Reconstruction for Models on Random Graphs

Size: px
Start display at page:

Download "Reconstruction for Models on Random Graphs"

Transcription

1 1 Stanford University, 2 ENS Paris October 21, 2007

2 Outline 1 The Reconstruction Problem 2 Related work and applications 3 Results

3 The Reconstruction Problem: A Story

4 Alice and Bob

5 Alice, Bob and G root

6 Exit Bob root

7 Alice samples a proper coloring (uniformly)... root

8 ... and hides a ball B(root, t) root

9 Bob... root?

10 ... guesses right! root!

11 The problem Does Bob have a chance?

12 The problem Does Bob have a bigger chance than when everything is hidden?

13 Formally X = {X i : i V } uniformly random proper coloring. P U { G} distribution of X U {X i : i U V } B(r, t) = {i V : d(i, r) t} Definition The reconstruction problem is (t, ε) solvable for the rooted graph G if P r,b(r,t) {, G} P r { G}P B(r,t) { G} TV ε.

14 Formally X = {X i : i V } uniformly random proper coloring. P U { G} distribution of X U {X i : i U V } B(r, t) = {i V : d(i, r) t} Definition The reconstruction problem is (t, ε) solvable for the rooted graph G if P r,b(r,t) {, G} P r { G}P B(r,t) { G} TV ε.

15 Formally X = {X i : i V } uniformly random proper coloring. P U { G} distribution of X U {X i : i U V } B(r, t) = {i V : d(i, r) t} Definition The reconstruction problem is (t, ε) solvable for the rooted graph G if P r,b(r,t) {, G} P r { G}P B(r,t) { G} TV ε.

16 Formally X = {X i : i V } uniformly random proper coloring. P U { G} distribution of X U {X i : i U V } B(r, t) = {i V : d(i, r) t} Definition The reconstruction problem is (t, ε) solvable for the rooted graph G if P r,b(r,t) {, G} P r { G}P B(r,t) { G} TV ε.

17 Formally X = {X i : i V } uniformly random proper coloring. P U { G} distribution of X U {X i : i U V } B(r, t) = {i V : d(i, r) t} Definition The reconstruction problem is solvable for the sequence of rooted graphs G N = (V N = [N], E N ) if for some ε > 0 and all t 0 P r,b(r,t) {, G N } P r { G N }P B(r,t) { G N } TV ε.

18 Formally X = {X i : i V } uniformly random proper coloring. P U { G} distribution of X U {X i : i U V } B(r, t) = {i V : d(i, r) t} Definition The reconstruction problem is solvable for the sequence of random rooted graphs G N = (V N = [N], E N ) if for some ε > 0, P r,b(r,t) {, G N } P r { G N }P B(r,t) { G N } TV ε, with positive probability.

19 More generally: Markov distributions on G X = {X i : i V } discrete radom variables, X i {1,..., q} ψ ij : {1,..., q} {1,..., q} R + P{X G, ψ} = 1 Z G (ij) E ψ ij (x i, x j ).

20 Examples 1. (ɛ-proper) Colorings/Potts model: X i {1,..., q} { 1 if xi x ψ ij (x i, x j ) = j, ɛ otherwise. 2. Ferromagnetic Ising model: X i {+1, 1} { 1 if xi = x ψ ij (x i, x j ) = j, ɛ otherwise.

21 Examples 1. (ɛ-proper) Colorings/Potts model: X i {1,..., q} { 1 if xi x ψ ij (x i, x j ) = j, ɛ otherwise. 2. Ferromagnetic Ising model: X i {+1, 1} { 1 if xi = x ψ ij (x i, x j ) = j, ɛ otherwise.

22 Examples (continued) 3. Ising spin glass: X i {+1, 1} Label (i, j) E with J ij {+, } independently { 1 if xi = x ψ ij (x i, x j ) = j, ɛ otherwise. if J ij = +. ψ ij (x i, x j ) = { ɛ if xi = x j, 1 otherwise. if J ij =.

23 Examples (continued) 3. Ising spin glass: X i {+1, 1} Label (i, j) E with J ij {+, } independently { 1 if xi = x ψ ij (x i, x j ) = j, ɛ otherwise. if J ij = +. ψ ij (x i, x j ) = { ɛ if xi = x j, 1 otherwise. if J ij =.

24 Examples (continued) 3. Ising spin glass: X i {+1, 1} Label (i, j) E with J ij {+, } independently { 1 if xi = x ψ ij (x i, x j ) = j, ɛ otherwise. if J ij = +. ψ ij (x i, x j ) = { ɛ if xi = x j, 1 otherwise. if J ij =.

