11 Radiation in Non-relativistic Systems

Size: px
Start display at page:

Download "11 Radiation in Non-relativistic Systems"

Transcription

1 Radiation in Non-relativisti Systems. Basi equations This first setion will NOT make a non-relativisti approximation, but will examine the far field limit. (a) We wrote down the wave equations in the ovariant gauge: The gauge ondition reads (b) Then we used the green funtion of the wave equation to determine the potentials (Φ, A) Φ(t, r) = A(t, r) = Here T (t, r) is the retarded time Φ =ρ(t o, ) (.) A =J(t o, )/ (.2) tφ + A = 0 (.3) G(t, r t o ) = 4π r δ(t t o + r ) (.4) d 3 x o 4π r ρ(t, ) (.5) d 3 x o 4π r J(T, )/ (.6) T (t, r) = t r (.7) () We used the potentials to determine the eletri and magneti fields. Eletri and magneti fields in the far field are A (t, r) = J(T, ) (.8) 4πr and In the far field (large distane limit r ) limit we have B(t, r) = n ta (.9) E(t, r) =n n ta = n B(t, r) (.0) T = t r + n ro (.) And we reording the derivatives t (.2) T r ( ) o = + n (.3) T T = t 45

2 46 CHAPTER. RADIATION IN NON-RELATIVISTIC SYSTEMS (d) We see that the iation (eletri field) is proportional to the transverse piee of the t J n (n t J) = t J n(n t J) (.4) In general the transverse projetion of a vetor is n (n V ) = V n(n V ) (.5) (e) Power iated per solid angle is for r is and dw dp (t) = = energy pebservation time per solid angle (.6) dtdω dω dp (t) dω =r2 S n (.7) = re 2 (.8).2 Examples of Non-relativisti Radiation: L3 In this setion we will derive several examples of iation in non-relativisti systems. In a non-relativisti approximation T = t r + n (.9) small The underlined terms are small: If the typial time and size sales of the soure are T typ and L typ, then t T typ, and L typ, and the ratio the underlined term to the leading term is: L typ T typ (.20) This is the non-relativisti approximation. For a harmoni time dependene, /T typ ω typ, and this says that the wave number k = 2π λ is small ompared to the size of the soure, i.e. the wave length of the emitted light is long ompared to the size of the system in non-relativisti motion: 2πL typ λ (.2) (a) Keeping only t r/ and dropping all powers of n / in T results in the eletri dipole approximation, and also the Larmour formula. (b) Keeping the first order terms in n (.22) results in the magneti dipole and quadrupole approximations. The Larmour Formula (a) For a partile moves slowly with veloity and aeleration, v(t) and a(t) along a trajetory r (t) (b) We make an ultimate non-relativisti approximation for T Then we derived the iation field by substituting the urrent into the Eqs. (.8),(.9), and (.7) for the iated power T t r t e (.23) J(t e ) = ev(t e )δ 3 ( r (t e )) (.24)

3 .2. EXAMPLES OF NON-RELATIVISTIC RADIATION: L3 47 () The eletri field is Notie that the eletri field is of order E = e 4πr 2 n n a(t e) (.25) E e 4πr (d) The power per solid angle emitted by aeleration at time t e is Notie that the power is of order a(t e ) 2 (.26) dp (t e ) dω = e2 (4π) 2 3 a2 (t e ) sin 2 θ (.27) P re 2 a2 3 (.28) (e) The total energy that is emitted is P (t e ) = e2 2 a 2 (t e ) 4π 3 3 (.29) The Eletri Dipole approximation (a) We make the ultimate non-relativisti approximation J(t r + n ) J(t r ) (.30) Leading to an expression for A A = 4πr tp(t e ) (.3) where the dipole moment is p(t e ) = d 3 x o ρ(t e ) (.32) (b) The eletri and magneti fields are E =n n ta (.33) = 4πr 2 n n p(t e) (.34) B =n E (.35) () The power iated is dp (t e ) dω = 6π 2 p 2 (t e ) 3 sin 2 θ (.36) (d) For a harmoni soure p(t e ) = p o e iω(t r/) the time averaged power is P = ω 4 4π 3 3 p o 2 (.37)

