Lecture 19: Discrete Fourier Series

Size: px
Start display at page:

Download "Lecture 19: Discrete Fourier Series"

Transcription

1 EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 19: Discrete Fourier Series Dec 5, 2001 Prof: J. Bilmes TA: Mingzhou Song 19.1 Discrete Fourier Series DTFT x[n] 1 On a computer (MATLAB), how dow we represent? n π x[n]e jωn π X(e jω )e jωn dω X(e jω ) is defined on continuous domain. So can not be represent exactly in general. x[n] is infinite in length so it is impossible to deal with. Must do: 1) assume x[n] is finite length (as typically occurs in practice) 2) x[n] is periodic extension of x[n], so we can analyze x[n] to gain properties of x[n]. DFS applies to x[n]. DFT applies to x[n]. But they are basically the same thing. (except that there are some circular things we need to work with. Question: (to ponder) Could we perhaps sample X(e jω ) at a sufficiently high enough rate so to get, say X[k] when X(e jω ) is recoverable? Answer: Yes. Ok: Consider x[n] periodic x[n] x[n + r]. Recall Fourier series For discrete time signals, period, we have f (t) F[k] 1 T F[k]e jkt/t k T /2 T /2 f (t)e jkt/t dt X[k]e j(/)kn 1 k X[k]e k [n] (19.1) k e k [n] e j(/)kn e k [n + r] (19.2) 19-1

2 19-2 But note: e k+l [n] e j(/)(k+l)n e j(/)kn So we need only sum over values, i.e., 1 X[k]e j(/)kn ote: 1 x[n]e j(/)rn X[k]e j(/)(k r)n 1 X[k] [ 1 1 e j(/)(k r)n 1 X[k]δ[k r m] X[r] 1 X[k] ] by orthogonality of sinusoids x[n]e j(/)kn (19.3) X[k] is periodic, too. 1 X[k + ] 1 X[k] x[n]e j(/)(k+)n x[n]e j(/)kn e jn Define W e j(/) (19.4) DFS 1 Analysis Equation X[k] Synthesis Equation ote: can think of them as finite length sequence: of length, or as periodic with period. Ex: x[n] r 1 [k] 1 x[n] { 1, n r δ[n r] 0, else δ[n]w kn W 0 1 W kn 1 1 e j(/)kn x[n]e j(/)kn (19.5) 1 X[k]e j(/)kn (19.6)

3 19-3 Ex: x[n] 10, x[n] r x[n r] { 1, 0 n 9 0, else X[k] 9 W10 kn 9 e j(/10)kn 1 W 5k 10 j(4kπ/10) sin(πk/2) 1 W10 k e sin(πk/10) 19.2 Properties of DFS 1) Linearity x 1 [n] DFS X 1 [k], x 2 [n] DFS X 2 [k] a x 1 [n] + b x 2 [n] DFS a X 1 [k] + b X 2 [k] 2) Shift x[n m] DFS W km X [ k] ote, same for any ˆm m modulo M (reminder when divided by M) 3) Duality x[n m] DFS W k ˆm X[k] x[n] DFS X[k] But analysis and synthesis equation are almost the same (1/ and sign change) Consider Switch symbol n and k, the above can be written as 1 X[k]W kn 1 x[ n] X[k]W kn 1 x[ k] X[n]W kn So, we can say x[n] DFS X[k], X[n] DFS x[ k] 4) Periodic Convolution We can show X[k] X 1 [k] X 2 [k] 1 x[n] m0 It might spill over into next period for some n and m. x 1 [m] x 2 [n m]

4 19-4 Intuition X[k] 1 1 m0 1 m0 ( 1 m0 x 1 [m] x 1 [m]w km X 1 [k] X 2 [k] x 1 [m] x 2 [n m] ) W kn ( ) 1 x 2 [n m]w kn X 2 [k] Since analysis and synthesis equations are so similar, we also have Other Properties See O&S table 8.1, they are very similar to DTFT. x 1 [n] x 2 [n] DFS 1 1 X 1 [l] X 2 [k l] l0 Recall DT FT {x[n] e jω 0n }? ote x[n] is neither absolute summable nor square summable. Define r δ(ω ω 0 + r) 1 π δ(ω ω 0 )e jωn dω e jω 0n π For general periodic time signals x[n], consider representation by DFS X[k], the impulse train at harmonically related frequency starting at fundamental frequency /. Why? k 1 π X(e jω )e jωn dω 1 π π π 1 1 x[n] k X[k]δ(ω k ) k X[k] X[k]δ(ω k )e jωn dω π π X[k]e j(/)kn k δ(ω k )e jωn dω Ex: Important Interpretation of X[k]. since ρ[n] r ρ[k] 1, δ[n r] k ρ(e jω ) k k δ(ω )

