) =e jωn, <n<+, is: y(n) =g(n)h(e jω ), for <n<+. (1) (In other words, e jωn is an eigenfunction of the system, with eigenvalue H(e jω ).) (i) Does Eq. (1) hold for sinusoidal inputs? In other words, suppose that the input to a DT LTI system is cos(ωn + φ), for < n < +. Is it always the case that the output is cos(ωn + φ)h(e jω ), for <n<+? (ii) Use the above property (1) to derive a simple expression for the response of the system to the following input signal: 2 cos(8n + π/4). (iii) Please disregard what was here previously. Instead, do the following. Answer question (i) for DT LTI systems with even frequency responses, i.e., for systems with H(e jω )=H(e jω ). (iv) Please disregard what was here previously. Instead, do the following. Consider a DT LTI system whose frequency response is an even function. Its frequency response for 0 ω π is: H(e jω )= 1+ae j2ω +2e j4ω 1+be j2ω. Determine the constants a and b, given the two input/output pairs below: when the input is cos(πn/2), the output is cos(πn/2); when the input is sin(πn), the output is 2 sin(πn). 1

2 (b) For each of the two discrete-time systems S 1,S 2 below, the indicated input/output pair represents the results of one experiment with the corresponding system. Decide whether the output y(n) and input x(n) of this system definitely cannot, possibly could, or must satisfy a convolution relationship of the form y(n) = x h(n) for some appropriate impulse response h(n). Choose the statement that applies, and explain your reasoning. If you answer is possibly could or must, determine an impulse response h(n) and frequency response H(e jω ) that would account for the given input/output pair. (i) The response of system S 1 to input e j(π/2)n is 4e j(3π/4)n. (ii) The response of system S 2 to input e j(π/4)n is 4e j(9π/4)(n 1). Problem 3. Consider the following DT complex exponential functions: ( ) j2π(k 1)(n 1) s k (n) = exp, n =1,...,; k =1,...,. In other words, there are functions, s 1 (n),s 2 (n),...,s (n), and each of them is defined for n = 1, 2,...,. As usual, we are identifying each of these functions with a vector: ( ( ) ( ) ( )) j2π(k 1) 0 j2π(k 1) 1 j2π(k 1)( 1) T s k = exp, exp,...,exp. This problem will help you get a feel for what these functions are. (Do not use Matlab in this problem.) (a) Let =3. (i) Draw the three numbers s 1 (1), s 1 (2), and s 1 (3), as points in the complex plane. (ii) Repeat (i) for s 2. (iii) Repeat (i) for s 3. (iv) Calculate s 1, s 3 = s 1 (1)s 3 (1) + s 1(2)s 3 (2) + s 1(3)s 3 (3). (v) Calculate s 2, s 3. (b) Let =4. (i) Draw the four numbers s 1 (1), s 1 (2), s 1 (3), and s 1 (4), as points in the complex plane. (ii) Repeat (i) for s 2. (iii) Repeat (i) for s 3. 2

3 Figure 1: Illustration to Problem 3(g): a regular pentagon inscribed in a unit circle. (iv) Repeat (i) for s 4. (v) Calculate s 2, s 4. (c) Show that your results from Part (a),(iv) and (v), and Part (b),(v), can be generalized as follows: (Hint. s k, s m = = if k m, then s k, s m =0, for any. s k (n)s m(n) ( j2π(k 1)(n 1) exp ) ( exp ow simplify and use the geometric series formula with q = exp (d) Find s k (n). (e) Find s k 2. (The answer will be an expression involving.) ) j2π(m 1)(n 1) ( ) j2π(k m).) (f) Let = 24, and let s(n) = 438 exp (j(πn/ )), for n =1, 2,...,24. Compute the coefficients a 1,a 2,...,a 24 in the expansion: 24 s = a k s k, where s =(s(1),...,s(24)) T, and s k are the complex exponentials defined above. (This expansion is known as a DT Fourier series.) (g) Consider a regular -gon (polygon with equal sides), inscribed in a unit circle. (This is shown in Fig. 1, for = 5.) Find the sum of squared lengths of all diagonals and sides of the -gon. 3