25 Related work and applications

26 When G =Tree Bleher, Ruiz, Zagrebenov (1995): Ising model on b-ary trees Solvable iff b(1 2ɛ) 2 > 1. Evans, Kenyon, Peres, Schulman (2000): Ising on general trees Solvable iff br(t )(1 2ɛ) 2 > 1. Mossel, Peres (2003): Non binary variables Brightwell, Winkler (2004), Martin (2004): Independent sets. Chayes et al. (2006): Asymmetric Ising.

27 This talk G = Random and Sparse Examples Uniformly random with M = Nγ edges. Uniformly random of degree b + 1.

28 Application 1: MCMC with local moves Kenyon,Mossel,Peres (2001) Reconstruction is solvable Slow mixing. Martinelli,Sinclair,Weitz (2005) On trees: Reconstruction is solvable Slow mixing. [The connection is likely to be more general]

29 Application 1: MCMC with local moves Kenyon,Mossel,Peres (2001) Reconstruction is solvable Slow mixing. Martinelli,Sinclair,Weitz (2005) On trees: Reconstruction is solvable Slow mixing. [The connection is likely to be more general]

30 Message passing algorithms, k-sat, etc. Problems: 1. Find x such that P{x G} > Sample from P{X G}. Basic philosophy Do computations on G as if you were on a tree. Extremely sucessful when G is random and sparse (eg random k-sat, survey propagation, Mézard, Zecchina 2003)

31 Message passing algorithms, k-sat, etc. Problems: 1. Find x such that P{x G} > Sample from P{X G}. Basic philosophy Do computations on G as if you were on a tree. Extremely sucessful when G is random and sparse (eg random k-sat, survey propagation, Mézard, Zecchina 2003)

32 Message passing algorithms, k-sat, etc (continued) Non-reconstructibility Local structure (tree) decouples from global (loops)

33 Results

34 Naive guess Random sparse graphs converge locally to trees hence reconstruction on G is solvable iff it is solvale on the associated tree.

35 Naive guess Random sparse graphs converge locally to trees hence reconstruction on G is solvable iff it is solvale on the associated tree.

36 A counterexample Theorem Consider the ferromagnetic Ising model on a random (b + 1)-regular graph. Then reconstruction is solvable iff b(1 2ɛ) 1 > 1. [Other counterexample in Mossel, Weitz, Wormald (2006)]

37 A general sufficient condition Theorem If P{X G} is roughly spherical then Graph solvable Tree solvable. If P{X G} is not roughly spherical then Graph reconstruction is solvable

38 A general sufficient condition Theorem If P{X G} is roughly spherical then Graph solvable Tree solvable. If P{X G} is not roughly spherical then Graph reconstruction is solvable

39 A general sufficient condition Theorem If P{X G} is roughly spherical then Graph solvable Tree solvable. If P{X G} is not roughly spherical then Graph reconstruction is solvable

40 Roughly spherical??? X i {0, 1}. X (1) = {X (1) i }, X (2) = {X (2) i } independent with distribution P{ G N } X (1) X (2) P{ G N } is roughly spherical if d(x (1), X (2) ) N/2 with high probability.

41 Roughly spherical??? X i {0, 1}. X (1) = {X (1) i }, X (2) = {X (2) i } independent with distribution P{ G N } X (1) X (2) P{ G N } is roughly spherical if d(x (1), X (2) ) N/2 with high probability.

42 Can you check this condition? Theorem Let G N be a random graph with M = Nγ edges, and P{ G N } the measure over ɛ-proper colorings. If γ < (q 1) log(q 1) then Graph solvable Tree solvable. Proof: Uses second moment calculation in Achlioptas, Naor (2004). Theorem Let G N be a random graph with M = Nγ edges, and P{ G N } the Boltzmann measure for Ising spin-glasses. Then reconstruction is solvabel if and only if 2γ(1 2ɛ) 2 > 1. Proof: Uses Large deviation result in Guerra, Toninelli (2003).

43 Can you check this condition? Theorem Let G N be a random graph with M = Nγ edges, and P{ G N } the measure over ɛ-proper colorings. If γ < (q 1) log(q 1) then Graph solvable Tree solvable. Proof: Uses second moment calculation in Achlioptas, Naor (2004). Theorem Let G N be a random graph with M = Nγ edges, and P{ G N } the Boltzmann measure for Ising spin-glasses. Then reconstruction is solvabel if and only if 2γ(1 2ɛ) 2 > 1. Proof: Uses Large deviation result in Guerra, Toninelli (2003).

