Measurement of orbital angular momentum of a single photon: a noninterferrometric

Size: px
Start display at page:

Download "Measurement of orbital angular momentum of a single photon: a noninterferrometric"

Transcription

1 Measurement of orbital angular momentum of a single photon: a noninterferrometric approach R. Dasgupta and P. K. Gupta * Biomedical Applications Section, Centre for Advanced technology, Indore, Madhya Pradesh, India ABSTRACT We report observation of a shift, in the frequency of light, having non-zero orbital angular momentum (OAM), when it undergoes multiple total internal reflections from a liquid-glass interface. The frequency shift was found to be proportional to the OAM state of the light and thus provides a non interferrometric means to determine OAM state of the photon. Keywords: Orbital angular momentum, single photon, rotational Doppler effect There is considerable current interest in the use of light angular momentum for quantum information processing. The spin angular momentum (polarization) of photon has already been used to demonstrate physical realization of a single qubit. 1 The use of orbital angular momentum (OAM) of light would allow the generation and manipulation of qunits, that is quantum states in an N-dimensional space. Such multidimensional quantum states will allow enhanced capacity and more secure key distribution in quantum cryptography 3. For retrieval of information coded in qunits, means to detect the orbital angular momentum state of a single photon are needed. This has motivated considerable efforts on development of approaches that can meet this objective. Computer generated holograms 4 that transform photon with a particular OAM state into l=0 state have been used to test photons for that particular OAM value by exploiting the fact that l=0 state has an on-axis intensity maximum, and therefore couples efficiently through a pin hole or single-mode fiber on focusing. 5 However, use of this approach to test photons for N values of l will require that the beam be split into N different parts, each of which is then tested for one of the l values of interest. Such an approach will automatically limit the quantum efficiency of an N-state measurement to 1/N. A major recent development was to make use of cascaded stages of Mach-Zehnder interferometers where by use of suitably oriented dove prisms, beam in one arm is rotated with respect to the other to result in an l-dependent phase difference in the two optical paths. 6, 7 The rotation angle could be chosen such that photons with specific values of l interfere constructively at, and exit through one output port, while those with other values interfere constructively at, and exit through the second port. It was shown that a cascade of such interferometers, in conjunction with, either the use of holograms to add appropriate values of l to the passing photons 6 or by slight adjustment of the length of one arm of some of the interferometers 7, could sort OAM states of photons. Two serious drawbacks of this approach are; the inherent susceptibility of this method to mechanical vibrations, and that the uncertainty of OAM determination increases with increasing l value because the photon needs to pass through increasing number of cascaded interferometers. In this letter we report a non-interferrometric approach for sorting OAM states of photons that will be free from these drawbacks. This approach exploits our observation of a shift, in the frequency of light, having non-zero OAM, when it undergoes multiple total internal reflections from a liquid-glass interface. The frequency shift was found to be proportional to the OAM state of the light and thus provides a non interferrometric means to determine OAM state of the photon. The use of this approach to sort photons with OAM states of l = 0, ± 1,,± 5 is discussed. In Fig. 1 we show a Laguerre-Gaussian (LG) beam with non-zero OAM undergoing total internal reflection at the liquidglass boundary. Reflection reverses the sign of the OAM state of the beam and should therefore result in transfer of OAM to the interface.

2 N lħ θ θ lħ l Glass N' 1-Bromonapthalene Figure 1. LG beam with non-zero OAM undergoing total internal reflection at 1-bromonapthalene-glass interface. For a linearly polarized photon the net orbital angular momentum transferred ( l) at the interface is given as, l = l ħ (1-cosθ) 0.5 (1) Where, θ is the angle between the direction of the incident beam and the surface normal NN'. A transfer of OAM to freely rotating liquid molecules 8, 9, 10 at the interface will change the angular momentum state of the molecule from L 1 to L. It has also been shown that since electronic motions do not contribute to exchange of OAM in case of dipole transition 8 the internal energy of the molecule remains the same. Therefore, making use of the fact that the rotational kinetic energy is given by E = L /, (I being the moment of inertia of the molecule), one can write the following equation for conservation of energy L1 L = + h ν () Conservation of angular momentum will require that L = l. Therefore, ν the shift in the frequency of the light arising due to transfer of OAM can be written as 1 L L 1 L( L1 + L ) l. L ν = h = (3) h Ih Putting the value of l from equation (1) and making use of the fact that L = πiω, where Ω is the rotational frequency of the liquid molecule we get