4 Hints. 1. A side of a polygon is a segment connecting two adjacent vertices. 2. A diagonal of a polygon is a segment connecting two non-adjacent vertices. 3. Your answer should be an expression involving. 4. Consider all sides and diagonals which share one particular vertex. Use your observations from Parts (a) and (b) to relate the sum of their squared lengths to the energy of s 1 s 2. x(n) delay by 1 sample delay by 1 sample multiply by C multiply by B multiply by A + y(n) Problem 4. (a) Find a difference equation that describes this system i.e. relates the output of the overall system to its input. (A, B, and C are fixed constants.) (b) Find the frequency response of this system using three methods: (i) from the difference equation; (ii) by calculating the impulse response and finding its DTFT; (iii) by calculating the response to a complex exponential. Verify that all three methods result in the same answer. (c) Suppose that A = B = C = 1, and x(n) = 5, for <n<+. Calculate y(n) using: (i) the difference equation; (ii) the frequency response. Problem 5. Prove the following properties of the inner product and norm in C : (a) g, s = s, g. (b) a 1 s 1 + a 2 s 2, g = a 1 s 1, g + a 2 s 2, g. (c) s,a 1 g 1 + a 2 g 2 = a 1 s, g 1 + a 2 s, g 2. (d) as 2 = a s 2. 4

5 (Boldface letters denote vectors; a, a 1, and a 2 are complex numbers.) Problem 6. A geometric view of linear regression. (a) Pythagoras s theorem in C. Prove Pythagoras s theorem: the sum of energies of two orthogonal vectors is equal to the energy of their sum, i.e., if s, g =0, then s 2 + g 2 = s + g 2. ote that this result generalizes the following 2-D picture: Area = energy of s+g Area = energy of s s s+g g Area = energy of g Figure 2: The sum of squares of two sides of a right triangle is equal to the square of the hypotenuse. (Hint. Use the fact that s + g 2 = s + g, s + g. Write this out using properties of inner products derived in class; then use orthogonality of s and g to cancel some terms.) (b) Projections in C. Suppose that G is a vector subspace of C ; let y C be a vector which does not necessarily belong to G; and let y G be its orthogonal projection onto G. Show that the closest vector in G to y is y G. In other words, show that y y G = min y f f G Hint. Draw a picture of y, its projection y G, and some other vector f G. ow use Pythagoras s theorem from Part (a) to show that y y G 2 y f 2. (c) System identification using linear regression. Consider a discrete-time multi-input single-output memoryless system which takes m input signals x 1,x 2,...,x m and calculates their weighted sum to generate an output y, i.e. m y(n) = w k x k (n) (2) 5

6 In (2), the weights w 1,w 2,...,w m are unknown real numbers. The inputs as well as measurements of the output for n =1, 2,..., are available (here, is some fixed positive integer which we assume to be greater than m). We assume the input to be pairwise orthogonal, i.e. x k (n)x p(n) =0fork p. The goal of this exercise is to estimate the weights w 1,w 2,...,w m from these inputs and the observations of the output. In practice, the measurement noise often makes it impossible to find the weights that would exactly satisfy Eq. (2) for the given inputs and the observed output. Instead, your task is to find the weights which minimize the energy of the difference between the two sides of Eq. (2): find w 1,w 2,...,w m to minimize m y(n) w k x k (n) 2. (3) Hints. Write the input and output signals as -dimensional vectors, to express the above energy as m y 2 w k x k. ow use Part (b) and the results on orthogonal projections derived in class. 6

1.3 Frequency Analysis A Review of Complex Numbers

1.3 Frequency Analysis A Review of Complex Numbers 3 CHAPTER. ANALYSIS OF DISCRETE-TIME LINEAR TIME-INVARIANT SYSTEMS I y z R θ x R Figure.8. A complex number z can be represented in Cartesian coordinates x, y or polar coordinates R, θ..3 Frequency Analysis.3.

More information

Chap 2. Discrete-Time Signals and Systems

Chap 2. Discrete-Time Signals and Systems Digital Signal Processing Chap 2. Discrete-Time Signals and Systems Chang-Su Kim Discrete-Time Signals CT Signal DT Signal Representation 0 4 1 1 1 2 3 Functional representation 1, n 1,3 x[ n] 4, n 2 0,

More information

Digital Signal Processing Lecture 3 - Discrete-Time Systems

Digital Signal Processing Lecture 3 - Discrete-Time Systems Digital Signal Processing - Discrete-Time Systems Electrical Engineering and Computer Science University of Tennessee, Knoxville August 25, 2015 Overview 1 2 3 4 5 6 7 8 Introduction Three components of

More information

Discrete-Time Fourier Transform (DTFT)