44 Can you check this condition? Theorem Let G N be a random graph with M = Nγ edges, and P{ G N } the measure over ɛ-proper colorings. If γ < (q 1) log(q 1) then Graph solvable Tree solvable. Proof: Uses second moment calculation in Achlioptas, Naor (2004). Theorem Let G N be a random graph with M = Nγ edges, and P{ G N } the Boltzmann measure for Ising spin-glasses. Then reconstruction is solvabel if and only if 2γ(1 2ɛ) 2 > 1. Proof: Uses Large deviation result in Guerra, Toninelli (2003).

45 One trick from the proof Consider X i {+1, 1}. Approximate sphericity X (1) X (2) 0 0 E{(X (1) X (2) ) 2 } = i,j E{X i X j } 2

46 Open problem Prove that approximate counting is easy for models on random graphs in the non-reconstructibility regime.

The Tightness of the Kesten-Stigum Reconstruction Bound for a Symmetric Model With Multiple Mutations

The Tightness of the Kesten-Stigum Reconstruction Bound for a Symmetric Model With Multiple Mutations The Tightness of the Kesten-Stigum Reconstruction Bound for a Symmetric Model With Multiple Mutations City University of New York Frontier Probability Days 2018 Joint work with Dr. Sreenivasa Rao Jammalamadaka

More information

Reconstruction for models on random graphs

Reconstruction for models on random graphs Reconstruction for models on random graphs Antoine Gerschenfeld Ecole Normale Supérieure 45, rue d Ulm 75005 Paris, France gerschen@clipper.ens.fr Andrea Montanari Departments of Electrical Engineering

More information

Phase transitions in discrete structures

Phase transitions in discrete structures Phase transitions in discrete structures Amin Coja-Oghlan Goethe University Frankfurt Overview 1 The physics approach. [following Mézard, Montanari 09] Basics. Replica symmetry ( Belief Propagation ).

More information

SPIN SYSTEMS: HARDNESS OF APPROXIMATE COUNTING VIA PHASE TRANSITIONS

SPIN SYSTEMS: HARDNESS OF APPROXIMATE COUNTING VIA PHASE TRANSITIONS SPIN SYSTEMS: HARDNESS OF APPROXIMATE COUNTING VIA PHASE TRANSITIONS Andreas Galanis Joint work with: Jin-Yi Cai Leslie Ann Goldberg Heng Guo Mark Jerrum Daniel Štefankovič Eric Vigoda The Power of Randomness

More information

Phase Transitions in the Coloring of Random Graphs

Phase Transitions in the Coloring of Random Graphs Phase Transitions in the Coloring of Random Graphs Lenka Zdeborová (LPTMS, Orsay) In collaboration with: F. Krząkała (ESPCI Paris) G. Semerjian (ENS Paris) A. Montanari (Standford) F. Ricci-Tersenghi (La

More information

XVI International Congress on Mathematical Physics

XVI International Congress on Mathematical Physics Aug 2009 XVI International Congress on Mathematical Physics Underlying geometry: finite graph G=(V,E ). Set of possible configurations: V (assignments of +/- spins to the vertices). Probability of a configuration

More information

Local correctability of expander codes

Local correctability of expander codes Local correctability of expander codes Brett Hemenway Rafail Ostrovsky Mary Wootters IAS April 4, 24 The point(s) of this talk Locally decodable codes are codes which admit sublinear time decoding of small

More information

Information, Physics, and Computation

Information, Physics, and Computation Information, Physics, and Computation Marc Mezard Laboratoire de Physique Thdorique et Moales Statistiques, CNRS, and Universit y Paris Sud Andrea Montanari Department of Electrical Engineering and Department

More information

The Kesten-Stigum Reconstruction Bound Is Tight for Roughly Symmetric Binary Channels

The Kesten-Stigum Reconstruction Bound Is Tight for Roughly Symmetric Binary Channels The Kesten-Stigum Reconstruction Bound Is Tight for Roughly Symmetric Binary Channels Christian Borgs Theory Group Microsoft Research Jennifer Chayes Theory Group Microsoft Research Elchanan Mossel Dept.

More information

Lecture 13 : Kesten-Stigum bound

Lecture 13 : Kesten-Stigum bound Lecture 3 : Kesten-Stigum bound MATH85K - Spring 00 Lecturer: Sebastien Roch References: [EKPS00, Mos0, MP03, BCMR06]. Previous class DEF 3. (Ancestral reconstruction solvability) Let µ + h be the distribution

More information

Chasing the k-sat Threshold

Chasing the k-sat Threshold Chasing the k-sat Threshold Amin Coja-Oghlan Goethe University Frankfurt Random Discrete Structures In physics, phase transitions are studied by non-rigorous methods. New mathematical ideas are necessary

More information

Phase Transitions (and their meaning) in Random Constraint Satisfaction Problems

Phase Transitions (and their meaning) in Random Constraint Satisfaction Problems International Workshop on Statistical-Mechanical Informatics 2007 Kyoto, September 17 Phase Transitions (and their meaning) in Random Constraint Satisfaction Problems Florent Krzakala In collaboration