4 48 CHAPTER. RADIATION IN NON-RELATIVISTIC SYSTEMS The magneti dipole and quadrupole approximation: L32 (a) In the magneti dipole and quadrupole approximation we expand the urrent J(T ) J(t e ) + n t J(t e, )/ } {{} eletri dipole next term (.38) The next term when substituted into Eq. (.8) gives rise two new ontributions to A, the magneti dipole and eletri quadrupole terms: A = (b) The magneti dipole ontribution gives where m is the magneti dipole moment. A E eletri dipole + A M mag dipole + A E2 eletri-quad (.39) A M = n 4πr ṁ(t e) (.40) m 2 J(t e, )/, (.4) () The struture of magneti dipole iation is very similar to eletri dipole iation with the duality transformation (d) The power is E-dipole M-dipole (.42) p m (.43) E B (.44) B E (.45) dp M (t e ) dω = m2 sin 2 θ 6π 2 3 (.46) (e) The power iated in magneti dipole iation is smaller than the power iated in eletri dipole iation by a fatof the typial veloity, v typ squared: P M P E m2 p 2 ( vtyp ) 2 (.47) where v typ L typ /T typ Quadrupole rdiation (a) For quadrupole iation we have A j,e2 = n i 24πr Q ij 2 (.48) where Q ij is the symmetri traeless quadrupole tensor. Q ij = d 3 x o ρ(t e, ) ( 3ror i o j roδ 2 ij) (.49) (b) The eletri field is E = [... 24πr 3 Q n n(n Q... n) ] (.50)... where... (more preisely) the first term in square brakets means n i Q ij, while the seond term means, (n l Q lm n m )n j.

5 .3. ATTENAS 49 () A fair bit of algebra shows that the total power iated from a quadrupole form is ab P = 720π 5 Q Q ab (.5) (d) For harmoni fields, Q = Q o e iωt, the time averaged power is rises as ω 6 P = ( ω ) 6 Q 2 440π o (.52) (e) The total power iated iated in quadrupole iation to eletri-dipole iation for a typial soure size L typ is smaller: P E2 ( ) 2 P E ωltyp (.53).3 Attenas (a) In an antenna with sinusoidal frequeny we have (b) Then the iation field for a sinusoidal urrent is: J(T, ) = e iω(t r + n ro ) J( ) (.54) A = e iω(t r/) 4πr e iω In general one will need to do this integral to determine the iation field. n ro J( )/ (.55) () The typial iation resistane assoiated with driving a urrent whih will iate over a wide range of frequenies is R vauum = µ o = µ o /ɛ o = 376 Ohm.

Generation of EM waves

Generation of EM waves Generation of EM waves Susan Lea Spring 015 1 The Green s funtion In Lorentz gauge, we obtained the wave equation: A 4π J 1 The orresponding Green s funtion for the problem satisfies the simpler differential

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non-relativisti ase January 2019 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and 44): 1 2 A 2 2 2 A = µ 0

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non relativisti ase 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials in Lorentz Gauge Gaussian units are: r 2 A 1 2 A 2 t = 4π 2 j

More information

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p .. RADIATIVE TRANSITIONS Marh 3, 5 Leture XXIV Quantization of the E-M field. Radiative transitions We onsider the nonrelativisti regime so no pair prodution or annihilation.the hamiltonian for interation

More information

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12.

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12. 2 Relativity Postulates (a) All inertial observers have the same equations of motion and the same physial laws. Relativity explains how to translate the measurements and events aording to one inertial

More information

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically.

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically. Eletrodynamis I Exam 3 - Part A - Closed Book KSU 205/2/8 Name Eletrodynami Sore = 24 / 24 points Instrutions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to

More information

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution.

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution. arxiv:physis/99536v1 [physis.lass-ph] 15 May 1999 Eletromagneti radiation of the travelling spin wave propagating in an antiferromagneti plate. Exat solution. A.A.Zhmudsky November 19, 16 Abstrat The exat

More information

Cherenkov Radiation. Bradley J. Wogsland August 30, 2006

Cherenkov Radiation. Bradley J. Wogsland August 30, 2006 Cherenkov Radiation Bradley J. Wogsland August 3, 26 Contents 1 Cherenkov Radiation 1 1.1 Cherenkov History Introdution................... 1 1.2 Frank-Tamm Theory......................... 2 1.3 Dispertion...............................

More information

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009 Radiation proesses and mehanisms in astrophysis R Subrahmanyan Notes on ATA letures at UWA, Perth May 009 Synhrotron radiation - 1 Synhrotron radiation emerges from eletrons moving with relativisti speeds

More information

Time Domain Method of Moments

Time Domain Method of Moments Time Domain Method of Moments Massahusetts Institute of Tehnology 6.635 leture notes 1 Introdution The Method of Moments (MoM) introdued in the previous leture is widely used for solving integral equations

More information

The homopolar generator: an analytical example

The homopolar generator: an analytical example The homopolar generator: an analytial example Hendrik van Hees August 7, 214 1 Introdution It is surprising that the homopolar generator, invented in one of Faraday s ingenious experiments in 1831, still

More information

Using the Green s Function to find the Solution to the Wave. Equation:

Using the Green s Function to find the Solution to the Wave. Equation: Using the Green s Funtion to find the Soution to the Wave Exampe 1: 2 1 2 2 t 2 Equation: r,t q 0 e it r aẑ r aẑ r,t r 1 r ; r r,t r 1 r 2 The Green s funtion soution is given by r,t G R r r,t t Fr,t d

More information

Physics 506 Winter 2008 Homework Assignment #4 Solutions. Textbook problems: Ch. 9: 9.6, 9.11, 9.16, 9.17

Physics 506 Winter 2008 Homework Assignment #4 Solutions. Textbook problems: Ch. 9: 9.6, 9.11, 9.16, 9.17 Physics 56 Winter 28 Homework Assignment #4 Solutions Textbook problems: Ch. 9: 9.6, 9., 9.6, 9.7 9.6 a) Starting from the general expression (9.2) for A and the corresponding expression for Φ, expand

More information

Class XII - Physics Electromagnetic Waves Chapter-wise Problems

Class XII - Physics Electromagnetic Waves Chapter-wise Problems Class XII - Physis Eletromagneti Waves Chapter-wise Problems Multiple Choie Question :- 8 One requires ev of energy to dissoiate a arbon monoxide moleule into arbon and oxygen atoms The minimum frequeny

More information

1 sin 2 r = 1 n 2 sin 2 i

1 sin 2 r = 1 n 2 sin 2 i Physis 505 Fall 005 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.5, 7.8, 7.16 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with

More information

Electromagnetic radiation

Electromagnetic radiation 5584 5585 8 Eletromagneti radiation 5586 5587 5588 5589 8. Solution of Maxwell equations with external urrent The eletromagneti field generated by an external (expliitly given) four-urrent J µ (x) is given

More information

Study of EM waves in Periodic Structures (mathematical details)

Study of EM waves in Periodic Structures (mathematical details) Study of EM waves in Periodi Strutures (mathematial details) Massahusetts Institute of Tehnology 6.635 partial leture notes 1 Introdution: periodi media nomenlature 1. The spae domain is defined by a basis,(a

More information

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field Four-dimensional equation of motion for visous ompressible substane with regard to the aeleration field, pressure field and dissipation field Sergey G. Fedosin PO box 6488, Sviazeva str. -79, Perm, Russia

More information

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2 Sensor and Simulation Notes Note 53 3 May 8 Combined Eletri and Magneti Dipoles for Mesoband Radiation, Part Carl E. Baum University of New Mexio Department of Eletrial and Computer Engineering Albuquerque

More information

Examples of Tensors. February 3, 2013

Examples of Tensors. February 3, 2013 Examples of Tensors February 3, 2013 We will develop a number of tensors as we progress, but there are a few that we an desribe immediately. We look at two ases: (1) the spaetime tensor desription of eletromagnetism,

More information

19 Lecture 19: Cosmic Microwave Background Radiation

19 Lecture 19: Cosmic Microwave Background Radiation PHYS 652: Astrophysis 97 19 Leture 19: Cosmi Mirowave Bakground Radiation Observe the void its emptiness emits a pure light. Chuang-tzu The Big Piture: Today we are disussing the osmi mirowave bakground

More information

Phys 561 Classical Electrodynamics. Midterm

Phys 561 Classical Electrodynamics. Midterm Phys 56 Classial Eletrodynamis Midterm Taner Akgün Department of Astronomy and Spae Sienes Cornell University Otober 3, Problem An eletri dipole of dipole moment p, fixed in diretion, is loated at a position

More information

Accelerator Physics Particle Acceleration. G. A. Krafft Old Dominion University Jefferson Lab Lecture 4

Accelerator Physics Particle Acceleration. G. A. Krafft Old Dominion University Jefferson Lab Lecture 4 Aelerator Physis Partile Aeleration G. A. Krafft Old Dominion University Jefferson Lab Leture 4 Graduate Aelerator Physis Fall 15 Clarifiations from Last Time On Crest, RI 1 RI a 1 1 Pg RL Pg L V Pg RL

More information

Aharonov-Bohm effect. Dan Solomon.

Aharonov-Bohm effect. Dan Solomon. Aharonov-Bohm effet. Dan Solomon. In the figure the magneti field is onfined to a solenoid of radius r 0 and is direted in the z- diretion, out of the paper. The solenoid is surrounded by a barrier that

More information

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1 QUANTUM MECHANICS II PHYS 57 Solutions to Problem Set #. The hamiltonian for a lassial harmoni osillator an be written in many different forms, suh as use ω = k/m H = p m + kx H = P + Q hω a. Find a anonial

More information

The Electromagnetic Radiation and Gravity

The Electromagnetic Radiation and Gravity International Journal of Theoretial and Mathematial Physis 016, 6(3): 93-98 DOI: 10.593/j.ijtmp.0160603.01 The Eletromagneti Radiation and Gravity Bratianu Daniel Str. Teiului Nr. 16, Ploiesti, Romania