Discrete-Time Fourier Transform (DTFT) Discrete-Time Fourier Transform (DTFT) 1 Preliminaries Definition: The Discrete-Time Fourier Transform (DTFT) of a signal x[n] is defined to be X(e jω ) x[n]e jωn. (1) In other words, the DTFT of x[n]

More information

Frequency-Domain C/S of LTI Systems

Frequency-Domain C/S of LTI Systems Frequency-Domain C/S of LTI Systems x(n) LTI y(n) LTI: Linear Time-Invariant system h(n), the impulse response of an LTI systems describes the time domain c/s. H(ω), the frequency response describes the

More information

Generalizing the DTFT!

Generalizing the DTFT! The Transform Generaliing the DTFT! The forward DTFT is defined by X e jω ( ) = x n e jωn in which n= Ω is discrete-time radian frequency, a real variable. The quantity e jωn is then a complex sinusoid

More information

Very useful for designing and analyzing signal processing systems

Very useful for designing and analyzing signal processing systems z-transform z-transform The z-transform generalizes the Discrete-Time Fourier Transform (DTFT) for analyzing infinite-length signals and systems Very useful for designing and analyzing signal processing

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions 8-90 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 08 Midterm Solutions Name: Andrew ID: Problem Score Max 8 5 3 6 4 7 5 8 6 7 6 8 6 9 0 0 Total 00 Midterm Solutions. (8 points) Indicate whether

More information

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz Discrete Time Signals and Systems Time-frequency Analysis Gloria Menegaz Time-frequency Analysis Fourier transform (1D and 2D) Reference textbook: Discrete time signal processing, A.W. Oppenheim and R.W.

More information

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Name: Solve problems 1 3 and two from problems 4 7. Circle below which two of problems 4 7 you

More information

EE 438 Supplementary Notes on Fourier Series and Linear Algebra.

EE 438 Supplementary Notes on Fourier Series and Linear Algebra. EE 38 Supplementary Notes on Fourier Series and Linear Algebra. Discrete-Time Fourier Series. How to write a vector s as a sum where {g,...,g m } are pairwise orthogonal? s m a k g k, k Answer: project

More information

Discrete Time Fourier Transform (DTFT)

Discrete Time Fourier Transform (DTFT) Discrete Time Fourier Transform (DTFT) 1 Discrete Time Fourier Transform (DTFT) The DTFT is the Fourier transform of choice for analyzing infinite-length signals and systems Useful for conceptual, pencil-and-paper

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

ECE-314 Fall 2012 Review Questions for Midterm Examination II

ECE-314 Fall 2012 Review Questions for Midterm Examination II ECE-314 Fall 2012 Review Questions for Midterm Examination II First, make sure you study all the problems and their solutions from homework sets 4-7. Then work on the following additional problems. Problem

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Chapter 2 Review of Fundamentals of Digital Signal Processing 2.1 (a) This system is not linear (the constant term makes it non linear) but is shift-invariant (b) This system is linear but not shift-invariant

More information

ELEN 4810 Midterm Exam

ELEN 4810 Midterm Exam ELEN 4810 Midterm Exam Wednesday, October 26, 2016, 10:10-11:25 AM. One sheet of handwritten notes is allowed. No electronics of any kind are allowed. Please record your answers in the exam booklet. Raise

More information

Digital Signal Processing Lecture 10 - Discrete Fourier Transform

Digital Signal Processing Lecture 10 - Discrete Fourier Transform Digital Signal Processing - Discrete Fourier Transform Electrical Engineering and Computer Science University of Tennessee, Knoxville November 12, 2015 Overview 1 2 3 4 Review - 1 Introduction Discrete-time

More information

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches Difference Equations (an LTI system) x[n]: input, y[n]: output That is, building a system that maes use of the current and previous

More information

Chapter 7: The z-transform

Chapter 7: The z-transform Chapter 7: The -Transform ECE352 1 The -Transform - definition Continuous-time systems: e st H(s) y(t) = e st H(s) e st is an eigenfunction of the LTI system h(t), and H(s) is the corresponding eigenvalue.