3 ν =1.411 lω (1-cosθ) 0.5 (4) Since each transfer of OAM will impart a frequency shift, to ensure easily measurable frequency shift, the LG beam can be made to undergo a large number of total internal reflections at the interface. The experimental arrangement used to look for the expected shift in frequency of LG beam undergoing a large number of total internal reflections at a glass liquid interface is shown in Fig.. A 1 mw He:Ne laser (63.8 nm) was used to generate a Laguerre-Gaussian beam with azimuthal index varying from l = -5 to +5. We used computergenerated holograms for generating LG beam with desired l value. A beam splitter (B) was used to combine the He:Ne laser beam with another LG beam with l=1, generated from a frequency doubled Nd:YAG laser ( 53 nm, 10 Hz, ~ 7 ns, mj per pulse). The combined beams were coupled to a 1.5 m long, 4 mm inner diameter glass tube, filled with 1- Bromonapthalene at an angle of ~70 with respect to the normal to the interface. Since the index of refraction for 1- Bromonapthalene and glass are 1.65 and 1.51 respectively leading to a critical angle of ~ 66, the two beams propagated through the tube via total internal reflections inside the glass tube. The approximate number of total internal reflections suffered by the two beams before coming out from the other end of the tube was estimated to be around 130. The He:Ne laser LG beam emerging from the tube was coupled to a scanning grating monochromator (Oriel ¼ m, Model 7700, having 100 lines/mm grating) to measure the expected frequency shift. With 0.1 mm slits at both input and output sides the resolution of the system is 0.1 nm. M3 Glass Tube M1 1-Bromonapthalene 53 nm, l=1 M4 Dispersive element 633 nm l=1 l= l=n 53 nm M B 633 nm, l =0, 1,,., N Figure. Experimental set-up for measuring orbital angular momentum state of a light. In Fig. 3 we show the measured shift in the wavelength of the emerging He-Ne laser LG beam with different values of l. For OAM state with l = 1 the observed shift was ~ 0.4 nm which could be conveniently measured by the monochromator. The shift is seen to be proportional to the OAM state of the light with light having OAM ranging from 1 to 5 showing a up shift and light with negative values of OAM showing down shift of wavelength. This implies that in the energy exchange process between rotating liquid molecules and photons, photons with positive l values have lost part of their energy to the liquid molecules and those with negative l values have gained energy from rotating liquid molecules. It is important to emphasize that no shift in the frequency of the He-Ne laser LG beam was observed when the frequency doubled Nd:YAG laser LG beam was blocked. Further, the sign of frequency shift was observed to change if the azimuthal index of the pulsed 53 nm LG beam was changed from +1 to 1. In such condition the sense of rotation of the liquid molecules will be reversed, so the energy exchange procedure will get changed accordingly. We assume that the function of the high power pulses is to overcome the surface tension existing at the glass- bromonapthalene interface and render the liquid molecules as freely rotating. The energy of 53 nm pulses (~ mj) is sufficient to overcome the force of adhesion. This follows because the surface energy at the liquid surface (πr S.secθ, where r is the radius of beam spot at the liquid-glass interface, S the surface energy of 1-bromonapthalene (45 mj/m ) and θ is the angle of the surface normal and the beam) has a maximum value of 4.13 x 10-4 mj for θ ~ 70 and r ~ 1mm.

4 Wavelength Shift (nm) Orbital Quantum Number -1 - Figure 3. Observed rotational frequency shift of LG photons according to their orbital angular momentum states. A multi-channel detection of frequency of the LG beam can be used for a spatial discrimination of the photons with different OAM states. The efficiency of this method will only be limited by the first-order diffraction efficiency of the grating which can be ~ 90% for a blazed grating. Further a combination of prisms providing the required resolution 11 can also be used to have a completely deterministic system. The use of a longer glass tube will further enhance the shift and may facilitate use of a single prism to spatially discriminate the wavelength shifted beams. Very low absorption coefficient of 1-bromonapthalene at the He:Ne laser wavelength implies that longer tubes can be used with no significant loss of photons. However, with increasing length of glass tube, ensuring spatial overlap of the two beams will becomes more demanding. To check for the validity of the scheme at single photon level, we followed the approach used in Ref. 8. Output of the 1mW He:Ne laser was attenuated down to ~ 1nW using a series of neutral-density filters. This intensity is so low that we can expect only one photon to be present inside the monochromator at one time. The photons coming out of the output slit of the monochromator were detected using a photomultiplier tube. The wavelength shifts measured was in proportion with the orbital angular momentum number and clearly demonstrate the validity of our scheme for determination of orbital angular momentum state at single photon level. To conclude a shift has been observed in the frequency of light having non-zero orbital angular momentum when it undergoes multiple total internal reflections from a liquid-glass interface in presence of an overlapping pulsed laser LG beam. The frequency shift was found to be proportional to the OAM state of the light and provides a convenient, non interferrometric means for determination of orbital angular momentum state at single photon level. The use of liquid light guides in place of the glass tube used in present experiments needs to be explored, as that would make the approach particularly easy to use. ACKNOWLEDGMENTS Authors would like to thank S. K. Majumder, S. K. Mohanty and K. Das for their valuable suggestions and technical input.

5 REFERENCES 1. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, G. Molina-Terriza, J. P. Torres, L. Torner. Phys. Rev. Lett. 88, (00) 3. M. Bourennane, A. Karlsson, G. Bjork. Phys. Rev. A. 64, (001) 4. N. R. Heckenberg, R. McDuff, C. P. Smith and A. G. White Opt. Lett. 17, 1 (199) 5. A. Mair, A. Vaziri, G. Weihs,and A. Zeilinger, Nature (London) 41, 313 (001) 6. J. Leach, M. J. Padgett, S. P. Barnett, S. Frank-Arnold, J. Courtial. Phys. Rev. Lett. 88, (00) 7. H. Wei, X. Xue, J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, E. Yao, J. Courtial. Opt. Comm. 3, 117 (003) 8. M. Babiker, C. R. Bennet, D. L. Andrews, L. C. Dávila Romero, Phys Rev. Lett. 89, (00) 9. M. Babiker, W. L. Power and L. Allen. Phys. Rev. Lett. 73, 139 (1994) 10. L. Allen, M. Babiker and W. L. Power Opt. Comm. 11, 141 (1994) 11. L. P. Bakker, J. M. Freriks, G M W Kroesen, Measurement Sc. & Tech. 10, L5 (1999) * pkgupta@cat.ernet.in; phone ; fax ; cat.ernet.in