More information

Velocity Addition in Space/Time David Barwacz 4/23/

Velocity Addition in Space/Time David Barwacz 4/23/ Veloity Addition in Spae/Time 003 David arwaz 4/3/003 daveb@triton.net http://members.triton.net/daveb Abstrat Using the spae/time geometry developed in the previous paper ( Non-orthogonal Spae- Time geometry,

More information

Module I: Electromagnetic waves

Module I: Electromagnetic waves Module I: Electromagnetic waves Lectures 10-11: Multipole radiation Amol Dighe TIFR, Mumbai Outline 1 Multipole expansion 2 Electric dipole radiation 3 Magnetic dipole and electric quadrupole radiation

More information

Introduction to Superconductivity

Introduction to Superconductivity Introdution to Superondutivity Marina von Steinkirh State University of New York at Stony Brook steinkirh@gmail.om Marh 18, 2010 Abstrat An introdution to superondutivity for a graduate ourse level. Contents

More information

SPECTRUM OF THE COMA CLUSTER RADIO HALO SYNCHROTRON RADIATION

SPECTRUM OF THE COMA CLUSTER RADIO HALO SYNCHROTRON RADIATION SPECTRUM OF THE COMA CLUSTER RADIO HALO SYNCHROTRON RADIATION OUTLINE OF THE LESSON REMINDER SPECIAL RELATIVITY: BEAMING, RELATIVISTIC LARMOR FORMULA CYCLOTRON EMISSION SYNCHROTRON POWER AND SPECTRUM EMITTED

More information

Problem 3 : Solution/marking scheme Large Hadron Collider (10 points)

Problem 3 : Solution/marking scheme Large Hadron Collider (10 points) Problem 3 : Solution/marking sheme Large Hadron Collider 10 points) Part A. LHC Aelerator 6 points) A1 0.7 pt) Find the exat expression for the final veloity v of the protons as a funtion of the aelerating

More information

Energy during a burst of deceleration

Energy during a burst of deceleration Problem 1. Energy during a burst of deceleration A particle of charge e moves at constant velocity, βc, for t < 0. During the short time interval, 0 < t < t its velocity remains in the same direction but

More information

n n=1 (air) n 1 sin 2 r =

n n=1 (air) n 1 sin 2 r = Physis 55 Fall 7 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.4, 7.6, 7.8 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with index

More information

RADIATION POWER SPECTRAL DISTRIBUTION OF CHARGED PARTICLES MOVING IN A SPIRAL IN MAGNETIC FIELDS

RADIATION POWER SPECTRAL DISTRIBUTION OF CHARGED PARTICLES MOVING IN A SPIRAL IN MAGNETIC FIELDS Journal of Optoeletronis and Advaned Materials Vol. 5, o. 5,, p. 4-4 RADIATIO POWER SPECTRAL DISTRIBUTIO OF CHARGED PARTICLES MOVIG I A SPIRAL I MAGETIC FIELDS A. V. Konstantinovih *, S. V. Melnyhuk, I.

More information

Dynamics of the Electromagnetic Fields

Dynamics of the Electromagnetic Fields Chapter 3 Dynamis of the Eletromagneti Fields 3.1 Maxwell Displaement Current In the early 1860s (during the Amerian ivil war!) eletriity inluding indution was well established experimentally. A big row

More information

Electrodynamics II: Lecture 9

Electrodynamics II: Lecture 9 Electrodynamics II: Lecture 9 Multipole radiation Amol Dighe Sep 14, 2011 Outline 1 Multipole expansion 2 Electric dipole radiation 3 Magnetic dipole and electric quadrupole radiation Outline 1 Multipole

More information

Module I: Electromagnetic waves

Module I: Electromagnetic waves Module I: Electromagnetic waves Lecture 9: EM radiation Amol Dighe Outline 1 Electric and magnetic fields: radiation components 2 Energy carried by radiation 3 Radiation from antennas Coming up... 1 Electric

More information

Dirac s equation We construct relativistically covariant equation that takes into account also the spin. The kinetic energy operator is

Dirac s equation We construct relativistically covariant equation that takes into account also the spin. The kinetic energy operator is Dira s equation We onstrut relativistially ovariant equation that takes into aount also the spin The kineti energy operator is H KE p Previously we derived for Pauli spin matries the relation so we an

More information

Hamiltonian with z as the Independent Variable

Hamiltonian with z as the Independent Variable Hamiltonian with z as the Independent Variable 1 Problem Kirk T. MDonald Joseph Henry Laboratories, Prineton University, Prineton, NJ 08544 Marh 19, 2011; updated June 19, 2015) Dedue the form of the Hamiltonian

More information

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms NSTTUTE OF PHYSCS PUBLSHNG JOURNAL OF PHYSCS B: ATOMC, MOLECULAR AND OPTCAL PHYSCS J. Phys. B: At. Mol. Opt. Phys. 39 ) 7 85 doi:.88/953-75/39/8/ Non-Markovian study of the relativisti magneti-dipole spontaneous

More information

Vector Field Theory (E&M)

Vector Field Theory (E&M) Physis 4 Leture 2 Vetor Field Theory (E&M) Leture 2 Physis 4 Classial Mehanis II Otober 22nd, 2007 We now move from first-order salar field Lagrange densities to the equivalent form for a vetor field.