More information

ECE 301 Fall 2011 Division 1 Homework 5 Solutions

ECE 301 Fall 2011 Division 1 Homework 5 Solutions ECE 301 Fall 2011 ivision 1 Homework 5 Solutions Reading: Sections 2.4, 3.1, and 3.2 in the textbook. Problem 1. Suppose system S is initially at rest and satisfies the following input-output difference

More information

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM Dr. Lim Chee Chin Outline Introduction Discrete Fourier Series Properties of Discrete Fourier Series Time domain aliasing due to frequency

More information

EE-210. Signals and Systems Homework 7 Solutions

EE-210. Signals and Systems Homework 7 Solutions EE-20. Signals and Systems Homework 7 Solutions Spring 200 Exercise Due Date th May. Problems Q Let H be the causal system described by the difference equation w[n] = 7 w[n ] 2 2 w[n 2] + x[n ] x[n 2]

More information

Solution 10 July 2015 ECE301 Signals and Systems: Midterm. Cover Sheet

Solution 10 July 2015 ECE301 Signals and Systems: Midterm. Cover Sheet Solution 10 July 2015 ECE301 Signals and Systems: Midterm Cover Sheet Test Duration: 60 minutes Coverage: Chap. 1,2,3,4 One 8.5" x 11" crib sheet is allowed. Calculators, textbooks, notes are not allowed.

More information

8 The Discrete Fourier Transform (DFT)

8 The Discrete Fourier Transform (DFT) 8 The Discrete Fourier Transform (DFT) ² Discrete-Time Fourier Transform and Z-transform are de ned over in niteduration sequence. Both transforms are functions of continuous variables (ω and z). For nite-duration

More information

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129.

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114.

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. The exam for both sections of ECE 301 is conducted in the same room, but the problems are completely different. Your ID will

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 6: January 31, 2017 Inverse z-transform Lecture Outline! z-transform " Tie up loose ends " Regions of convergence properties! Inverse z-transform " Inspection " Partial

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 6: January 30, 2018 Inverse z-transform Lecture Outline! z-transform " Tie up loose ends " Regions of convergence properties! Inverse z-transform " Inspection " Partial

More information

Lecture 3 January 23

Lecture 3 January 23 EE 123: Digital Signal Processing Spring 2007 Lecture 3 January 23 Lecturer: Prof. Anant Sahai Scribe: Dominic Antonelli 3.1 Outline These notes cover the following topics: Eigenvectors and Eigenvalues

More information

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform Signals and Systems Problem Set: The z-transform and DT Fourier Transform Updated: October 9, 7 Problem Set Problem - Transfer functions in MATLAB A discrete-time, causal LTI system is described by the

More information

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr.

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. Final Exam of ECE301, Section 3 (CRN 17101-003) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

ELC 4351: Digital Signal Processing

ELC 4351: Digital Signal Processing ELC 4351: Digital Signal Processing Liang Dong Electrical and Computer Engineering Baylor University liang dong@baylor.edu October 18, 2016 Liang Dong (Baylor University) Frequency-domain Analysis of LTI

More information

Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 2016 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2.

Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 2016 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2. Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 20 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2. Note: Π(t) = u(t + 1) u(t 1 ), and r(t) = tu(t) where u(t)

More information

Fourier Analysis and Spectral Representation of Signals

Fourier Analysis and Spectral Representation of Signals MIT 6.02 DRAFT Lecture Notes Last update: April 11, 2012 Comments, questions or bug reports? Please contact verghese at mit.edu CHAPTER 13 Fourier Analysis and Spectral Representation of Signals We have

More information

EE123 Digital Signal Processing. M. Lustig, EECS UC Berkeley

EE123 Digital Signal Processing. M. Lustig, EECS UC Berkeley EE123 Digital Signal Processing Today Last time: DTFT - Ch 2 Today: Continue DTFT Z-Transform Ch. 3 Properties of the DTFT cont. Time-Freq Shifting/modulation: M. Lustig, EE123 UCB M. Lustig, EE123 UCB

More information

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105.

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address,

More information

Digital Signal Processing. Midterm 1 Solution

Digital Signal Processing. Midterm 1 Solution EE 123 University of California, Berkeley Anant Sahai February 15, 27 Digital Signal Processing Instructions Midterm 1 Solution Total time allowed for the exam is 8 minutes Some useful formulas: Discrete

More information

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT Digital Signal Processing Lecture Notes and Exam Questions Convolution Sum January 31, 2006 Convolution Sum of Two Finite Sequences Consider convolution of h(n) and g(n) (M>N); y(n) = h(n), n =0... M 1

More information

Your solutions for time-domain waveforms should all be expressed as real-valued functions.