Efficient sorting of orbital angular momentum states of light

Efficient sorting of orbital angular momentum states of light CHAPTER 6 Efficient sorting of orbital angular momentum states of light We present a method to efficiently sort orbital angular momentum (OAM) states of light using two static optical elements. The optical

More information

Amplitude damping of Laguerre-Gaussian modes

Amplitude damping of Laguerre-Gaussian modes Amplitude damping of Laguerre-Gaussian modes Angela Dudley, 1,2 Michael Nock, 2 Thomas Konrad, 2 Filippus S. Roux, 1 and Andrew Forbes 1,2,* 1 CSIR National Laser Centre, PO Box 395, Pretoria 0001, South

More information

Optical vortices, angular momentum and Heisenberg s uncertainty relationship

Optical vortices, angular momentum and Heisenberg s uncertainty relationship Invited Paper Optical vortices, angular momentum and Heisenberg s uncertainty relationship Miles Padgett* Department of Physics and Astronomy, University of Glasgow, Glasgow, Scotland. G12 8QQ. ABSRACT

More information

Torque transfer in optical tweezers due to orbital angular momentum

Torque transfer in optical tweezers due to orbital angular momentum Torque transfer in optical tweezers due to orbital angular momentum Simon J. W. Parkin, Gregor Knöner, Timo A. Nieminen, Norman R. Heckenberg and Halina Rubinsztein-Dunlop Centre for Biophotonics and Laser

More information

SMR WINTER COLLEGE QUANTUM AND CLASSICAL ASPECTS INFORMATION OPTICS. The Origins of Light s angular Momentum

SMR WINTER COLLEGE QUANTUM AND CLASSICAL ASPECTS INFORMATION OPTICS. The Origins of Light s angular Momentum SMR.1738-8 WINTER COLLEGE on QUANTUM AND CLASSICAL ASPECTS of INFORMATION OPTICS 30 January - 10 February 2006 The Origins of Light s angular Momentum Miles PADGETT University of Glasgow Dept. of Physics

More information

Copyright 2012 OSA. Deposited on: 23 January 2013

Copyright 2012 OSA.   Deposited on: 23 January 2013 Lavery, M.P.J., Robertson, D.J., Berkhout, G.C.G., Love, G.D., Padgett, M.J., and Courtial, J. (2012) Refractive elements for the measurement of the orbital angular momentum of a single photon. Optics

More information

arxiv: v1 [physics.optics] 11 Jan 2014

arxiv: v1 [physics.optics] 11 Jan 2014 A Compact Orbital Angular Momentum Spectrometer Using Quantum Zeno Interrogation arxiv:141.2559v1 [physics.optics] 11 Jan 214 Paul Bierdz, Hui Deng* Department of Physics, University of Michigan, Ann Arbor,

More information

Supplementary Information. Holographic Detection of the Orbital Angular Momentum of Light with Plasmonic Photodiodes

Supplementary Information. Holographic Detection of the Orbital Angular Momentum of Light with Plasmonic Photodiodes Supplementary Information Holographic Detection of the Orbital Angular Momentum of Light with Plasmonic Photodiodes Patrice Genevet 1, Jiao Lin 1,2, Mikhail A. Kats 1 and Federico Capasso 1,* 1 School

More information

Superpositions of the Orbital Angular Momentum for Applications in Quantum Experiments

Superpositions of the Orbital Angular Momentum for Applications in Quantum Experiments Superpositions of the Orbital Angular Momentum for Applications in Quantum Experiments Alipasha Vaziri, Gregor Weihs, and Anton Zeilinger Institut für Experimentalphysik, Universität Wien Boltzmanngasse

More information

The efficient sorting of light s orbital angular momentum for optical communications

The efficient sorting of light s orbital angular momentum for optical communications The efficient sorting of light s orbital angular momentum for optical communications Martin P. J. Lavery a, David Robertson b, Mehul Malik c, Brandon Rodenburg c, Johannes Courtial a, Robert W. Boyd c,d,

More information

Gamma-ray vortex generation by inverse Compton scattering

Gamma-ray vortex generation by inverse Compton scattering JLab Seminar 12/12/216 Gamma-ray vortex generation by inverse Compton scattering Yoshitaka Taira National Institute of Advanced Industrial Science and Technology (AIST), Japan Visiting scientist: Mississippi

More information

arxiv: v1 [physics.optics] 29 Jun 2012

arxiv: v1 [physics.optics] 29 Jun 2012 Radius of a Photon Beam with Orbital Angular Momentum B. S. Davis and L. Kaplan Department of Physics, Tulane University, New Orleans, Louisiana 70118, USA arxiv:106.7107v1 [physics.optics] 9 Jun 01 (Dated:

More information

Probing the orbital angular momentum of light with a multipoint interferometer

Probing the orbital angular momentum of light with a multipoint interferometer CHAPTER 2 Probing the orbital angular momentum of light with a multipoint interferometer We present an efficient method for probing the orbital angular momentum of optical vortices of arbitrary sizes.