More information

Plasma effects on electromagnetic wave propagation

Plasma effects on electromagnetic wave propagation Plasma effets on eletromagneti wave propagation & Aeleration mehanisms Plasma effets on eletromagneti wave propagation Free eletrons and magneti field (magnetized plasma) may alter the properties of radiation

More information

Measuring & Inducing Neural Activity Using Extracellular Fields I: Inverse systems approach

Measuring & Inducing Neural Activity Using Extracellular Fields I: Inverse systems approach Measuring & Induing Neural Ativity Using Extraellular Fields I: Inverse systems approah Keith Dillon Department of Eletrial and Computer Engineering University of California San Diego 9500 Gilman Dr. La

More information

Introduction to Quantum Chemistry

Introduction to Quantum Chemistry Chem. 140B Dr. J.A. Mak Introdution to Quantum Chemistry Without Quantum Mehanis, how would you explain: Periodi trends in properties of the elements Struture of ompounds e.g. Tetrahedral arbon in ethane,

More information

Simple Considerations on the Cosmological Redshift

Simple Considerations on the Cosmological Redshift Apeiron, Vol. 5, No. 3, July 8 35 Simple Considerations on the Cosmologial Redshift José Franiso Garía Juliá C/ Dr. Maro Mereniano, 65, 5. 465 Valenia (Spain) E-mail: jose.garia@dival.es Generally, the

More information

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave Chap.4 Dut Aoustis Dut Aoustis Plane wave A sound propagation in pipes with different ross-setional area f the wavelength of sound is large in omparison with the diameter of the pipe the sound propagates

More information

Gravitation is a Gradient in the Velocity of Light ABSTRACT

Gravitation is a Gradient in the Velocity of Light ABSTRACT 1 Gravitation is a Gradient in the Veloity of Light D.T. Froedge V5115 @ http://www.arxdtf.org Formerly Auburn University Phys-dtfroedge@glasgow-ky.om ABSTRACT It has long been known that a photon entering

More information

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν INTRODUCTION So far, the only information we have been able to get about the universe beyond the solar system is from the eletromagneti radiation that reahes us (and a few osmi rays). So doing Astrophysis

More information

Classical Field Theory

Classical Field Theory Preprint typeset in JHEP style - HYPER VERSION Classial Field Theory Gleb Arutyunov a a Institute for Theoretial Physis and Spinoza Institute, Utreht University, 3508 TD Utreht, The Netherlands Abstrat:

More information

Theory of Dynamic Gravitational. Electromagnetism

Theory of Dynamic Gravitational. Electromagnetism Adv. Studies Theor. Phys., Vol. 6, 0, no. 7, 339-354 Theory of Dynami Gravitational Eletromagnetism Shubhen Biswas G.P.S.H.Shool, P.O.Alaipur, Pin.-7445(W.B), India shubhen3@gmail.om Abstrat The hange

More information

Lienard-Wiechert for constant velocity

Lienard-Wiechert for constant velocity Problem 1. Lienard-Wiechert for constant velocity (a) For a particle moving with constant velocity v along the x axis show using Lorentz transformation that gauge potential from a point particle is A x

More information

Physics 214 Final Exam Solutions Winter 2017

Physics 214 Final Exam Solutions Winter 2017 Physics 14 Final Exam Solutions Winter 017 1 An electron of charge e and mass m moves in a plane perpendicular to a uniform magnetic field B If the energy loss by radiation is neglected, the orbit is a

More information

EM radiation - Lecture 14

EM radiation - Lecture 14 EM radiation - Lecture 14 1 Review Begin with a review of the potentials, fields, and Poynting vector for a point charge in accelerated motion. The retarded potential forms are given below. The source

More information

Spinning Charged Bodies and the Linearized Kerr Metric. Abstract

Spinning Charged Bodies and the Linearized Kerr Metric. Abstract Spinning Charged Bodies and the Linearized Kerr Metri J. Franklin Department of Physis, Reed College, Portland, OR 97202, USA. Abstrat The physis of the Kerr metri of general relativity (GR) an be understood