5 19-5 Consider x[n] x[n] ρ[n] x[n] X(e jω ) ρ(e jω ) X(e jω ) k k k r δ[n r] k δ(ω ) r X(e j2(π/)k )δ(ω k ) X[k]δ(ω k ) x[n r] from definition X[k] X(e j2(π/)k ) X(e jω ) ω(/)k which is sampling of DTFT, i.e., X[k] from x[n] is equivalent to sampling of X(e jω ) from x[n], which is one period of x[n] from n 0 to n 1. ote also: (another way to look at it) n x[n]e jωn 1 x[n]e jωn So sampling the DTFT X(e j2(π/)k 1 ) x[n]e j2(π/)kn 1 x[n]w kn X[k] X(e jω ) ω(/)k X(z) ze j2(π/)k DFS analysis The sampling frequencies are points equally distributed on the unit circle in the z-plane. Question: What would x[n] be from this X[k]? How would x[n] be related to x[n] from X(e jω )? n x[n]e jωn X[k] X(e j(/)k ) Recall from previous example So x[n] m m X[k]W kn [ ] x[m]e j2(π/)km W kn m ] x[m] [ 1 1 W k(n m) ρ[n m] DFS W km x[m] ρ[n m] x[n] r δ[n r] ote sampling X(e jω ) with equally spread samples. If the length of x[n] is larger than, there is time-aliasing, which is dual of frequency aliasing. Suppose x[n] of length is to be reconstructed from samples in frequency domain.

6 19-6 Case 1: Sample X(e jω ) with points. o time aliasing and x[n] can be reconstructed. Case 2: Sample X(e jω ) with less than points. Time aliasing will occur and x[n] can not be constructed. Case 3: Sample X(e jω ) with larger than points. o time aliasing but zero will be padded with every period of. Key points: - X(e jω ) for finite length sequence is redundant in that we can sample it and recover the full signal x[n]. Oversampling implies extra space in time. - for X( jω) finite length (finite bandwidth) can sample the time signal x(t) at a fast enough rate to get x[n] and fully recover x(t). Oversampling means space in frequency. The above forms a duality.

Discrete Fourier transform (DFT)

Discrete Fourier transform (DFT) Discrete Fourier transform (DFT) Signal Processing 2008/9 LEA Instituto Superior Técnico Signal Processing LEA (IST) Discrete Fourier transform 1 / 34 Periodic signals Consider a periodic signal x[n] with

More information

Digital Signal Processing Lecture 10 - Discrete Fourier Transform

Digital Signal Processing Lecture 10 - Discrete Fourier Transform Digital Signal Processing - Discrete Fourier Transform Electrical Engineering and Computer Science University of Tennessee, Knoxville November 12, 2015 Overview 1 2 3 4 Review - 1 Introduction Discrete-time

More information

Lecture 20: Discrete Fourier Transform and FFT

Lecture 20: Discrete Fourier Transform and FFT EE518 Digital Signal Processing University of Washington Autumn 2001 Dept of Electrical Engineering Lecture 20: Discrete Fourier Transform and FFT Dec 10, 2001 Prof: J Bilmes TA:

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform Virtually all practical signals have finite length (e.g., sensor data, audio records, digital images, stock values, etc). Rather than considering such signals to be zero-padded

More information

Lecture 10. Digital Signal Processing. Chapter 7. Discrete Fourier transform DFT. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev.