More information

Spin cf. Orbital Angular Momentum

Spin cf. Orbital Angular Momentum SMR.1738-9 WINTER COLLEGE on QUANTUM AND CLASSICAL ASPECTS of INFORMATION OPTICS 30 January - 10 February 2006 Spin cf. Orbital Angular Momentum Miles PADGETT University of Glasgow Dept. of Physics & Astronomy

More information

Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum

Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum Author Karimi, Ebrahim, Slussarenko, Sergei, Piccirillo, Bruno, Marrucci,

More information

Experimental observation of optical vortex evolution in a Gaussian beam. with an embedded fractional phase step

Experimental observation of optical vortex evolution in a Gaussian beam. with an embedded fractional phase step Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step W.M. Lee 1, X.-C. Yuan 1 * and K.Dholakia 1 Photonics Research Center, School of Electrical

More information

Separating Laguerre-Gaussian Radial Modes Via Projective Measurements RACHEL SAMPSON

Separating Laguerre-Gaussian Radial Modes Via Projective Measurements RACHEL SAMPSON Separating Laguerre-Gaussian Radial Modes Via Projective Measurements RACHEL SAMPSON Laguerre-Gaussian (LG) Beams Cylindrically symmetric and form a basis set for paraxial light beams Properties of beams

More information

Copyright 2013 American Association for the Advancement of Science.

Copyright 2013 American Association for the Advancement of Science. Lavery, M.J.P., Speirits, F.C., Barnett, S.M., and Padgett, M.J. (2013) Detection of a spinning object using light's orbital angular momentum. Science, 341 (6145). pp. 537-540. ISSN 0036-8075 Copyright

More information

Making and identifying optical superposition of very high orbital angular momenta

Making and identifying optical superposition of very high orbital angular momenta Making and identifying optical superposition of very high orbital angular momenta Lixiang Chen*, Wuhong Zhang, Qinghong Lu, and Xinyang Lin Department of Physics and Laboratory of anoscale Condensed Matter

More information

Superpositions of the orbital angular momentum for applications in quantum experiments

Superpositions of the orbital angular momentum for applications in quantum experiments INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFOPTICSB: QUANTUM ANDSEMICLASSICAL OPTICS J. Opt. B: Quantum Semiclass. Opt. 4 (00) S47 S51 PII: S1464-466(0)30337-9 Superpositions of the orbital angular momentum

More information

Propagation dynamics of abruptly autofocusing Airy beams with optical vortices

Propagation dynamics of abruptly autofocusing Airy beams with optical vortices Propagation dynamics of abruptly autofocusing Airy beams with optical vortices Yunfeng Jiang, 1 Kaikai Huang, 1,2 and Xuanhui Lu 1, * 1 Institute of Optics, Department of Physics, Zhejiang University,

More information

High energy X-ray vortex generation using inverse Compton scattering

High energy X-ray vortex generation using inverse Compton scattering 22nd International Spin Symposium 9/28/216 High energy X-ray vortex generation using inverse Compton scattering Yoshitaka Taira National Institute of Advanced Industrial Science and Technology (AIST),

More information

Compton Source of Twisted Photons

Compton Source of Twisted Photons Compton Source of Twisted Photons Andrei Afanasev The George Washington University Washington, DC LDRS 2015 International Meeting on Laser-Driven Radiation Sources for Nuclear Applications George Washington

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

arxiv:quant-ph/ v2 17 Apr 2001

arxiv:quant-ph/ v2 17 Apr 2001 1 Multi dimensional Photon Entanglement of Quantum States with Phase Singularities 1 arxiv:quant-ph/0104070v2 17 Apr 2001 Alois Mair, 2 Alipasha Vaziri, Gregor Weihs, and Anton Zeilinger Institut für Experimentalphysik,

More information

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical Aaron Rury Research Prospectus 21.6.2009 Introduction: The Helmhlotz equation, ( 2 +k 2 )u(r)=0 1, serves as the basis for much of optical physics. As a partial differential equation, the Helmholtz equation

More information

Holography and Optical Vortices

Holography and Optical Vortices WJP, PHY381 (2011) Wabash Journal of Physics v3.3, p.1 Holography and Optical Vortices Z. J. Rohrbach, J. M. Soller, and M. J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor Petros Zerom, Matthew S. Bigelow and Robert W. Boyd The Institute of Optics, University of Rochester, Rochester, New York 14627 Now

More information

arxiv: v2 [quant-ph] 4 Jun 2012

arxiv: v2 [quant-ph] 4 Jun 2012 Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding arxiv:124.5781v2 [quant-ph] 4 Jun 212 Mehul Malik, 1, Malcolm O Sullivan, 1 Brandon Rodenburg,

More information

Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction

Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction D. P. O Dwyer, C. F. Phelan, Y. P. Rakovich, P. R. Eastham, J. G. Lunney, and J. F. Donegan*

More information

DRONACHARYA COLLEGE OF ENEGINEERING DEPARTMENT OF APPLIED SCEINCE AND HUMANITIES SHORT ANSWER QUESTIONS: Unit-I. Chapter I: Interference

DRONACHARYA COLLEGE OF ENEGINEERING DEPARTMENT OF APPLIED SCEINCE AND HUMANITIES SHORT ANSWER QUESTIONS: Unit-I. Chapter I: Interference DRONACHARYA COLLEGE OF ENEGINEERING DEPARTMENT OF APPLIED SCEINCE AND HUMANITIES SUBJECT: PHYSICS-I CODE: PHY-101-F SHORT ANSWER QUESTIONS: Unit-I Chapter I: Interference 1. State the condition for sustained

More information

Measurement of the total optical angular momentum transfer

Measurement of the total optical angular momentum transfer Preprint of: Simon Parkin, Gregor Knöner, Timo A. Nieminen, Norman R. Heckenberg and Halina Rubinsztein-Dunlop Measurement of the total optical angular momentum transfer in optical tweezers Optics Express

