How to exploit network properties to improve learning in relational domains

Size: px
Start display at page:

Download "How to exploit network properties to improve learning in relational domains"

Transcription

1 How to exploit network properties to improve learning in relational domains Jennifer Neville Departments of Computer Science and Statistics Purdue University!!!! (joint work with Brian Gallagher, Timothy La Fond, Sebastian Moreno, Joseph Pfeiffer and Rongjing Xiang)

2 Relational network classification examples Predict organizational roles from communication patterns networks! Predict protein function from interaction patterns Gene/protein networks! Predict paper topics from properties of cited papers Scientific networks! Predict content changes from properties of hyperlinked pages World wide web! Predict personal preferences from characteristics of friends Social networks! Predict group effectiveness from communication patterns Organizational networks!

3 Network data is: heterogeneous and interdependent, partially observed/labeled, dynamic and/or non-stationary, and often drawn from a single network...thus many traditional ML methods developed for i.i.d. data do not apply

4 Machine learning 0 Data representation choose Knowledge representation Generic form is: y = " x + " x...+ " 0 choose defines

5 Machine learning 0 Model space defines combine Objective function L sq (D) = N D X (f(x i ) y i ) i= choose

6 Machine learning 0 4 (eg. optimization) combine Search algorithm Learning identifies model with max objective function on training data Model is applied for prediction on new data from same distribution

7 Relational learning Machine learning 0 Data representation Knowledge representation networks! Objective function relational data Social networks! Scientific networks! relational models Bn Bn Firm Broker (Bk) Disclosure Branch (Bn) Bn Size 4 Search algorithm Gene/protein networks! Problem In Past Has Business Is Problem On Watchlist Year Bk Region Type Bk Area Bk Layoffs Bn On Watchlist World wide web! Organizational networks! Bn Bk

8 There has been a great deal of work on templated graphical model representations for relational data RBNs PRMs RMNs IHRMs MLNs DAPER GMNs RDNs Since model representation is also graphical we need to distinguish data networks from model networks

9 Data network

10 Gender? Married? Politics? Religion? Data network

11 Data representation F N D!C F Y D!C Relational F learning M Mtask: N Y N D D C E.g., predict!c political views C based C on user s intrinsic attributes and political views of friends F N C!C M Y C C F Y D C Estimate joint distribution: or conditional distribution: P (Y {X} n,g) Attributed network P (Y i X i, X R, Y R ) Note we often have only a single network for learning

12 Define structure of graphical model Politics i Politics j Relational template Politics i Gender i Politics i Married i Politics i Religion i

13 Y i Y j Relational template Y i X i Y i X i Y i X i Model template

14 Y i Y j Y i X i + Y i X i Y i X i Model template Data network

15 Knowledge representation X X 8 X X X 8 X 8 X X X Y X 4 X 4 X 4 X 5 X 5 X 5 Y 8 Y X X X Y 4 X 6 X 6 X 6 Y 5 X 7 X 7 X 7 Y Y 6 Y 7 Model network (graphical model)

16 Objective 4 Search: eg. convex function optimization X X 8 X X X 8 X 8 X X X Y X 4 X 4 X 4 X 5 X 5 X 5 Y 8 Y X X X Y 4 X 6 X 6 X 6 Y 5 X 7 X 7 X 7 Y Y 6 Y 7 Learn model parameters from fully labeled network P (y G x G )= Z(, x G ) T T C C(T (G)) T (x C, y C ; T )

17 Apply model to make predictions in another network drawn from the same distribution Y i Y j X X X X X X X 8 X 8 X 8 Y i X i Y + Y X 4 X 4 X 4 Y 8 X 5 X 5 X 5 Y i X i X Y 4 X 6 Y 5 X 7 Y i X i X X X 6 X 6 X 7 X 7 Y Y 6 Y 7 Model template Test network

18 Collective classification uses full joint, rolled out model for inference but labeled nodes impact the final model structure X X X X X X X X X X X X X 8 X 8 X 8 X 8 X 8 X 8 Y Y Y Y X 4 Y 4 X 4 X 4 Y 4 Y 8 Y 8 X 5 X 5 X 5 X 5 X 5 X 5 X X X X X X Y 4 Y 4 Y 4 X 6 X 6 X 6 Y 5 Y X 5 6 X 6 X 7 X 6 X 7 X 7 X 7 X 7 X 7 Y Y Y 6 Y 6 Y 7 Y 7 Labeled node