Lecture 10. Digital Signal Processing. Chapter 7. Discrete Fourier transform DFT. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. Lecture 10 Digital Signal Processing Chapter 7 Discrete Fourier transform DFT Mikael Swartling Nedelko Grbic Bengt Mandersson rev. 016 Department of Electrical and Information Technology Lund University

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

Lecture 4: FT Pairs, Random Signals and z-transform

Lecture 4: FT Pairs, Random Signals and z-transform EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 4: T Pairs, Rom Signals z-transform Wed., Oct. 10, 2001 Prof: J. Bilmes

More information

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 8: Signal Reconstruction, D vs C Processing Oct 24, 2001 Prof: J. Bilmes

More information

8 The Discrete Fourier Transform (DFT)

8 The Discrete Fourier Transform (DFT) 8 The Discrete Fourier Transform (DFT) ² Discrete-Time Fourier Transform and Z-transform are de ned over in niteduration sequence. Both transforms are functions of continuous variables (ω and z). For nite-duration

More information

Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section The (DT) Fourier transform (or spectrum) of x[n] is

Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section The (DT) Fourier transform (or spectrum) of x[n] is Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section 5. 3 The (DT) Fourier transform (or spectrum) of x[n] is X ( e jω) = n= x[n]e jωn x[n] can be reconstructed from its

More information

Lecture 13: Pole/Zero Diagrams and All Pass Systems

Lecture 13: Pole/Zero Diagrams and All Pass Systems EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 13: Pole/Zero Diagrams and All Pass Systems No4, 2001 Prof: J. Bilmes

More information

Fourier series for continuous and discrete time signals

Fourier series for continuous and discrete time signals 8-9 Signals and Systems Fall 5 Fourier series for continuous and discrete time signals The road to Fourier : Two weeks ago you saw that if we give a complex exponential as an input to a system, the output

More information

Discrete Time Fourier Transform (DTFT)

Discrete Time Fourier Transform (DTFT) Discrete Time Fourier Transform (DTFT) 1 Discrete Time Fourier Transform (DTFT) The DTFT is the Fourier transform of choice for analyzing infinite-length signals and systems Useful for conceptual, pencil-and-paper

More information

Lecture 16: Filter Design: Impulse Invariance and Bilinear Transform

Lecture 16: Filter Design: Impulse Invariance and Bilinear Transform EE58 Digital Signal Processing University of Washington Autumn 2 Dept. of Electrical Engineering Lecture 6: Filter Design: Impulse Invariance and Bilinear Transform Nov 26, 2 Prof: J. Bilmes

More information

Fast Fourier Transform Discrete-time windowing Discrete Fourier Transform Relationship to DTFT Relationship to DTFS Zero padding

Fast Fourier Transform Discrete-time windowing Discrete Fourier Transform Relationship to DTFT Relationship to DTFS Zero padding Fast Fourier Transform Discrete-time windowing Discrete Fourier Transform Relationship to DTFT Relationship to DTFS Zero padding Fourier Series & Transform Summary x[n] = X[k] = 1 N k= n= X[k]e jkω

More information

Fast Fourier Transform Discrete-time windowing Discrete Fourier Transform Relationship to DTFT Relationship to DTFS Zero padding

Fast Fourier Transform Discrete-time windowing Discrete Fourier Transform Relationship to DTFT Relationship to DTFS Zero padding Fast Fourier Transform Discrete-time windowing Discrete Fourier Transform Relationship to DTFT Relationship to DTFS Zero padding J. McNames Portland State University ECE 223 FFT Ver. 1.03 1 Fourier Series

More information

Lecture 7: z-transform Properties, Sampling and Nyquist Sampling Theorem

Lecture 7: z-transform Properties, Sampling and Nyquist Sampling Theorem EE518 Digital Signal Proessing University of Washington Autumn 21 Dept. of Eletrial Engineering ure 7: z-ransform Properties, Sampling and Nyquist Sampling heorem Ot 22, 21 Prof: J. Bilmes

More information

Homework 8 Solutions

Homework 8 Solutions EE264 Dec 3, 2004 Fall 04 05 HO#27 Problem Interpolation (5 points) Homework 8 Solutions 30 points total Ω = 2π/T f(t) = sin( Ω 0 t) T f (t) DAC ˆf(t) interpolated output In this problem I ll use the notation

More information

Chapter 8 The Discrete Fourier Transform

Chapter 8 The Discrete Fourier Transform Chapter 8 The Discrete Fourier Transform Introduction Representation of periodic sequences: the discrete Fourier series Properties of the DFS The Fourier transform of periodic signals Sampling the Fourier