More information

Quantum Key Distribution in a High-Dimensional State Space: Exploiting the Transverse Degree of Freedom of the Photon

Quantum Key Distribution in a High-Dimensional State Space: Exploiting the Transverse Degree of Freedom of the Photon Invited Paper Quantum Key Distribution in a High-Dimensional State Space: Exploiting the Transverse Degree of Freedom of the Photon Robert W. Boyd The Institute of Optics and Department of Physics and

More information

Simple scheme for efficient linear optics quantum gates

Simple scheme for efficient linear optics quantum gates PHYSICAL REVIEW A, VOLUME 65, 012314 Simple scheme for efficient linear optics quantum gates T. C. Ralph,* A. G. White, W. J. Munro, and G. J. Milburn Centre for Quantum Computer Technology, University

More information

arxiv:quant-ph/ v3 21 Feb 2002

arxiv:quant-ph/ v3 21 Feb 2002 1 Entanglement of Orbital Angular Momentum States of Photons arxiv:quant-ph/0104070v3 21 Feb 2002 Alois Mair, 1 Alipasha Vaziri, Gregor Weihs, and Anton Zeilinger Institut für Experimentalphysik, Universität

More information

Focusing of elliptically polarized Gaussian beams through an annular high numerical aperture

Focusing of elliptically polarized Gaussian beams through an annular high numerical aperture Focusing of elliptically polarized Gaussian beams through an annular high numerical aperture Chen Bao-Suan( 陈宝算 ) and Pu Ji-Xiong( 蒲继雄 ) Department of Information Science & Engineering, Huaqiao University,

More information

arxiv: v1 [math-ph] 3 Nov 2011

arxiv: v1 [math-ph] 3 Nov 2011 Formalism of operators for Laguerre-Gauss modes A. L. F. da Silva (α), A. T. B. Celeste (β), M. Pazetti (γ), C. E. F. Lopes (δ) (α,β) Instituto Federal do Sertão Pernambucano, Petrolina - PE, Brazil (γ)

More information

Application of orbital angular momentum to simultaneous determination of tilt and lateral displacement of a misaligned laser beam

Application of orbital angular momentum to simultaneous determination of tilt and lateral displacement of a misaligned laser beam Lin et al. Vol. 7, No. 10/October 010/J. Opt. Soc. Am. A 337 Application of orbital angular momentum to simultaneous determination of tilt and lateral displacement of a misaligned laser beam J. Lin, 1,

More information

Non-destructive splitter of twisted light

Non-destructive splitter of twisted light Non-destructive splitter of twisted light Yan Li, 1,2 Zhi-Yuan Zhou, 1,2,# Dong-Sheng Ding, 1,2 Wei Zhang, 1,2 Shuai Shi, 1,2 Bao-Sen Shi, 1,2* and Guang-Can Guo 1,2 1 Key Laboratory of Quantum Information,

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

High efficiency SHG of orbital angular momentum light in an external cavity

High efficiency SHG of orbital angular momentum light in an external cavity High efficiency SHG of orbital angular momentum light in an external cavity Zhi-Yuan Zhou 1,2,#1, Yan Li 1,2,#1, Dong-Sheng Ding 1,2, Yun-Kun Jiang 3, Wei Zhang 1,2, Shuai Shi 1,2, Bao-Sen Shi 1,2, * and

More information

Triggered qutrits for Quantum Communication protocols

Triggered qutrits for Quantum Communication protocols Triggered qutrits for Quantum Communication protocols G. Molina-Terriza 1, A. Vaziri 1, J. Řeháček2, Z. Hradil 2 and A. Zeilinger 1, 3 1 Institut für Experimentalphysik, Universität Wien, Boltzmanngasse,

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE426F Optical Engineering Final Exam Dec. 17, 2003 Exam Type: D (Close-book + one 2-sided aid sheet + a non-programmable calculator)

More information

The Polarizing Sagnac Interferometer: a tool for light orbital angular momentum sorting and spin-orbit photon processing

The Polarizing Sagnac Interferometer: a tool for light orbital angular momentum sorting and spin-orbit photon processing The Polarizing Sagnac Interferometer: a tool for light orbital angular momentum sorting and spin-orbit photon processing Author Slussarenko, S., D'Ambrosio, Vincenzo, Piccirillo, Bruno, Marrucci, Lorenzo,

More information

Wavelength Frequency Measurements

Wavelength Frequency Measurements Wavelength Frequency Measurements Frequency: - unit to be measured most accurately in physics - frequency counters + frequency combs (gear wheels) - clocks for time-frequency Wavelength: - no longer fashionable

More information

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 Diffraction Gratings, Atomic Spectra Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 1 Increase number of slits: 2 Visual Comparisons 3 4 8 2 Diffraction Grating Note: despite the name, this

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

Conical diffraction and Bessel beam formation with a high optical quality biaxial crystal

Conical diffraction and Bessel beam formation with a high optical quality biaxial crystal Conical diffraction and Bessel beam formation with a high optical quality biaxial crystal C. F. Phelan, D. P. O Dwyer, Y. P. Rakovich, J. F. Donegan and J. G. Lunney School of Physics, Trinity College

More information

Speed of Light in Glass

Speed of Light in Glass Experiment (1) Speed of Light in Glass Objective:- This experiment is used to determine the speed of propagation of light waves in glass. Apparatus:- Prism, spectrometer, Halogen lamp source. Theory:-