Your solutions for time-domain waveforms should all be expressed as real-valued functions. ECE-486 Test 2, Feb 23, 2017 2 Hours; Closed book; Allowed calculator models: (a) Casio fx-115 models (b) HP33s and HP 35s (c) TI-30X and TI-36X models. Calculators not included in this list are not permitted.

More information

SIGNALS AND SYSTEMS. Unit IV. Analysis of DT signals

SIGNALS AND SYSTEMS. Unit IV. Analysis of DT signals SIGNALS AND SYSTEMS Unit IV Analysis of DT signals Contents: 4.1 Discrete Time Fourier Transform 4.2 Discrete Fourier Transform 4.3 Z Transform 4.4 Properties of Z Transform 4.5 Relationship between Z

More information

Signals and Systems. Spring Room 324, Geology Palace, ,

Signals and Systems. Spring Room 324, Geology Palace, , Signals and Systems Spring 2013 Room 324, Geology Palace, 13756569051, zhukaiguang@jlu.edu.cn Chapter 10 The Z-Transform 1) Z-Transform 2) Properties of the ROC of the z-transform 3) Inverse z-transform

More information

! z-transform. " Tie up loose ends. " Regions of convergence properties. ! Inverse z-transform. " Inspection. " Partial fraction

! z-transform.  Tie up loose ends.  Regions of convergence properties. ! Inverse z-transform.  Inspection.  Partial fraction Lecture Outline ESE 53: Digital Signal Processing Lec 6: January 3, 207 Inverse z-transform! z-transform " Tie up loose ends " gions of convergence properties! Inverse z-transform " Inspection " Partial

More information

The Z-Transform. Fall 2012, EE123 Digital Signal Processing. Eigen Functions of LTI System. Eigen Functions of LTI System

The Z-Transform. Fall 2012, EE123 Digital Signal Processing. Eigen Functions of LTI System. Eigen Functions of LTI System The Z-Transform Fall 202, EE2 Digital Signal Processing Lecture 4 September 4, 202 Used for: Analysis of LTI systems Solving di erence equations Determining system stability Finding frequency response

More information

Homework 6 Solutions

Homework 6 Solutions 8-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 208 Homework 6 Solutions. Part One. (2 points) Consider an LTI system with impulse response h(t) e αt u(t), (a) Compute the frequency response

More information

University of Waterloo Department of Electrical and Computer Engineering ECE 413 Digital Signal Processing. Spring Home Assignment 2 Solutions

University of Waterloo Department of Electrical and Computer Engineering ECE 413 Digital Signal Processing. Spring Home Assignment 2 Solutions University of Waterloo Department of Electrical and Computer Engineering ECE 13 Digital Signal Processing Spring 017 Home Assignment Solutions Due on June 8, 017 Exercise 1 An LTI system is described by

More information

Lecture 19 IIR Filters

Lecture 19 IIR Filters Lecture 19 IIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/10 1 General IIR Difference Equation IIR system: infinite-impulse response system The most general class

More information

6.02 Practice Problems: Frequency Response of LTI Systems & Filters

6.02 Practice Problems: Frequency Response of LTI Systems & Filters 1 of 12 6.02 Practice Problems: Frequency Response of LTI Systems & Filters Note: In these problems, we sometimes refer to H(Ω) as H(e jω ). The reason is that in some previous terms we used the latter

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

Lecture 10. Digital Signal Processing. Chapter 7. Discrete Fourier transform DFT. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev.

Lecture 10. Digital Signal Processing. Chapter 7. Discrete Fourier transform DFT. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. Lecture 10 Digital Signal Processing Chapter 7 Discrete Fourier transform DFT Mikael Swartling Nedelko Grbic Bengt Mandersson rev. 016 Department of Electrical and Information Technology Lund University

More information

DISCRETE FOURIER TRANSFORM

DISCRETE FOURIER TRANSFORM DISCRETE FOURIER TRANSFORM 1. Introduction The sampled discrete-time fourier transform (DTFT) of a finite length, discrete-time signal is known as the discrete Fourier transform (DFT). The DFT contains

More information

X. Chen More on Sampling

X. Chen More on Sampling X. Chen More on Sampling 9 More on Sampling 9.1 Notations denotes the sampling time in second. Ω s = 2π/ and Ω s /2 are, respectively, the sampling frequency and Nyquist frequency in rad/sec. Ω and ω denote,

More information

7.17. Determine the z-transform and ROC for the following time signals: Sketch the ROC, poles, and zeros in the z-plane. X(z) = x[n]z n.