More information

7.16 Discrete Fourier Transform

7.16 Discrete Fourier Transform 38 Signals, Systems, Transforms and Digital Signal Processing with MATLAB i.e. F ( e jω) = F [f[n]] is periodic with period 2π and its base period is given by Example 7.17 Let x[n] = 1. We have Π B (Ω)

More information

Chapter 6: Applications of Fourier Representation Houshou Chen

Chapter 6: Applications of Fourier Representation Houshou Chen Chapter 6: Applications of Fourier Representation Houshou Chen Dept. of Electrical Engineering, National Chung Hsing University E-mail: houshou@ee.nchu.edu.tw H.S. Chen Chapter6: Applications of Fourier

More information

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz Discrete Time Signals and Systems Time-frequency Analysis Gloria Menegaz Time-frequency Analysis Fourier transform (1D and 2D) Reference textbook: Discrete time signal processing, A.W. Oppenheim and R.W.

More information

Complex symmetry Signals and Systems Fall 2015

Complex symmetry Signals and Systems Fall 2015 18-90 Signals and Systems Fall 015 Complex symmetry 1. Complex symmetry This section deals with the complex symmetry property. As an example I will use the DTFT for a aperiodic discrete-time signal. The

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform Valentina Hubeika, Jan Černocký DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz Diskrete Fourier transform (DFT) We have just one problem with DFS that needs to be solved.

More information

Final Exam Solutions : Wednesday, Dec 13, Prof: J. Bilmes TA: Mingzhou Song

Final Exam Solutions : Wednesday, Dec 13, Prof: J. Bilmes TA: Mingzhou Song 1 of 9 EE518 Digital Signal Processing University of Washington Autumn 2000 Dept of Electrical Engineering Final Exam Solutions : Wednesday, Dec 13, 2000 Prof: J Bilmes TA: Mingzhou

More information

Digital Signal Processing. Midterm 1 Solution

Digital Signal Processing. Midterm 1 Solution EE 123 University of California, Berkeley Anant Sahai February 15, 27 Digital Signal Processing Instructions Midterm 1 Solution Total time allowed for the exam is 8 minutes Some useful formulas: Discrete

More information

! Circular Convolution. " Linear convolution with circular convolution. ! Discrete Fourier Transform. " Linear convolution through circular

! Circular Convolution.  Linear convolution with circular convolution. ! Discrete Fourier Transform.  Linear convolution through circular Previously ESE 531: Digital Signal Processing Lec 22: April 18, 2017 Fast Fourier Transform (con t)! Circular Convolution " Linear convolution with circular convolution! Discrete Fourier Transform " Linear

More information

Digital Signal Processing. Midterm 2 Solutions

Digital Signal Processing. Midterm 2 Solutions EE 123 University of California, Berkeley Anant Sahai arch 15, 2007 Digital Signal Processing Instructions idterm 2 Solutions Total time allowed for the exam is 80 minutes Please write your name and SID

More information

Discrete Time Fourier Transform

Discrete Time Fourier Transform Discrete Time Fourier Transform Recall that we wrote the sampled signal x s (t) = x(kt)δ(t kt). We calculate its Fourier Transform. We do the following: Ex. Find the Continuous Time Fourier Transform of

More information

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 ECE 30 Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out

More information

Discrete-time Signals and Systems in

Discrete-time Signals and Systems in Discrete-time Signals and Systems in the Frequency Domain Chapter 3, Sections 3.1-39 3.9 Chapter 4, Sections 4.8-4.9 Dr. Iyad Jafar Outline Introduction The Continuous-Time FourierTransform (CTFT) The

More information

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything.

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 9th, 011 Examination hours: 14.30 18.30 This problem set

More information

Overview of Discrete-Time Fourier Transform Topics Handy Equations Handy Limits Orthogonality Defined orthogonal

Overview of Discrete-Time Fourier Transform Topics Handy Equations Handy Limits Orthogonality Defined orthogonal Overview of Discrete-Time Fourier Transform Topics Handy equations and its Definition Low- and high- discrete-time frequencies Convergence issues DTFT of complex and real sinusoids Relationship to LTI

More information

6.003: Signal Processing

6.003: Signal Processing 6.003: Signal Processing Discrete Fourier Transform Discrete Fourier Transform (DFT) Relations to Discrete-Time Fourier Transform (DTFT) Relations to Discrete-Time Fourier Series (DTFS) October 16, 2018

More information

Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter Objec@ves 1. Learn techniques for represen3ng discrete-)me periodic signals using orthogonal sets of periodic basis func3ons. 2.