More information

The non-backtracking operator

The non-backtracking operator The non-backtracking operator Florent Krzakala LPS, Ecole Normale Supérieure in collaboration with Paris: L. Zdeborova, A. Saade Rome: A. Decelle Würzburg: J. Reichardt Santa Fe: C. Moore, P. Zhang Berkeley:

More information

Decay of Correlation in Spin Systems

Decay of Correlation in Spin Systems (An algorithmic perspective to the) Decay of Correlation in Spin Systems Yitong Yin Nanjing University Decay of Correlation hardcore model: random independent set I v Pr[v 2 I ] (d+)-regular tree `! σ:

More information

Generating Hard but Solvable SAT Formulas

Generating Hard but Solvable SAT Formulas Generating Hard but Solvable SAT Formulas T-79.7003 Research Course in Theoretical Computer Science André Schumacher October 18, 2007 1 Introduction The 3-SAT problem is one of the well-known NP-hard problems

More information

THE PHYSICS OF COUNTING AND SAMPLING ON RANDOM INSTANCES. Lenka Zdeborová

THE PHYSICS OF COUNTING AND SAMPLING ON RANDOM INSTANCES. Lenka Zdeborová THE PHYSICS OF COUNTING AND SAMPLING ON RANDOM INSTANCES Lenka Zdeborová (CEA Saclay and CNRS, France) MAIN CONTRIBUTORS TO THE PHYSICS UNDERSTANDING OF RANDOM INSTANCES Braunstein, Franz, Kabashima, Kirkpatrick,

More information

Belief Propagation for Traffic forecasting

Belief Propagation for Traffic forecasting Belief Propagation for Traffic forecasting Cyril Furtlehner (INRIA Saclay - Tao team) context : Travesti project http ://travesti.gforge.inria.fr/) Anne Auger (INRIA Saclay) Dimo Brockhoff (INRIA Lille)

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information

Statistical Physics on Sparse Random Graphs: Mathematical Perspective

Statistical Physics on Sparse Random Graphs: Mathematical Perspective Statistical Physics on Sparse Random Graphs: Mathematical Perspective Amir Dembo Stanford University Northwestern, July 19, 2016 x 5 x 6 Factor model [DM10, Eqn. (1.4)] x 1 x 2 x 3 x 4 x 9 x8 x 7 x 10

More information

Approximate inference, Sampling & Variational inference Fall Cours 9 November 25

Approximate inference, Sampling & Variational inference Fall Cours 9 November 25 Approimate inference, Sampling & Variational inference Fall 2015 Cours 9 November 25 Enseignant: Guillaume Obozinski Scribe: Basile Clément, Nathan de Lara 9.1 Approimate inference with MCMC 9.1.1 Gibbs

More information

Reconstruction in the Generalized Stochastic Block Model

Reconstruction in the Generalized Stochastic Block Model Reconstruction in the Generalized Stochastic Block Model Marc Lelarge 1 Laurent Massoulié 2 Jiaming Xu 3 1 INRIA-ENS 2 INRIA-Microsoft Research Joint Centre 3 University of Illinois, Urbana-Champaign GDR

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/24 Lecture 5b Markov random field (MRF) November 13, 2015 2/24 Table of contents 1 1. Objectives of Lecture

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

MAP Examples. Sargur Srihari

MAP Examples. Sargur Srihari MAP Examples Sargur srihari@cedar.buffalo.edu 1 Potts Model CRF for OCR Topics Image segmentation based on energy minimization 2 Examples of MAP Many interesting examples of MAP inference are instances

More information

Independence and chromatic number (and random k-sat): Sparse Case. Dimitris Achlioptas Microsoft

Independence and chromatic number (and random k-sat): Sparse Case. Dimitris Achlioptas Microsoft Independence and chromatic number (and random k-sat): Sparse Case Dimitris Achlioptas Microsoft Random graphs W.h.p.: with probability that tends to 1 as n. Hamiltonian cycle Let τ 2 be the moment all

More information

Message Passing Algorithms: A Success Looking for Theoreticians

Message Passing Algorithms: A Success Looking for Theoreticians Message Passing Algorithms: A Success Looking for Theoreticians Andrea Montanari Stanford University June 5, 2010 Andrea Montanari (Stanford) Message Passing June 5, 2010 1 / 93 What is this talk about?