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Time: March 10, 006, -3:30pm MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.097 (UG) Fundamentals of Photonics 6.974 (G) Quantum Electronics Spring 006

More information

Experimental observation of optical vortex evolution in a Gaussian beam. with an embedded fractional phase step

Experimental observation of optical vortex evolution in a Gaussian beam. with an embedded fractional phase step Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step W.M. Lee 1, X.-C. Yuan 1 * and K.Dholakia 1 Photonics Research Center, School of Electrical

More information

EFFECT OF A THIN OPTICAL KERR MEDIUM ON A LAGUERRE-GAUSSIAN BEAM AND THE APPLICATIONS WEIYA ZHANG

EFFECT OF A THIN OPTICAL KERR MEDIUM ON A LAGUERRE-GAUSSIAN BEAM AND THE APPLICATIONS WEIYA ZHANG EFFECT OF A THIN OPTICAL KERR MEDIUM ON A LAGUERRE-GAUSSIAN BEAM AND THE APPLICATIONS By WEIYA ZHANG A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

More information

Generation of vortex beams by an image-rotating optical parametric oscillator

Generation of vortex beams by an image-rotating optical parametric oscillator Generation of vortex beams by an image-rotating optical parametric oscillator Arlee V. Smith and Darrell J. Armstrong Dept. 1118, Sandia National Laboratories, Albuquerque, NM 87185-1423 arlee.smith@osa.org

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

Quantum Optics and Quantum Information Laboratory

Quantum Optics and Quantum Information Laboratory Quantum Optics and Quantum Information Laboratory OPT 253, Fall 2011 Institute of Optics University of Rochester Instructor: Dr. Lukishova Jonathan Papa Contents Lab 1: Entanglement and Bell s Inequalities

More information

iree Observation of Transfer of Angular Momentum to Absorp ive ar ic es from a Laser Beam with a Phase Singulari y

iree Observation of Transfer of Angular Momentum to Absorp ive ar ic es from a Laser Beam with a Phase Singulari y VOLUME 75, NUMBER 5 PH YS ICAL REVIEW LETTERS 31 JUr v 1995 iree Observation of Transfer of Angular Momentum to Absorp ive ar ic es from a Laser Beam with a Phase Singulari y H. He, M. E.J. Friese, N.

More information

Supplementary Information: Non-collinear interaction of photons with orbital angular momentum

Supplementary Information: Non-collinear interaction of photons with orbital angular momentum Supplementary Information: Non-collinear interaction of photons with orbital angular momentum T. oger, J. F. Heitz, D. Faccio and E. M. Wright November 1, 013 This supplementary information provides the

More information

arxiv: v1 [physics.optics] 9 Nov 2018

arxiv: v1 [physics.optics] 9 Nov 2018 Microwave-induced orbital angular momentum transfer Zahra Amini Sabegh 1, Mohammad Ali Maleki 1, and Mohammad Mahmoudi 1,* 1 Department of Physics, University of Zanjan, University Blvd., 45371-38791,

More information

Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals

Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals electronic-liquid Crystal Crystal Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals Lorenzo Marrucci Dipartimento di Scienze Fisiche Università

More information

Comparing quantum and classical correlations in a quantum eraser

Comparing quantum and classical correlations in a quantum eraser Comparing quantum and classical correlations in a quantum eraser A. Gogo, W. D. Snyder, and M. Beck* Department of Physics, Whitman College, Walla Walla, Washington 99362, USA Received 14 February 2005;

More information

Novel Detection of Optical Orbital Angular Momentum

Novel Detection of Optical Orbital Angular Momentum AFRL-RD-PS- AFRL-RD-PS TR-2014-0045 TR-2014-0045 Novel Detection of Optical Orbital Angular Momentum David Voelz Klipsch School of ECE New Mexico State University MSC 3-O, PO Box 30001 Las Cruces, NM 88003

More information

Generation of Sources of Light with Well Defined Orbital Angular Momentum

Generation of Sources of Light with Well Defined Orbital Angular Momentum Journal of Physics: Conference Series PAPER OPEN ACCESS Generation of Sources of Light with Well Defined Orbital Angular Momentum To cite this article: S Cruz y Cruz et al 016 J. Phys.: Conf. Ser. 698

More information

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a).

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). 7.1. Low-Coherence Interferometry (LCI) Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). The light is split by the beam splitter (BS) and

More information

EXPERIMENTATION OF FIBER-OPTIC TRANSMISSION OF LIGHT WITH ORBITAL ANGULAR MOMENTUM

EXPERIMENTATION OF FIBER-OPTIC TRANSMISSION OF LIGHT WITH ORBITAL ANGULAR MOMENTUM AFRL-IF-RS-TR-2006-172 Final Technical Report May 2006 EXPERIMENTATION OF FIBER-OPTIC TRANSMISSION OF LIGHT WITH ORBITAL ANGULAR MOMENTUM SUNY College at Oneonta APPROVED FOR PUBLIC RELEASE; DISTRIBUTION

More information

Optical twists in phase and amplitude

Optical twists in phase and amplitude Downloaded from orbit.dtu.dk on: Jan 13, 2019 Optical twists in phase and amplitude Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper Published in: Optics Express Link to article, DOI: 10.1364/OE.19.000476

More information

Light s Orbital Angular Momentum

Light s Orbital Angular Momentum Light s Orbital Angular Momentum The realization that light beams can have quantized orbital angular momentum in addition to spin angular momentum has led, in recent years, to novel experiments in quantum