More information

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are ECE-7 Review Phil Schniter January 5, 7 ransforms Using x c (t) to denote a continuous-time signal at time t R, Laplace ransform: X c (s) x c (t)e st dt, s C Continuous-ime Fourier ransform (CF): ote that:

More information

In this Lecture. Frequency domain analysis

In this Lecture. Frequency domain analysis In this Lecture Frequency domain analysis Introduction In most cases we want to know the frequency content of our signal Why? Most popular analysis in frequency domain is based on work of Joseph Fourier

More information

Definition of Discrete-Time Fourier Transform (DTFT)

Definition of Discrete-Time Fourier Transform (DTFT) Definition of Discrete-Time ourier Transform (DTT) {x[n]} = X(e jω ) + n= {X(e jω )} = x[n] x[n]e jωn Why use the above awkward notation for the transform? X(e jω )e jωn dω Answer: It is consistent with

More information

Digital Signal Processing: Signal Transforms

Digital Signal Processing: Signal Transforms Digital Signal Processing: Signal Transforms Aishy Amer, Mohammed Ghazal January 19, 1 Instructions: 1. This tutorial introduces frequency analysis in Matlab using the Fourier and z transforms.. More Matlab

More information

X. Chen More on Sampling

X. Chen More on Sampling X. Chen More on Sampling 9 More on Sampling 9.1 Notations denotes the sampling time in second. Ω s = 2π/ and Ω s /2 are, respectively, the sampling frequency and Nyquist frequency in rad/sec. Ω and ω denote,

More information

Lecture 14: Minimum Phase Systems and Linear Phase

Lecture 14: Minimum Phase Systems and Linear Phase EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 14: Minimum Phase Systems and Linear Phase Nov 19, 2001 Prof: J. Bilmes

More information

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Multimedia Signals and Systems - Audio and Video Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Kunio Takaya Electrical and Computer Engineering University of Saskatchewan December

More information

Chap 4. Sampling of Continuous-Time Signals

Chap 4. Sampling of Continuous-Time Signals Digital Signal Processing Chap 4. Sampling of Continuous-Time Signals Chang-Su Kim Digital Processing of Continuous-Time Signals Digital processing of a CT signal involves three basic steps 1. Conversion

More information

Very useful for designing and analyzing signal processing systems

Very useful for designing and analyzing signal processing systems z-transform z-transform The z-transform generalizes the Discrete-Time Fourier Transform (DTFT) for analyzing infinite-length signals and systems Very useful for designing and analyzing signal processing

More information

University of Connecticut Lecture Notes for ME5507 Fall 2014 Engineering Analysis I Part III: Fourier Analysis

University of Connecticut Lecture Notes for ME5507 Fall 2014 Engineering Analysis I Part III: Fourier Analysis University of Connecticut Lecture Notes for ME557 Fall 24 Engineering Analysis I Part III: Fourier Analysis Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 2: Discrete Fourier Transform CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 2: Discrete Fourier Transform CCNY 1 Lucas Parra, CCNY BME 50500: Image and Signal Processing in Biomedicine Lecture 2: Discrete Fourier Transform Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

Fall 2011, EE123 Digital Signal Processing

Fall 2011, EE123 Digital Signal Processing Lecture 6 Miki Lustig, UCB September 11, 2012 Miki Lustig, UCB DFT and Sampling the DTFT X (e jω ) = e j4ω sin2 (5ω/2) sin 2 (ω/2) 5 x[n] 25 X(e jω ) 4 20 3 15 2 1 0 10 5 1 0 5 10 15 n 0 0 2 4 6 ω 5 reconstructed

More information

Chap 2. Discrete-Time Signals and Systems

Chap 2. Discrete-Time Signals and Systems Digital Signal Processing Chap 2. Discrete-Time Signals and Systems Chang-Su Kim Discrete-Time Signals CT Signal DT Signal Representation 0 4 1 1 1 2 3 Functional representation 1, n 1,3 x[ n] 4, n 2 0,