More information

Casimir self-energy of a free electron

Casimir self-energy of a free electron Casimir self-energy of a free eletron Allan Rosenwaig* Arist Instruments, In. Fremont, CA 94538 Abstrat We derive the eletromagneti self-energy and the radiative orretion to the gyromagneti ratio of a

More information

Answers to Coursebook questions Chapter J2

Answers to Coursebook questions Chapter J2 Answers to Courseook questions Chapter J 1 a Partiles are produed in ollisions one example out of many is: a ollision of an eletron with a positron in a synhrotron. If we produe a pair of a partile and

More information

Advances in Radio Science

Advances in Radio Science Advanes in adio Siene 2003) 1: 99 104 Copernius GmbH 2003 Advanes in adio Siene A hybrid method ombining the FDTD and a time domain boundary-integral equation marhing-on-in-time algorithm A Beker and V

More information

1 Summary of Electrostatics

1 Summary of Electrostatics 1 Summary of Eletrostatis Classial eletrodynamis is a theory of eletri and magneti fields aused by marosopi distributions of eletri harges and urrents. In these letures, we reapitulate the basi onepts

More information

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW P. М. Меdnis Novosibirs State Pedagogial University, Chair of the General and Theoretial Physis, Russia, 636, Novosibirs,Viljujsy, 8 e-mail: pmednis@inbox.ru

More information

The Dirac Equation in a Gravitational Field

The Dirac Equation in a Gravitational Field 8/28/09, 8:52 PM San Franiso, p. 1 of 7 sarfatti@pabell.net The Dira Equation in a Gravitational Field Jak Sarfatti Einstein s equivalene priniple implies that Newton s gravity fore has no loal objetive

More information

Processi di Radiazione e MHD

Processi di Radiazione e MHD Proessi di Radiazione e MHD 0. Overview of elestial bodies and sky at various frequenies 1. Definition of main astrophysial observables. Radiative transfer 3. Blak body radiation 4. basi theory of radiation

More information

Notes on perturbation methods in general relativity

Notes on perturbation methods in general relativity Notes from phz 7608, Speial and General Relativity University of Florida, Spring 2005, Detweiler Notes on perturbation methods in general relativity These notes are not a substitute in any manner for lass

More information

Electromagnetic Theory

Electromagnetic Theory Summary: Electromagnetic Theory Maxwell s equations EM Potentials Equations of motion of particles in electromagnetic fields Green s functions Lienard-Weichert potentials Spectral distribution of electromagnetic

More information

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light Final Review A Puzzle... Diretion of the Fore A point harge q is loated a fixed height h above an infinite horizontal onduting plane. Another point harge q is loated a height z (with z > h) above the plane.

More information

Theoretical background of T.T. Brown Electro-Gravity Communication System

Theoretical background of T.T. Brown Electro-Gravity Communication System Theoretial bakground of T.T. Brown Eletro-Gravity Communiation System Algirdas Antano Maknikas Institute of Mehanis, Vilnius Gediminas Tehnial University September 1, 2014 Abstrat The author proposed theory

More information

ELECTROMAGNETIC RADIATION

ELECTROMAGNETIC RADIATION LUCIANO BUGGIO ELECTROMAGNETIC RADIATION On the basis of the (unpreedented) dynami hypothesis that gives rise to yloidal motion a loal and deterministi model of eletromagneti radiation is onstruted, possessing

More information

High Energy Astrophysics

High Energy Astrophysics High Energ Astrophsis Essentials Giampaolo Pisano Jodrell Bank Centre for Astrophsis - Uniersit of Manhester giampaolo.pisano@manhester.a.uk - http://www.jb.man.a.uk/~gp/ Februar 01 Essentials - Eletromagneti

More information

Outline. Propagation of Signals in Optical Fiber. Outline. Geometric Approach. Refraction. How do we use this?

Outline. Propagation of Signals in Optical Fiber. Outline. Geometric Approach. Refraction. How do we use this? Outline Propagation of Signals in Optial Fiber Geometri approah Wave theory approah Loss and Bandwidth Galen Sasaki University of Hawaii Galen Sasaki University of Hawaii Outline Geometri approah Wave

More information

Chapter 2 Waves in Media

Chapter 2 Waves in Media Chapter Waves in Media.1 Introdution The propagation of waves in a medium depends on the magneti permeability and eletri permittivity funtions µ (ω) and ε (ω) for the medium. We will generally deal with

More information

arxiv: v1 [physics.plasm-ph] 5 Aug 2012

arxiv: v1 [physics.plasm-ph] 5 Aug 2012 Classial mirosopi derivation of the relativisti hydrodynamis equations arxiv:1208.0998v1 [physis.plasm-ph] 5 Aug 2012 P. A. Andreev Department of General Physis, Physis Faulty, Mosow State University,

More information

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES.