7.17. Determine the z-transform and ROC for the following time signals: Sketch the ROC, poles, and zeros in the z-plane. X(z) = x[n]z n. Solutions to Additional Problems 7.7. Determine the -transform and ROC for the following time signals: Sketch the ROC, poles, and eros in the -plane. (a) x[n] δ[n k], k > 0 X() x[n] n n k, 0 Im k multiple

More information

Fourier Analysis and Spectral Representation of Signals

Fourier Analysis and Spectral Representation of Signals MIT 6.02 DRAFT Lecture Notes Last update: November 3, 2012 CHAPTER 13 Fourier Analysis and Spectral Representation of Signals We have seen in the previous chapter that the action of an LTI system on a

More information

Lecture 4: FT Pairs, Random Signals and z-transform

Lecture 4: FT Pairs, Random Signals and z-transform EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 4: T Pairs, Rom Signals z-transform Wed., Oct. 10, 2001 Prof: J. Bilmes

More information

Discrete-time Signals and Systems in

Discrete-time Signals and Systems in Discrete-time Signals and Systems in the Frequency Domain Chapter 3, Sections 3.1-39 3.9 Chapter 4, Sections 4.8-4.9 Dr. Iyad Jafar Outline Introduction The Continuous-Time FourierTransform (CTFT) The

More information

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1 Module 2 : Signals in Frequency Domain Problem Set 2 Problem 1 Let be a periodic signal with fundamental period T and Fourier series coefficients. Derive the Fourier series coefficients of each of the

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

ECE503: Digital Signal Processing Lecture 4

ECE503: Digital Signal Processing Lecture 4 ECE503: Digital Signal Processing Lecture 4 D. Richard Brown III WPI 06-February-2012 WPI D. Richard Brown III 06-February-2012 1 / 29 Lecture 4 Topics 1. Motivation for the z-transform. 2. Definition

More information

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 )

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 ) Review: Poles and Zeros of Fractional Form Let H() = P()/Q() be the system function of a rational form. Let us represent both P() and Q() as polynomials of (not - ) Then Poles: the roots of Q()=0 Zeros:

More information

DIGITAL SIGNAL PROCESSING LECTURE 1

DIGITAL SIGNAL PROCESSING LECTURE 1 DIGITAL SIGNAL PROCESSING LECTURE 1 Fall 2010 2K8-5 th Semester Tahir Muhammad tmuhammad_07@yahoo.com Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, 1999-2000

More information

Final Exam 14 May LAST Name FIRST Name Lab Time

Final Exam 14 May LAST Name FIRST Name Lab Time EECS 20n: Structure and Interpretation of Signals and Systems Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA BERKELEY Final Exam 14 May 2005 LAST Name FIRST Name Lab

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

Definition of Discrete-Time Fourier Transform (DTFT)

Definition of Discrete-Time Fourier Transform (DTFT) Definition of Discrete-Time ourier Transform (DTT) {x[n]} = X(e jω ) + n= {X(e jω )} = x[n] x[n]e jωn Why use the above awkward notation for the transform? X(e jω )e jωn dω Answer: It is consistent with

More information

Final Exam January 31, Solutions

Final Exam January 31, Solutions Final Exam January 31, 014 Signals & Systems (151-0575-01) Prof. R. D Andrea & P. Reist Solutions Exam Duration: Number of Problems: Total Points: Permitted aids: Important: 150 minutes 7 problems 50 points

More information

Solution 7 August 2015 ECE301 Signals and Systems: Final Exam. Cover Sheet

Solution 7 August 2015 ECE301 Signals and Systems: Final Exam. Cover Sheet Solution 7 August 2015 ECE301 Signals and Systems: Final Exam Cover Sheet Test Duration: 120 minutes Coverage: Chap. 1, 2, 3, 4, 5, 7 One 8.5" x 11" crib sheet is allowed. Calculators, textbooks, notes

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture 1: Course Overview; Discrete-Time Signals & Systems Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 2008 K. E.

More information

Final Exam ECE301 Signals and Systems Friday, May 3, Cover Sheet

Final Exam ECE301 Signals and Systems Friday, May 3, Cover Sheet Name: Final Exam ECE3 Signals and Systems Friday, May 3, 3 Cover Sheet Write your name on this page and every page to be safe. Test Duration: minutes. Coverage: Comprehensive Open Book but Closed Notes.