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 22: April 10, 2018 Adaptive Filters Penn ESE 531 Spring 2018 Khanna Lecture Outline! Circular convolution as linear convolution with aliasing! Adaptive Filters Penn

More information

EE Homework 13 - Solutions

EE Homework 13 - Solutions EE3054 - Homework 3 - Solutions. (a) The Laplace transform of e t u(t) is s+. The pole of the Laplace transform is at which lies in the left half plane. Hence, the Fourier transform is simply the Laplace

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseare http://ocw.mit.edu HST.58J / 6.555J / 16.56J Biomedical Signal and Image Processing Spring 7 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

6.003 Signal Processing

6.003 Signal Processing 6.003 Signal Processing Week 6, Lecture A: The Discrete Fourier Transform (DFT) Adam Hartz hz@mit.edu What is 6.003? What is a signal? Abstractly, a signal is a function that conveys information Signal

More information

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn Sampling Let x a (t) be a continuous time signal. The signal is sampled by taking the signal value at intervals of time T to get The signal x(t) has a Fourier transform x[n] = x a (nt ) X a (Ω) = x a (t)e

More information

Discrete-Time Fourier Transform (DTFT)

Discrete-Time Fourier Transform (DTFT) Discrete-Time Fourier Transform (DTFT) 1 Preliminaries Definition: The Discrete-Time Fourier Transform (DTFT) of a signal x[n] is defined to be X(e jω ) x[n]e jωn. (1) In other words, the DTFT of x[n]

More information

INTRODUCTION TO THE DFS AND THE DFT

INTRODUCTION TO THE DFS AND THE DFT ITRODUCTIO TO THE DFS AD THE DFT otes: This brief handout contains in very brief outline form the lecture notes used for a video lecture in a previous year introducing the DFS and the DFT. This material

More information

Signals and Systems Spring 2004 Lecture #9

Signals and Systems Spring 2004 Lecture #9 Signals and Systems Spring 2004 Lecture #9 (3/4/04). The convolution Property of the CTFT 2. Frequency Response and LTI Systems Revisited 3. Multiplication Property and Parseval s Relation 4. The DT Fourier

More information

6.003 Signal Processing

6.003 Signal Processing 6.003 Signal Processing Week 6, Lecture A: The Discrete Fourier Transform (DFT) Adam Hartz hz@mit.edu What is 6.003? What is a signal? Abstractly, a signal is a function that conveys information Signal

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

Contents. Signals as functions (1D, 2D)

Contents. Signals as functions (1D, 2D) Fourier Transform The idea A signal can be interpreted as en electromagnetic wave. This consists of lights of different color, or frequency, that can be split apart usign an optic prism. Each component

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 9: February 13th, 2018 Downsampling/Upsampling and Practical Interpolation Lecture Outline! CT processing of DT signals! Downsampling! Upsampling 2 Continuous-Time

More information

SC434L_DVCC-Tutorial 6 Subband Video Coding

SC434L_DVCC-Tutorial 6 Subband Video Coding SC434L_DVCC-Tutorial 6 Subband Video Coding Dr H.R. Wu Associate Professor Audiovisual Information Processing and Digital Communications Monash University http://www.csse.monash.edu.au/~hrw Email: hrw@csse.monash.edu.au

More information

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 2: DTFT, DFT, and DFT Spectral

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr.

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. Final Exam of ECE301, Section 3 (CRN 17101-003) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

Lecture 13: Discrete Time Fourier Transform (DTFT)

Lecture 13: Discrete Time Fourier Transform (DTFT) Lecture 13: Discrete Time Fourier Transform (DTFT) ECE 401: Signal and Image Analysis University of Illinois 3/9/2017 1 Sampled Systems Review 2 DTFT and Convolution 3 Inverse DTFT 4 Ideal Lowpass Filter

More information

The Fourier Transform (and more )

The Fourier Transform (and more ) The Fourier Transform (and more ) imrod Peleg ov. 5 Outline Introduce Fourier series and transforms Introduce Discrete Time Fourier Transforms, (DTFT) Introduce Discrete Fourier Transforms (DFT) Consider

More information

Contents. Signals as functions (1D, 2D)

Contents. Signals as functions (1D, 2D) Fourier Transform The idea A signal can be interpreted as en electromagnetic wave. This consists of lights of different color, or frequency, that can be split apart usign an optic prism. Each component