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. All systems with interation of some type have normal modes. One may desribe them as solutions in absene of soures; they are exitations of the system

More information

Temperature-Gradient-Driven Tearing Modes

Temperature-Gradient-Driven Tearing Modes 1 TH/S Temperature-Gradient-Driven Tearing Modes A. Botrugno 1), P. Buratti 1), B. Coppi ) 1) EURATOM-ENEA Fusion Assoiation, Frasati (RM), Italy ) Massahussets Institute of Tehnology, Cambridge (MA),

More information

(a) Show that electric field and magnetic field have units (force)/area or energy/volume.

(a) Show that electric field and magnetic field have units (force)/area or energy/volume. Problem. Units (a) how that electric field and magnetic field have units (force)/area or energy/volume. (b) A rule of thumb that you may need in the lab is that coaxial cable has a capcitance of 2 pf/foot.

More information

Supplementary Figures

Supplementary Figures Supplementary Figures a Sample A Sample Sample B mm Sample A a Sample B Supplementary Figure : Laue patterns and piture of the single rystals. (a,) Laue patterns of sample A (a) and sample B (). () Piture

More information

20 Doppler shift and Doppler radars

20 Doppler shift and Doppler radars 20 Doppler shift and Doppler radars Doppler radars make a use of the Doppler shift phenomenon to detet the motion of EM wave refletors of interest e.g., a polie Doppler radar aims to identify the speed

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

A model for measurement of the states in a coupled-dot qubit

A model for measurement of the states in a coupled-dot qubit A model for measurement of the states in a oupled-dot qubit H B Sun and H M Wiseman Centre for Quantum Computer Tehnology Centre for Quantum Dynamis Griffith University Brisbane 4 QLD Australia E-mail:

More information

Wave Propagation through Random Media

Wave Propagation through Random Media Chapter 3. Wave Propagation through Random Media 3. Charateristis of Wave Behavior Sound propagation through random media is the entral part of this investigation. This hapter presents a frame of referene

More information

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES MISN-0-211 z ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES y È B` x ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES by J. S. Kovas and P. Signell Mihigan State University 1. Desription................................................

More information

Relativistic Addition of Velocities *

Relativistic Addition of Velocities * OpenStax-CNX module: m42540 1 Relativisti Addition of Veloities * OpenStax This work is produed by OpenStax-CNX and liensed under the Creative Commons Attribution Liense 3.0 Abstrat Calulate relativisti

More information

PID: ToF principle. PID: ToF principle

PID: ToF principle. PID: ToF principle 16 16 PID: ToF priniple PID: ToF priniple It requires very good time resolution and a suffiient path L Given partiles m 1 and m with veloities β 1 and β : Sine from p = γmv = γmβ and E = γm Given a beam

More information

Directional Coupler. 4-port Network

Directional Coupler. 4-port Network Diretional Coupler 4-port Network 3 4 A diretional oupler is a 4-port network exhibiting: All ports mathed on the referene load (i.e. S =S =S 33 =S 44 =0) Two pair of ports unoupled (i.e. the orresponding

More information

+Ze. n = N/V = 6.02 x x (Z Z c ) m /A, (1.1) Avogadro s number

+Ze. n = N/V = 6.02 x x (Z Z c ) m /A, (1.1) Avogadro s number In 1897, J. J. Thomson disovered eletrons. In 1905, Einstein interpreted the photoeletri effet In 1911 - Rutherford proved that atoms are omposed of a point-like positively harged, massive nuleus surrounded

More information

Electrodynamics Exam Solutions

Electrodynamics Exam Solutions Electrodynamics Exam Solutions Name: FS 215 Prof. C. Anastasiou Student number: Exercise 1 2 3 4 Total Max. points 15 15 15 15 6 Points Visum 1 Visum 2 The exam lasts 18 minutes. Start every new exercise

More information

1 Josephson Effect. dx + f f 3 = 0 (1)

1 Josephson Effect. dx + f f 3 = 0 (1) Josephson Effet In 96 Brian Josephson, then a year old graduate student, made a remarkable predition that two superondutors separated by a thin insulating barrier should give rise to a spontaneous zero

More information

Class Test 1 ( ) Subject Code :Applied Physics (17202/17207/17210) Total Marks :25. Model Answer. 3. Photon travels with the speed of light

Class Test 1 ( ) Subject Code :Applied Physics (17202/17207/17210) Total Marks :25. Model Answer. 3. Photon travels with the speed of light Class Test (0-) Sujet Code :Applied Physis (70/707/70) Total Marks :5 Sem. :Seond Model Answer Q Attempt any FOUR of the following 8 a State the properties of photon Ans:.Photon is eletrially neutral.