More information

Lecture 13: Discrete Time Fourier Transform (DTFT)

Lecture 13: Discrete Time Fourier Transform (DTFT) Lecture 13: Discrete Time Fourier Transform (DTFT) ECE 401: Signal and Image Analysis University of Illinois 3/9/2017 1 Sampled Systems Review 2 DTFT and Convolution 3 Inverse DTFT 4 Ideal Lowpass Filter

More information

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 2: DTFT, DFT, and DFT Spectral

More information

Department of Electrical and Computer Engineering Digital Speech Processing Homework No. 6 Solutions

Department of Electrical and Computer Engineering Digital Speech Processing Homework No. 6 Solutions Problem 1 Department of Electrical and Computer Engineering Digital Speech Processing Homework No. 6 Solutions The complex cepstrum, ˆx[n], of a sequence x[n] is the inverse Fourier transform of the complex

More information

Discrete Time Fourier Transform

Discrete Time Fourier Transform Discrete Time Fourier Transform Recall that we wrote the sampled signal x s (t) = x(kt)δ(t kt). We calculate its Fourier Transform. We do the following: Ex. Find the Continuous Time Fourier Transform of

More information

EEL3135: Homework #4

EEL3135: Homework #4 EEL335: Homework #4 Problem : For each of the systems below, determine whether or not the system is () linear, () time-invariant, and (3) causal: (a) (b) (c) xn [ ] cos( 04πn) (d) xn [ ] xn [ ] xn [ 5]

More information

Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals

Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals z Transform Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals (ii) Understanding the characteristics and properties

More information

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR Digital Signal Processing - Design of Digital Filters - FIR Electrical Engineering and Computer Science University of Tennessee, Knoxville November 3, 2015 Overview 1 2 3 4 Roadmap Introduction Discrete-time

More information

Overview of Discrete-Time Fourier Transform Topics Handy Equations Handy Limits Orthogonality Defined orthogonal

Overview of Discrete-Time Fourier Transform Topics Handy Equations Handy Limits Orthogonality Defined orthogonal Overview of Discrete-Time Fourier Transform Topics Handy equations and its Definition Low- and high- discrete-time frequencies Convergence issues DTFT of complex and real sinusoids Relationship to LTI

More information

Linear Convolution Using FFT

Linear Convolution Using FFT Linear Convolution Using FFT Another useful property is that we can perform circular convolution and see how many points remain the same as those of linear convolution. When P < L and an L-point circular

More information

Lecture 19: Discrete Fourier Series

Lecture 19: Discrete Fourier Series EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 19: Discrete Fourier Series Dec 5, 2001 Prof: J. Bilmes TA: Mingzhou

More information

Digital Signal Processing, Homework 1, Spring 2013, Prof. C.D. Chung

Digital Signal Processing, Homework 1, Spring 2013, Prof. C.D. Chung Digital Signal Processing, Homework, Spring 203, Prof. C.D. Chung. (0.5%) Page 99, Problem 2.2 (a) The impulse response h [n] of an LTI system is known to be zero, except in the interval N 0 n N. The input

More information

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061.

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061. ECE 301 Division 1 Exam 1 Solutions, 10/6/011, 8-9:45pm in ME 1061. Your ID will be checked during the exam. Please bring a No. pencil to fill out the answer sheet. This is a closed-book exam. No calculators

More information

DSP Laboratory (EELE 4110) Lab#5 DTFS & DTFT

DSP Laboratory (EELE 4110) Lab#5 DTFS & DTFT Islamic University of Gaza Faculty of Engineering Electrical Engineering Department EG.MOHAMMED ELASMER Spring-22 DSP Laboratory (EELE 4) Lab#5 DTFS & DTFT Discrete-Time Fourier Series (DTFS) The discrete-time

More information

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet EE538 Final Exam Fall 005 3:0 pm -5:0 pm PHYS 3 Dec. 17, 005 Cover Sheet Test Duration: 10 minutes. Open Book but Closed Notes. Calculators ARE allowed!! This test contains five problems. Each of the five

More information

EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 19, Cover Sheet

EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 19, Cover Sheet EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 19, 2012 Cover Sheet Test Duration: 75 minutes. Coverage: Chaps. 5,7 Open Book but Closed Notes. One 8.5 in. x 11 in. crib sheet Calculators