More information

Fourier Representations of Signals & LTI Systems

Fourier Representations of Signals & LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n] 2. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Announcements EE Digital Signal Processing otes posted HW due Friday SDR give away Today! Read Ch 9 $$$ give me your names Lecture based on slides by JM Kahn M Lustig, EECS UC Berkeley M Lustig, EECS UC

More information

Fourier Analysis and Spectral Representation of Signals

Fourier Analysis and Spectral Representation of Signals MIT 6.02 DRAFT Lecture Notes Last update: April 11, 2012 Comments, questions or bug reports? Please contact verghese at mit.edu CHAPTER 13 Fourier Analysis and Spectral Representation of Signals We have

More information

VII. Discrete Fourier Transform (DFT) Chapter-8. A. Modulo Arithmetic. (n) N is n modulo N, n is an integer variable.

VII. Discrete Fourier Transform (DFT) Chapter-8. A. Modulo Arithmetic. (n) N is n modulo N, n is an integer variable. 1 VII. Discrete Fourier Transform (DFT) Chapter-8 A. Modulo Arithmetic (n) N is n modulo N, n is an integer variable. (n) N = n m N 0 n m N N-1, pick m Ex. (k) 4 W N = e -j2π/n 2 Note that W N k = 0 but

More information

Discrete-time signals and systems

Discrete-time signals and systems Discrete-time signals and systems 1 DISCRETE-TIME DYNAMICAL SYSTEMS x(t) G y(t) Linear system: Output y(n) is a linear function of the inputs sequence: y(n) = k= h(k)x(n k) h(k): impulse response of the

More information

Discrete-time Fourier Series (DTFS)

Discrete-time Fourier Series (DTFS) Discrete-time Fourier Series (DTFS) Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 59 Opening remarks The Fourier series representation for discrete-time signals has some similarities with

More information

convenient means to determine response to a sum of clear evidence of signal properties that are obscured in the original signal

convenient means to determine response to a sum of clear evidence of signal properties that are obscured in the original signal Digital Speech Processing Lecture 9 Short-Time Fourier Analysis Methods- Introduction 1 General Discrete-Time Model of Speech Production Voiced Speech: A V P(z)G(z)V(z)R(z) Unvoiced Speech: A N N(z)V(z)R(z)

More information

EE-210. Signals and Systems Homework 7 Solutions

EE-210. Signals and Systems Homework 7 Solutions EE-20. Signals and Systems Homework 7 Solutions Spring 200 Exercise Due Date th May. Problems Q Let H be the causal system described by the difference equation w[n] = 7 w[n ] 2 2 w[n 2] + x[n ] x[n 2]

More information

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals ESE 531: Digital Signal Processing Lec 25: April 24, 2018 Review Course Content! Introduction! Discrete Time Signals & Systems! Discrete Time Fourier Transform! Z-Transform! Inverse Z-Transform! Sampling

More information

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk Signals & Systems Lecture 5 Continuous-Time Fourier Transform Alp Ertürk alp.erturk@kocaeli.edu.tr Fourier Series Representation of Continuous-Time Periodic Signals Synthesis equation: x t = a k e jkω

More information

ELEN 4810 Midterm Exam

ELEN 4810 Midterm Exam ELEN 4810 Midterm Exam Wednesday, October 26, 2016, 10:10-11:25 AM. One sheet of handwritten notes is allowed. No electronics of any kind are allowed. Please record your answers in the exam booklet. Raise

More information

Review: Continuous Fourier Transform

Review: Continuous Fourier Transform Review: Continuous Fourier Transform Review: convolution x t h t = x τ h(t τ)dτ Convolution in time domain Derivation Convolution Property Interchange the order of integrals Let Convolution Property By

More information

Digital Signal Processing:

Digital Signal Processing: Digital Signal Processing: Mathematical and algorithmic manipulation of discretized and quantized or naturally digital signals in order to extract the most relevant and pertinent information that is carried

More information

Signals and Systems. Lecture 14 DR TANIA STATHAKI READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Signals and Systems. Lecture 14 DR TANIA STATHAKI READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Signals and Systems Lecture 14 DR TAIA STATHAKI READER (ASSOCIATE PROFESSOR) I SIGAL PROCESSIG IMPERIAL COLLEGE LODO Introduction. Time sampling theorem resume. We wish to perform spectral analysis using