More information

Undirected graphical models

Undirected graphical models Undirected graphical models Semantics of probabilistic models over undirected graphs Parameters of undirected models Example applications COMP-652 and ECSE-608, February 16, 2017 1 Undirected graphical

More information

Predicting Phase Transitions in Hypergraph q-coloring with the Cavity Method

Predicting Phase Transitions in Hypergraph q-coloring with the Cavity Method Predicting Phase Transitions in Hypergraph q-coloring with the Cavity Method Marylou Gabrié (LPS, ENS) Varsha Dani (University of New Mexico), Guilhem Semerjian (LPT, ENS), Lenka Zdeborová (CEA, Saclay)

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

Advanced Algorithms 南京大学 尹一通

Advanced Algorithms 南京大学 尹一通 Advanced Algorithms 南京大学 尹一通 Constraint Satisfaction Problem variables: (CSP) X = {x 1, x2,..., xn} each variable ranges over a finite domain Ω an assignment σ ΩX assigns each variable a value in Ω constraints:

More information

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah

Introduction to Graphical Models. Srikumar Ramalingam School of Computing University of Utah Introduction to Graphical Models Srikumar Ramalingam School of Computing University of Utah Reference Christopher M. Bishop, Pattern Recognition and Machine Learning, Jonathan S. Yedidia, William T. Freeman,

More information

The Ising model and Markov chain Monte Carlo

The Ising model and Markov chain Monte Carlo The Ising model and Markov chain Monte Carlo Ramesh Sridharan These notes give a short description of the Ising model for images and an introduction to Metropolis-Hastings and Gibbs Markov Chain Monte

More information

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Anthony Trubiano April 11th, 2018 1 Introduction Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability

More information

Phase Transitions in Random Discrete Structures

Phase Transitions in Random Discrete Structures Institut für Optimierung und Diskrete Mathematik Phase Transition in Thermodynamics The phase transition deals with a sudden change in the properties of an asymptotically large structure by altering critical

More information

Unpredictable Walks on the Integers

Unpredictable Walks on the Integers Unpredictable Walks on the Integers EJ Infeld March 5, 213 Abstract In 1997 Benjamini, Premantle and Peres introduced a construction of a walk on Z that has a faster decaying predictability profile than

More information

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS

UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS UNDERSTANDING BELIEF PROPOGATION AND ITS GENERALIZATIONS JONATHAN YEDIDIA, WILLIAM FREEMAN, YAIR WEISS 2001 MERL TECH REPORT Kristin Branson and Ian Fasel June 11, 2003 1. Inference Inference problems

More information

Review: Directed Models (Bayes Nets)

Review: Directed Models (Bayes Nets) X Review: Directed Models (Bayes Nets) Lecture 3: Undirected Graphical Models Sam Roweis January 2, 24 Semantics: x y z if z d-separates x and y d-separation: z d-separates x from y if along every undirected

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

Learning from and about complex energy landspaces

Learning from and about complex energy landspaces Learning from and about complex energy landspaces Lenka Zdeborová (CNLS + T-4, LANL) in collaboration with: Florent Krzakala (ParisTech) Thierry Mora (Princeton Univ.) Landscape Landscape Santa Fe Institute

More information

Approximate counting of large subgraphs in random graphs with statistical mechanics methods

Approximate counting of large subgraphs in random graphs with statistical mechanics methods Approximate counting of large subgraphs in random graphs with statistical mechanics methods Guilhem Semerjian LPT-ENS Paris 13.03.08 / Eindhoven in collaboration with Rémi Monasson, Enzo Marinari and Valery

More information

Lecture 5: Random Energy Model

Lecture 5: Random Energy Model STAT 206A: Gibbs Measures Invited Speaker: Andrea Montanari Lecture 5: Random Energy Model Lecture date: September 2 Scribe: Sebastien Roch This is a guest lecture by Andrea Montanari (ENS Paris and Stanford)

More information

On the method of typical bounded differences. Lutz Warnke. Georgia Tech

On the method of typical bounded differences. Lutz Warnke. Georgia Tech On the method of typical bounded differences Lutz Warnke Georgia Tech What is this talk about? Motivation Behaviour of a function of independent random variables ξ 1,..., ξ n : X = F (ξ 1,..., ξ n ) the

More information

Spectral thresholds in the bipartite stochastic block model

Spectral thresholds in the bipartite stochastic block model Spectral thresholds in the bipartite stochastic block model Laura Florescu and Will Perkins NYU and U of Birmingham September 27, 2016 Laura Florescu and Will Perkins Spectral thresholds in the bipartite

More information

Oberwolfach workshop on Combinatorics and Probability

Oberwolfach workshop on Combinatorics and Probability Apr 2009 Oberwolfach workshop on Combinatorics and Probability 1 Describes a sharp transition in the convergence of finite ergodic Markov chains to stationarity. Steady convergence it takes a while to