More information

arxiv: v1 [quant-ph] 1 Mar 2011

arxiv: v1 [quant-ph] 1 Mar 2011 Quantum walk with a four dimensional coin Craig S. Hamilton 1, Aurél Gábris 1, Igor Jex 1 and Stephen M. Barnett 1, 1 Department of Physics Faculty of Nuclear Sciences and Physical Engineering, Czech Technical

More information

Controlled generation, manipulation and frequency conversion of broadband orbital angular momentum spectrum of asymmetric optical vortex beams

Controlled generation, manipulation and frequency conversion of broadband orbital angular momentum spectrum of asymmetric optical vortex beams Controlled generation, manipulation and frequency conversion of broadband orbital angular momentum spectrum of asymmetric optical vortex beams SABIR UL ALAM, A. SRINIVASA RAO, ANIRBAN GHOSH, PRAVIN VAITY,

More information

Geometric Phase in Optics and Angular Momentum of Light

Geometric Phase in Optics and Angular Momentum of Light Geometric Phase in Optics and Angular Momentum of Light S.C. Tiwari Institute of Natural Philosophy 1, Kusum Kutir, Mahamanapuri Varanasi-221 005, India Abstract Physical mechanism for the geometric phase

More information

High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface

High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface Ruikai Tang, Xiongjie Li, Wenjie Wu, Haifeng Pan, Heping Zeng and E Wu * State Key

More information

QUESTION BANK IN PHYSICS

QUESTION BANK IN PHYSICS QUESTION BANK IN PHYSICS LASERS. Name some properties, which make laser light different from ordinary light. () {JUN 5. The output power of a given laser is mw and the emitted wavelength is 630nm. Calculate

More information

Physics 30: Chapter 5 Exam Wave Nature of Light

Physics 30: Chapter 5 Exam Wave Nature of Light Physics 30: Chapter 5 Exam Wave Nature of Light Name: Date: Mark: /33 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark

More information

requency generation spectroscopy Rahul N

requency generation spectroscopy Rahul N requency generation spectroscopy Rahul N 2-11-2013 Sum frequency generation spectroscopy Sum frequency generation spectroscopy (SFG) is a technique used to analyze surfaces and interfaces. SFG was first

More information

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color.

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color. TRUE-FALSE STATEMENTS: ELECTRICITY: 1. Electric field lines originate on negative charges. 2. The flux of the electric field over a closed surface is proportional to the net charge enclosed by the surface.

More information

Bragg-induced orbital angular-momentum mixing in paraxial high-finesse cavities

Bragg-induced orbital angular-momentum mixing in paraxial high-finesse cavities Bragg-induced orbital angular-momentum mixing in paraxial high-finesse cavities David H. Foster and Jens U. Nöckel Department of Physics, University of Oregon 1371 E 13th Avenue Eugene, OR 97403 http://darkwing.uoregon.edu/~noeckel

More information

Cyclic transformation of orbital angular momentum modes

Cyclic transformation of orbital angular momentum modes Cyclic transformation of orbital angular momentum modes arxiv:1512.02696v1 [quant-ph] 8 Dec 2015 Florian Schlederer, 1, Mario Krenn, 1,2, Robert Fickler, 1,2, Mehul Malik, 1,2 Anton Zeilinger 1,2, 1 Institute

More information

General Physics II PHYS 102 Final Exam Spring st May 2011

General Physics II PHYS 102 Final Exam Spring st May 2011 Qatar University Arts and Sciences College Mathematics and Physics Department General Physics II PHYS 102 Final Exam Spring 2011 31 st May 2011 Student Name: ID Number: 60 Please read the following carefully

More information

Mode counting in high-dimensional orbital angular momentum entanglement

Mode counting in high-dimensional orbital angular momentum entanglement Mode counting in high-dimensional orbital angular momentum entanglement M.P. van Exter, P.S.K. Lee, S. Doesburg, and J.P. Woerdman Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden,

More information

Arbitrary and reconfigurable optics - new opportunities for integrated photonics

Arbitrary and reconfigurable optics - new opportunities for integrated photonics Arbitrary and reconfigurable optics - new opportunities for integrated photonics David Miller, Stanford University For a copy of these slides, please e-mail dabm@ee.stanford.edu How to design any linear

More information

Imaging Spatial-Helical Mode Interference of Single Photons

Imaging Spatial-Helical Mode Interference of Single Photons Imaging Spatial-Helical Mode Interference of Single Photons E.J. Galvez, E. Johnson, B.J. Reschovsky, L.E. Coyle, and A. Shah Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton,

More information

Is the speed of light in free-space always c? Miles Padgett FRS Kelvin Chair of Natural Philosophy

Is the speed of light in free-space always c? Miles Padgett FRS Kelvin Chair of Natural Philosophy Is the speed of light in free-space always c? Miles Padgett FRS Kelvin Chair of Natural Philosophy 1 What s the speed of light in free space? Always? The team www.physics.gla.ac.uk/optics Jacqui Romero

More information

Efficient mode transformations of degenerate Laguerre Gaussian beams

Efficient mode transformations of degenerate Laguerre Gaussian beams Efficient mode transformations of degenerate Laguerre Gaussian beams Galina Machavariani, Amiel A. Ishaaya, Liran Shimshi, Nir Davidson, Asher A. Friesem, and Erez Hasman We present an approach for efficient

More information

Comments to Atkins: Physical chemistry, 7th edition.