More information

Contents. Signals as functions (1D, 2D)

Contents. Signals as functions (1D, 2D) Fourier Transform The idea A signal can be interpreted as en electromagnetic wave. This consists of lights of different color, or frequency, that can be split apart usign an optic prism. Each component

More information

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides)

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides) Fourier analysis of discrete-time signals (Lathi Chapt. 10 and these slides) Towards the discrete-time Fourier transform How we will get there? Periodic discrete-time signal representation by Discrete-time

More information

EDISP (NWL2) (English) Digital Signal Processing Transform, FT, DFT. March 11, 2015

EDISP (NWL2) (English) Digital Signal Processing Transform, FT, DFT. March 11, 2015 EDISP (NWL2) (English) Digital Signal Processing Transform, FT, DFT March 11, 2015 Transform concept We want to analyze the signal represent it as built of some building blocks (well known signals), possibly

More information

Bridge between continuous time and discrete time signals

Bridge between continuous time and discrete time signals 6 Sampling Bridge between continuous time and discrete time signals Sampling theorem complete representation of a continuous time signal by its samples Samplingandreconstruction implementcontinuous timesystems

More information

The Discrete-Time Fourier

The Discrete-Time Fourier Chapter 3 The Discrete-Time Fourier Transform 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 3-1-1 Continuous-Time Fourier Transform Definition The CTFT of

More information

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129.

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

Transforms and Orthogonal Bases

Transforms and Orthogonal Bases Orthogonal Bases Transforms and Orthogonal Bases We now turn back to linear algebra to understand transforms, which map signals between different domains Recall that signals can be interpreted as vectors

More information

OLA and FBS Duality Review

OLA and FBS Duality Review MUS421/EE367B Lecture 10A Review of OverLap-Add (OLA) and Filter-Bank Summation (FBS) Interpretations of Short-Time Fourier Analysis, Modification, and Resynthesis Julius O. Smith III (jos@ccrma.stanford.edu)

More information

Discrete Time Systems

Discrete Time Systems 1 Discrete Time Systems {x[0], x[1], x[2], } H {y[0], y[1], y[2], } Example: y[n] = 2x[n] + 3x[n-1] + 4x[n-2] 2 FIR and IIR Systems FIR: Finite Impulse Response -- non-recursive y[n] = 2x[n] + 3x[n-1]

More information

PS403 - Digital Signal processing

PS403 - Digital Signal processing PS403 - Digital Signal processing III. DSP - Digital Fourier Series and Transforms Key Text: Digital Signal Processing with Computer Applications (2 nd Ed.) Paul A Lynn and Wolfgang Fuerst, (Publisher:

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129.

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address, and signature

More information

Frequency Domain Representations of Sampled and Wrapped Signals

Frequency Domain Representations of Sampled and Wrapped Signals Frequency Domain Representations of Sampled and Wrapped Signals Peter Kabal Department of Electrical & Computer Engineering McGill University Montreal, Canada v1.5 March 2011 c 2011 Peter Kabal 2011/03/11

More information

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION FINAL EXAMINATION 9:00 am 12:00 pm, December 20, 2010 Duration: 180 minutes Examiner: Prof. M. Vu Assoc. Examiner: Prof. B. Champagne There are 6 questions for a total of 120 points. This is a closed book

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

Ch.11 The Discrete-Time Fourier Transform (DTFT)

Ch.11 The Discrete-Time Fourier Transform (DTFT) EE2S11 Signals and Systems, part 2 Ch.11 The Discrete-Time Fourier Transform (DTFT Contents definition of the DTFT relation to the -transform, region of convergence, stability frequency plots convolution

More information

OLA and FBS Duality Review

OLA and FBS Duality Review OLA and FBS Duality Review MUS421/EE367B Lecture 10A Review of OverLap-Add (OLA) and Filter-Bank Summation (FBS) Interpretations of Short-Time Fourier Analysis, Modification, and Resynthesis Julius O.

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING GEORGIA INSIUE OF ECHNOLOGY SCHOOL of ELECRICAL and COMPUER ENGINEERING ECE 6250 Spring 207 Problem Set # his assignment is due at the beginning of class on Wednesday, January 25 Assigned: 6-Jan-7 Due

More information