More information

On the number of circuits in random graphs. Guilhem Semerjian. [ joint work with Enzo Marinari and Rémi Monasson ]

On the number of circuits in random graphs. Guilhem Semerjian. [ joint work with Enzo Marinari and Rémi Monasson ] On the number of circuits in random graphs Guilhem Semerjian [ joint work with Enzo Marinari and Rémi Monasson ] [ Europhys. Lett. 73, 8 (2006) ] and [ cond-mat/0603657 ] Orsay 13-04-2006 Outline of the

More information

Graph & Geometry Problems in Data Streams

Graph & Geometry Problems in Data Streams Graph & Geometry Problems in Data Streams 2009 Barbados Workshop on Computational Complexity Andrew McGregor Introduction Models: Graph Streams: Stream of edges E = {e 1, e 2,..., e m } describe a graph

More information

The Ising Partition Function: Zeros and Deterministic Approximation

The Ising Partition Function: Zeros and Deterministic Approximation The Ising Partition Function: Zeros and Deterministic Approximation Jingcheng Liu Alistair Sinclair Piyush Srivastava University of California, Berkeley Summer 2017 Jingcheng Liu (UC Berkeley) The Ising

More information

Intelligent Systems:

Intelligent Systems: Intelligent Systems: Undirected Graphical models (Factor Graphs) (2 lectures) Carsten Rother 15/01/2015 Intelligent Systems: Probabilistic Inference in DGM and UGM Roadmap for next two lectures Definition

More information

Glauber Dynamics on Trees and Hyperbolic Graphs

Glauber Dynamics on Trees and Hyperbolic Graphs lauber Dynamics on Trees and Hyperbolic raphs Claire Kenyon LRI UMR CNRS Université Paris-Sud France kenyon@lrifr Elchanan Mossel Microsoft Research Microsoft way Redmond 9852 US mossel@microsoftcom Yuval

More information

CS Lecture 4. Markov Random Fields

CS Lecture 4. Markov Random Fields CS 6347 Lecture 4 Markov Random Fields Recap Announcements First homework is available on elearning Reminder: Office hours Tuesday from 10am-11am Last Time Bayesian networks Today Markov random fields

More information

Lecture 8: February 8

Lecture 8: February 8 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 8: February 8 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

arxiv: v2 [cond-mat.stat-mech] 22 Oct 2018

arxiv: v2 [cond-mat.stat-mech] 22 Oct 2018 Glassy states: the free Ising model on a tree Daniel Gandolfo, Christian Maes, 2 Jean Ruiz,, 3, 4 and Senya Shlosman Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France 2 Instituut voor

More information

The condensation phase transition in random graph coloring

The condensation phase transition in random graph coloring The condensation phase transition in random graph coloring Victor Bapst Goethe University, Frankfurt Joint work with Amin Coja-Oghlan, Samuel Hetterich, Felicia Rassmann and Dan Vilenchik arxiv:1404.5513

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 9: Variational Inference Relaxations Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne 24/10/2011 (EPFL) Graphical Models 24/10/2011 1 / 15

More information

A reverse Sidorenko inequality Independent sets, colorings, and graph homomorphisms

A reverse Sidorenko inequality Independent sets, colorings, and graph homomorphisms A reverse Sidorenko inequality Independent sets, colorings, and graph homomorphisms Yufei Zhao (MIT) Joint work with Ashwin Sah (MIT) Mehtaab Sawhney (MIT) David Stoner (Harvard) Question Fix d. Which

More information

Dependent percolation: some examples and multi-scale tools

Dependent percolation: some examples and multi-scale tools Dependent percolation: some examples and multi-scale tools Maria Eulália Vares UFRJ, Rio de Janeiro, Brasil 8th Purdue International Symposium, June 22 I. Motivation Classical Ising model (spins ±) in

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms 南京大学 尹一通 Martingales Definition: A sequence of random variables X 0, X 1,... is a martingale if for all i > 0, E[X i X 0,...,X i1 ] = X i1 x 0, x 1,...,x i1, E[X i X 0 = x 0, X 1

More information

9 Forward-backward algorithm, sum-product on factor graphs

9 Forward-backward algorithm, sum-product on factor graphs Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 9 Forward-backward algorithm, sum-product on factor graphs The previous

More information

1 Computational Problems

1 Computational Problems Stanford University CS254: Computational Complexity Handout 2 Luca Trevisan March 31, 2010 Last revised 4/29/2010 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 Lecturer: Dr. Mark Tame Introduction With the emergence of new types of information, in this case

More information

Expectation, inequalities and laws of large numbers

Expectation, inequalities and laws of large numbers Chapter 3 Expectation, inequalities and laws of large numbers 3. Expectation and Variance Indicator random variable Let us suppose that the event A partitions the sample space S, i.e. A A S. The indicator