Comments to Atkins: Physical chemistry, 7th edition. Comments to Atkins: Physical chemistry, 7th edition. Chapter 16: p. 483, Eq. (16.1). The definition that the wave number is the inverse of the wave length should be used. That is much smarter. p. 483-484.

More information

Chapter 7: Optical Properties of Solids. Interaction of light with atoms. Insert Fig Allowed and forbidden electronic transitions

Chapter 7: Optical Properties of Solids. Interaction of light with atoms. Insert Fig Allowed and forbidden electronic transitions Chapter 7: Optical Properties of Solids Interaction of light with atoms Insert Fig. 8.1 Allowed and forbidden electronic transitions 1 Insert Fig. 8.3 or equivalent Ti 3+ absorption: e g t 2g 2 Ruby Laser

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Jonathan Papa 1, * 1 Institute of Optics University of Rochester, Rochester,

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY SCHEME OF EVAUATION MANIPA INSTITUTE OF TECHNOOGY MANIPA UNIVERSITY, MANIPA SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY SUBJECT: ENGINEERING PHYSICS (PHY/) Time: 3 Hrs. Max. Marks: 5 Note: Answer

More information

Abstract Submitted for the DPP99 Meeting of The American Physical Society

Abstract Submitted for the DPP99 Meeting of The American Physical Society Abstract Submitted for the DPP99 Meeting of The American Physical Society Sorting Category: 5.1.1.2(Experimental) Calibration of a Three Path Thomson System at DIII- D 1 B.D. BRAY, C.L. HSIEH, T.N. CARLSTROM,

More information

PHY410 Optics Exam #3

PHY410 Optics Exam #3 PHY410 Optics Exam #3 NAME: 1 2 Multiple Choice Section - 5 pts each 1. A continuous He-Ne laser beam (632.8 nm) is chopped, using a spinning aperture, into 500 nanosecond pulses. Compute the resultant

More information

Optics, Light and Lasers

Optics, Light and Lasers Dieter Meschede Optics, Light and Lasers The Practical Approach to Modern Aspects of Photonics and Laser Physics Second, Revised and Enlarged Edition BICENTENNIAL.... n 4 '':- t' 1 8 0 7 $W1LEY 2007 tri

More information

Orbital Angular Momentum in Noncollinear Second Harmonic Generation by off-axis vortex beams

Orbital Angular Momentum in Noncollinear Second Harmonic Generation by off-axis vortex beams Orbital Angular Momentum in Noncollinear Second Harmonic Generation by off-axis vortex beams Fabio Antonio Bovino, 1*, Matteo Braccini, Maurizio Giardina 1, Concita Sibilia 1 Quantum Optics Lab, Selex

More information

Particle-Wave Duality and Which-Way Information

Particle-Wave Duality and Which-Way Information Particle-Wave Duality and Which-Way Information Graham Jensen and Samantha To University of Rochester, Rochester, NY 14627, U.S. September 25, 2013 Abstract Samantha To This experiment aimed to support

More information

ONE-ELECTRON AND TWO-ELECTRON SPECTRA

ONE-ELECTRON AND TWO-ELECTRON SPECTRA ONE-ELECTRON AND TWO-ELECTRON SPECTRA (A) FINE STRUCTURE AND ONE-ELECTRON SPECTRUM PRINCIPLE AND TASK The well-known spectral lines of He are used for calibrating the diffraction spectrometer. The wavelengths

More information

A) n L < 1.0 B) n L > 1.1 C) n L > 1.3 D) n L < 1.1 E) n L < 1.3

A) n L < 1.0 B) n L > 1.1 C) n L > 1.3 D) n L < 1.1 E) n L < 1.3 1. A beam of light passes from air into water. Which is necessarily true? A) The frequency is unchanged and the wavelength increases. B) The frequency is unchanged and the wavelength decreases. C) The

More information

III. Orbital Angular Momentum of Light in Optics Instruction. Enrique J. Galvez and Nikolay Zhelev

III. Orbital Angular Momentum of Light in Optics Instruction. Enrique J. Galvez and Nikolay Zhelev III. Orbital Angular Momentum of Light in Optics Instruction Enrique J. Galvez and Nikolay Zhelev Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346, USA (315) 228-7205, (315)

More information

An alternative method to specify the degree of resonator stability

An alternative method to specify the degree of resonator stability PRAMANA c Indian Academy of Sciences Vol. 68, No. 4 journal of April 2007 physics pp. 571 580 An alternative method to specify the degree of resonator stability JOGY GEORGE, K RANGANATHAN and T P S NATHAN

More information

The orbital angular momentum of light

The orbital angular momentum of light Honors Theses Physics Spring 2014 The orbital angular momentum of light Nicholas Paul Pellatz Penrose Library, Whitman College Permanent URL: http://hdl.handle.net/10349/1258 This thesis has been deposited

More information

Sub-wavelength electromagnetic structures

Sub-wavelength electromagnetic structures Sub-wavelength electromagnetic structures Shanhui Fan, Z. Ruan, L. Verselegers, P. Catrysse, Z. Yu, J. Shin, J. T. Shen, G. Veronis Ginzton Laboratory, Stanford University http://www.stanford.edu/group/fan

More information

and another with a peak frequency ω 2

and another with a peak frequency ω 2 Physics Qualifying Examination Part I 7-Minute Questions September 13, 2014 1. A sealed container is divided into two volumes by a moveable piston. There are N A molecules on one side and N B molecules

More information