More information

Chapter 13. Gravitational Waves

Chapter 13. Gravitational Waves Chapter 13 Gravitational Waves One of the most interesting preditions of the theory of General Relativity is the existene of gravitational waves. The idea that a perturbation of the gravitational field

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E')

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') 22.54 Neutron Interations and Appliations (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') Referenes -- J. R. Lamarsh, Introdution to Nulear Reator Theory (Addison-Wesley, Reading, 1966),

More information

TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER

TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER (No general ausality without superluminal veloities) by Dr. Tamas Lajtner Correspondene via web site: www.lajtnemahine.om ABSTRACT...2 1. SPACETIME

More information

Towards Applications of Bubble Acceleration: Bubble-driven Free-Electron-Lasers F. Grüner (LMU+MPQ), July 15, 2005, Photonics Lecture, Prof.

Towards Applications of Bubble Acceleration: Bubble-driven Free-Electron-Lasers F. Grüner (LMU+MPQ), July 15, 2005, Photonics Lecture, Prof. Towards Aliations of Bubble Aeleration: Bubble-driven Free-Eletron-Lasers F. Grüner (LMU+MPQ), July 5, 5, Photonis Leture, Prof. Krausz Motivation for FELs What is an FEL? Undulators and Wigglers SASE

More information

Electrodynamics in Uniformly Rotating Frames as Viewed from an Inertial Frame

Electrodynamics in Uniformly Rotating Frames as Viewed from an Inertial Frame letrodnamis in Uniforml Rotating Frames as Viewed from an Inertial Frame Adrian Sfarti Universit of California, 387 Soda Hall, UC erele, California, USA egas@paell.net (Reeived 3 rd Feruar, 7; Aepted 3

More information

An Effective Photon Momentum in a Dielectric Medium: A Relativistic Approach. Abstract

An Effective Photon Momentum in a Dielectric Medium: A Relativistic Approach. Abstract An Effetive Photon Momentum in a Dieletri Medium: A Relativisti Approah Bradley W. Carroll, Farhang Amiri, and J. Ronald Galli Department of Physis, Weber State University, Ogden, UT 84408 Dated: August

More information

ELECTRODYNAMICS: PHYS 30441

ELECTRODYNAMICS: PHYS 30441 . Relativisti Eletromagnetism. Eletromagneti Field Tensor How do E and B fields transform under a LT? They annot be 4-vetors, but what are they? We again re-write the fields in terms of the salar and vetor

More information

Gyrokinetic calculations of the neoclassical radial electric field in stellarator plasmas

Gyrokinetic calculations of the neoclassical radial electric field in stellarator plasmas PHYSICS OF PLASMAS VOLUME 8, NUMBER 6 JUNE 2001 Gyrokineti alulations of the neolassial radial eletri field in stellarator plasmas J. L. V. Lewandowski Plasma Physis Laboratory, Prineton University, P.O.

More information

Natural Convection Experiment Measurements from a Vertical Surface

Natural Convection Experiment Measurements from a Vertical Surface OBJECTIVE Natural Convetion Experiment Measurements from a Vertial Surfae 1. To demonstrate te basi priniples of natural onvetion eat transfer inluding determination of te onvetive eat transfer oeffiient.

More information

A two-level atom in the field of a gravitational wave on the possibility of parametric resonance. S. V. Siparov

A two-level atom in the field of a gravitational wave on the possibility of parametric resonance. S. V. Siparov A&A 416, 815 824 2004) DOI: 10.1051/0004-6361:20031721 ESO 2004 Astronomy & Astrophysis A two-level atom in the field of a gravitational wave on the possibility of parametri resonane S. V. Siparov Dept.

More information

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering 561 Fall 2017 Leture #1 page 1 Leture #1: Quantum Mehanis Historial Bakground Photoeletri Effet Compton Sattering Robert Field Experimental Spetrosopist = Quantum Mahinist TEXTBOOK: Quantum Chemistry,

More information

Planck unit theory: Fine structure constant alpha and sqrt of Planck momentum

Planck unit theory: Fine structure constant alpha and sqrt of Planck momentum Plank unit theory: Fine struture onstant alpha and sqrt of Plank momentum Malolm Maleod e-mail: mail4malolm@gmx.de The primary onstants; G,, h, e, α, k B, m e... range in preision from low G (4-digits)

More information

Energy Gaps in a Spacetime Crystal

Energy Gaps in a Spacetime Crystal Energy Gaps in a Spaetime Crystal L.P. Horwitz a,b, and E.Z. Engelberg a Shool of Physis, Tel Aviv University, Ramat Aviv 69978, Israel b Department of Physis, Ariel University Center of Samaria, Ariel

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES ELECTROMAGNETIC WAVES Now we will study eletromagneti waves in vauum or inside a medium, a dieletri. (A metalli system an also be represented as a dieletri but is more ompliated due to damping or attenuation

More information