More information

Planted Cliques, Iterative Thresholding and Message Passing Algorithms

Planted Cliques, Iterative Thresholding and Message Passing Algorithms Planted Cliques, Iterative Thresholding and Message Passing Algorithms Yash Deshpande and Andrea Montanari Stanford University November 5, 2013 Deshpande, Montanari Planted Cliques November 5, 2013 1 /

More information

Estimating Latent Variable Graphical Models with Moments and Likelihoods

Estimating Latent Variable Graphical Models with Moments and Likelihoods Estimating Latent Variable Graphical Models with Moments and Likelihoods Arun Tejasvi Chaganty Percy Liang Stanford University June 18, 2014 Chaganty, Liang (Stanford University) Moments and Likelihoods

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Random Networks. Complex Networks, CSYS/MATH 303, Spring, Prof. Peter Dodds

Random Networks. Complex Networks, CSYS/MATH 303, Spring, Prof. Peter Dodds Complex Networks, CSYS/MATH 303, Spring, 2010 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ Work with: Iain Murray and Hyun-Chul

More information

How Robust are Thresholds for Community Detection?

How Robust are Thresholds for Community Detection? How Robust are Thresholds for Community Detection? Ankur Moitra (MIT) joint work with Amelia Perry (MIT) and Alex Wein (MIT) Let me tell you a story about the success of belief propagation and statistical

More information

Edge Flip Chain for Unbiased Dyadic Tilings

Edge Flip Chain for Unbiased Dyadic Tilings Sarah Cannon, Georgia Tech,, David A. Levin, U. Oregon Alexandre Stauffer, U. Bath, March 30, 2018 Dyadic Tilings A dyadic tiling is a tiling on [0,1] 2 by n = 2 k dyadic rectangles, rectangles which are

More information

Lecture 15: A Brief Look at PCP

Lecture 15: A Brief Look at PCP IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 15: A Brief Look at PCP David Mix Barrington and Alexis Maciel August 4, 2000 1. Overview

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference II: Mean Field Method and Variational Principle Junming Yin Lecture 15, March 7, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3

More information

A brief introduction to the inverse Ising problem and some algorithms to solve it

A brief introduction to the inverse Ising problem and some algorithms to solve it A brief introduction to the inverse Ising problem and some algorithms to solve it Federico Ricci-Tersenghi Physics Department Sapienza University, Roma original results in collaboration with Jack Raymond

More information

Advanced Topics in Probability

Advanced Topics in Probability Advanced Topics in Probability Conformal Methods in 2D Statistical Mechanics Pierre Nolin Different lattices discrete models on lattices, in two dimensions: square lattice Z 2 : simplest one triangular

More information

Lecture 19: November 10

Lecture 19: November 10 CS294 Markov Chain Monte Carlo: Foundations & Applications Fall 2009 Lecture 19: November 10 Lecturer: Prof. Alistair Sinclair Scribes: Kevin Dick and Tanya Gordeeva Disclaimer: These notes have not been

More information

Phase Transitions in Networks: Giant Components, Dynamic Networks, Combinatoric Solvability

Phase Transitions in Networks: Giant Components, Dynamic Networks, Combinatoric Solvability in Networks: Giant Components, Dynamic Networks, Combinatoric Solvability Department of Physics UC Davis April 27, 2009 Outline Historical Prospective Old School New School Non-Physics 1 Historical Prospective

More information

Some recent results on the inverse Ising problem. Federico Ricci-Tersenghi Physics Department Sapienza University, Roma

Some recent results on the inverse Ising problem. Federico Ricci-Tersenghi Physics Department Sapienza University, Roma Some recent results on the inverse Ising problem Federico Ricci-Tersenghi Physics Department Sapienza University, Roma Outline of the talk Bethe approx. for inverse Ising problem Comparison among several

More information

6.867 Machine learning, lecture 23 (Jaakkola)

6.867 Machine learning, lecture 23 (Jaakkola) Lecture topics: Markov Random Fields Probabilistic inference Markov Random Fields We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as they will be needed in the context

More information

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Philipp Krähenbühl and Vladlen Koltun Stanford University Presenter: Yuan-Ting Hu 1 Conditional Random Field (CRF) E x I = φ u

More information

The Complexity of Approximating Small Degree Boolean #CSP

The Complexity of Approximating Small Degree Boolean #CSP The Complexity of Approximating Small Degree Boolean #CSP Pinyan Lu, ITCS@SUFE Institute for Theoretical Computer Science Shanghai University of Finance and Economics Counting CSP F (Γ) is a family of