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.003: Signals and Systems Discrete-Time Frequency Representations November 8, 2011 1 Mid-term Examination #3 Wednesday, November 16, 7:30-9:30pm, No recitations on the day of the exam. Coverage: Lectures

More information

Inner Product, Length, and Orthogonality

Inner Product, Length, and Orthogonality Inner Product, Length, and Orthogonality Linear Algebra MATH 2076 Linear Algebra,, Chapter 6, Section 1 1 / 13 Algebraic Definition for Dot Product u 1 v 1 u 2 Let u =., v = v 2. be vectors in Rn. The

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 20, Cover Sheet

EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 20, Cover Sheet NAME: NAME EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 20, 2017 Cover Sheet Test Duration: 75 minutes. Coverage: Chaps. 5,7 Open Book but Closed Notes. One 8.5 in. x 11 in. crib sheet

More information

The Convolution Sum for Discrete-Time LTI Systems

The Convolution Sum for Discrete-Time LTI Systems The Convolution Sum for Discrete-Time LTI Systems Andrew W. H. House 01 June 004 1 The Basics of the Convolution Sum Consider a DT LTI system, L. x(n) L y(n) DT convolution is based on an earlier result

More information

Flash File. Module 3 : Sampling and Reconstruction Lecture 28 : Discrete time Fourier transform and its Properties. Objectives: Scope of this Lecture:

Flash File. Module 3 : Sampling and Reconstruction Lecture 28 : Discrete time Fourier transform and its Properties. Objectives: Scope of this Lecture: Module 3 : Sampling and Reconstruction Lecture 28 : Discrete time Fourier transform and its Properties Objectives: Scope of this Lecture: In the previous lecture we defined digital signal processing and

More information

ECE538 Final Exam Fall 2017 Digital Signal Processing I 14 December Cover Sheet

ECE538 Final Exam Fall 2017 Digital Signal Processing I 14 December Cover Sheet ECE58 Final Exam Fall 7 Digital Signal Processing I December 7 Cover Sheet Test Duration: hours. Open Book but Closed Notes. Three double-sided 8.5 x crib sheets allowed This test contains five problems.

More information

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 23, 2006 1 Exponentials The exponential is

More information

The Discrete-Time Fourier

The Discrete-Time Fourier Chapter 3 The Discrete-Time Fourier Transform 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 3-1-1 Continuous-Time Fourier Transform Definition The CTFT of

More information

The Z transform (2) 1

The Z transform (2) 1 The Z transform (2) 1 Today Properties of the region of convergence (3.2) Read examples 3.7, 3.8 Announcements: ELEC 310 FINAL EXAM: April 14 2010, 14:00 pm ECS 123 Assignment 2 due tomorrow by 4:00 pm

More information

2016 EF Exam Texas A&M High School Students Contest Solutions October 22, 2016

2016 EF Exam Texas A&M High School Students Contest Solutions October 22, 2016 6 EF Exam Texas A&M High School Students Contest Solutions October, 6. Assume that p and q are real numbers such that the polynomial x + is divisible by x + px + q. Find q. p Answer Solution (without knowledge

More information

Z-Transform. The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = g(t)e st dt. Z : G(z) =

Z-Transform. The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = g(t)e st dt. Z : G(z) = Z-Transform The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = Z : G(z) = It is Used in Digital Signal Processing n= g(t)e st dt g[n]z n Used to Define Frequency

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 2 Discrete Time Systems Today Last time: Administration Overview Announcement: HW1 will be out today Lab 0 out webcast out Today: Ch. 2 - Discrete-Time Signals and

More information

Adaptive Systems Homework Assignment 1

Adaptive Systems Homework Assignment 1 Signal Processing and Speech Communication Lab. Graz University of Technology Adaptive Systems Homework Assignment 1 Name(s) Matr.No(s). The analytical part of your homework (your calculation sheets) as

More information

VI. Z Transform and DT System Analysis

VI. Z Transform and DT System Analysis Summer 2008 Signals & Systems S.F. Hsieh VI. Z Transform and DT System Analysis Introduction Why Z transform? a DT counterpart of the Laplace transform in CT. Generalization of DT Fourier transform: z

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals ESE 531: Digital Signal Processing Lec 25: April 24, 2018 Review Course Content! Introduction! Discrete Time Signals & Systems! Discrete Time Fourier Transform! Z-Transform! Inverse Z-Transform! Sampling

More information

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129.

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address, and signature

More information