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Lecture 8: PGM Inference

Lecture 8: PGM Inference 15 September 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I 1 Variable elimination Max-product Sum-product 2 LP Relaxations QP Relaxations 3 Marginal and MAP X1 X2 X3 X4

More information

Decomposition Methods and Sampling Circuits in the Cartesian Lattice

Decomposition Methods and Sampling Circuits in the Cartesian Lattice Decomposition Methods and Sampling Circuits in the Cartesian Lattice Dana Randall College of Computing and School of Mathematics Georgia Institute of Technology Atlanta, GA 30332-0280 randall@math.gatech.edu

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 4, February 16, 2012 David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 1 / 27 Undirected graphical models Reminder

More information

Simons Workshop on Approximate Counting, Markov Chains and Phase Transitions: Open Problem Session

Simons Workshop on Approximate Counting, Markov Chains and Phase Transitions: Open Problem Session Simons Workshop on Approximate Counting, Markov Chains and Phase Transitions: Open Problem Session Scribes: Antonio Blanca, Sarah Cannon, Yumeng Zhang February 4th, 06 Yuval Peres: Simple Random Walk on

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2011, 28 November 2011 Memoryless Sources Arithmetic Coding Sources with Memory 2 / 19 Summary of last lecture Prefix-free

More information

Alternative Parameterizations of Markov Networks. Sargur Srihari

Alternative Parameterizations of Markov Networks. Sargur Srihari Alternative Parameterizations of Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics Three types of parameterization 1. Gibbs Parameterization 2. Factor Graphs 3. Log-linear Models with Energy functions

More information

The Probabilistic Method

The Probabilistic Method The Probabilistic Method In Graph Theory Ehssan Khanmohammadi Department of Mathematics The Pennsylvania State University February 25, 2010 What do we mean by the probabilistic method? Why use this method?

More information

Inference and Representation

Inference and Representation Inference and Representation David Sontag New York University Lecture 5, Sept. 30, 2014 David Sontag (NYU) Inference and Representation Lecture 5, Sept. 30, 2014 1 / 16 Today s lecture 1 Running-time of

More information

Hard-Core Model on Random Graphs

Hard-Core Model on Random Graphs Hard-Core Model on Random Graphs Antar Bandyopadhyay Theoretical Statistics and Mathematics Unit Seminar Theoretical Statistics and Mathematics Unit Indian Statistical Institute, New Delhi Centre New Delhi,

More information

Random Networks. Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds

Random Networks. Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds Complex Networks CSYS/MATH 303, Spring, 2011 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under the

More information

Belief Propagation, Robust Reconstruction and Optimal Recovery of Block Models

Belief Propagation, Robust Reconstruction and Optimal Recovery of Block Models JMLR: Workshop and Conference Proceedings vol 35:1 15, 2014 Belief Propagation, Robust Reconstruction and Optimal Recovery of Block Models Elchanan Mossel mossel@stat.berkeley.edu Department of Statistics

More information

Recitation 9: Loopy BP

Recitation 9: Loopy BP Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 204 Recitation 9: Loopy BP General Comments. In terms of implementation,

More information

Dynamics for the critical 2D Potts/FK model: many questions and a few answers

Dynamics for the critical 2D Potts/FK model: many questions and a few answers Dynamics for the critical 2D Potts/FK model: many questions and a few answers Eyal Lubetzky May 2018 Courant Institute, New York University Outline The models: static and dynamical Dynamical phase transitions

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Can extra updates delay mixing?

Can extra updates delay mixing? Can extra updates delay mixing? Yuval Peres Peter Winkler July 7, 2010 Abstract We consider Glauber dynamics (starting from an extremal configuration) in a monotone spin system, and show that interjecting

More information

Linear Analysis Lecture 5

Linear Analysis Lecture 5 Linear Analysis Lecture 5 Inner Products and V Let dim V < with inner product,. Choose a basis B and let v, w V have coordinates in F n given by x 1. x n and y 1. y n, respectively. Let A F n n be the

More information

Efficient inference of interactions from non-equilibrium data and application to multi-electrode neural recordings

Efficient inference of interactions from non-equilibrium data and application to multi-electrode neural recordings Efficient inference of interactions from non-equilibrium data and application to multi-electrode neural recordings ESR: 1 Supervisor: Dr. Yasser Roudi 1, 2 1 Kavli Institute for Systems Neuroscience, Trondheim

More information

Winter 2011 Josh Benaloh Brian LaMacchia

Winter 2011 Josh Benaloh Brian LaMacchia Winter 2011 Josh Benaloh Brian LaMacchia Fun with Public-Key Tonight we ll Introduce some basic tools of public-key crypto Combine the tools to create more powerful tools Lay the ground work for substantial

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Problem Set 3 Issued: Thursday, September 25, 2014 Due: Thursday,

More information