19 Collective classification uses full joint, rolled out model for inference but labeled nodes impact the final model structure X X X The structure X X X of rolled-out 8 relational X X 8 X 8 graphical models are determined by the Y Y X Y 4 X structure of the underlying 8 data 5 network, X 4 X 4 X 5 X 5 Labeled node including location + availability of labels X Y 4 X X X 6 X X 7 X this can impact performance 6 7 of Y Y 6 Y learning and inference methods 7 X 6 Y 5 X 7 via representation, objective function, and search algorithm

20 Networks are much, much larger in practice

21 Finding : Representation Implicit assumption is that nodes of the same type should be identically distributed but many relational representations cannot ensure this holds for varying graph structures

22 I.I.D. assumption revisited Current relational models do not impose the same marginal invariance condition that is assumed for IID models, which can impair generalization p(y A x A ) A B E p(y E x E ) C D F p(y A x A ) 6= p(y E x E ) due to varying graph structure Markov relational network representation does not allow us to explicitly specify the form of the marginal probability distributions, thus it is difficult to impose any equality constraints on the marginals

23 Is there an alternative approach? Goal: Combine the marginal invariance advantages of IID models with the ability to model relational dependence Incorporate node attributes in a general way (similar to IID classifiers) Idea: Apply copulas to combine marginal models with dependence structure F... t t t tn z z z zn t jointly ~ Copula theory: can construct n-dimensional z vector i = F ( of ) i ( arbitrary i (t i )) marginals while preserving the desired dependence structure... zi marginally ~ Fi

24 Let s start with a reformulation of IID classifiers... General form of probabilistic binary classification: e.g., Logistic regression p(y i = ) = F ( (x i )) Now view F as the CDF of a distribution symmetric around 0 to obtain a latent variable formulation:! z is a continuous variable, capturing random effects that are not present in x p is the corresponding PDF of F z i p(z i = z x i = x) =f(z (x i )) y i = sign(z i ) In IID models, the random effect for each instance is independent, thus can be integrated out When links among instances are observed, the correlations among their class labels can be modeled through dependence among the z s Key question: How to model the dependence among z s while preserving the marginals?? Zj

25 Copula Latent Markov Network (CLMN) IID classifiers CLMN The CLMN model Sample t from the desired joint dependency:(t,t,...,t n ) Apply marginal transformation to obtain the latent variable z: z i = F ( ) Marginal Φi transforms ti to uniform [0,] r.v. ui Classification: i ( i (t i )) y i = sign(z i ) Quasi-inverse of CDF Fi is used to obtain zi from ui, Attributes moderate corresponding pdf fi

26 Copula Latent Markov Network (Xiang and N. WSDM ) CLMN implementation Gaussian Markov network Estimation: First, learn marginal model as if instances were IID Next, learn the dependence model conditioned on the marginal model... but GMN has no parameters to learn Logistic regression Inference: Conditional inference in copulas have not previously been considered for largescale networks For efficient inference, we developed a message passing algorithm based on EP

27 Experimental Results CLMN SocDim RMN LR GMN Key idea: Ensuring that nodes with varying graph Facebook structure have identical marginals improves learning Gene IMDB IMDB

28 Finding : Search Graph+attribute space is too large to sample thoroughly, but efficient generative graph models can be exploited to search more effectively

29 How to efficiently generate attributed graph samples from the underlying joint distribution P (X, Y,G)? Space is O( V +V p ) so effective sampling from joint is difficult

30 Naive sampling approach: Assume independence between graph/attributes P E (X, E E, X )=P E (E E )P (X X ) Attributes Graph Model Attribute Model

31 Problem with naive approach Original Sampled Although graph structure can be captured by generative graph models, naive pairing with attribute samples does not capture relational correlation Attribute value combinations

32 Solution: Use graph model to propose edges, but sample conditional on node attribute values P E (X, E E, X )=P E (E X, E, X )P (X E, X ) Attributes Graph Model use Accept-Reject process to sample conditioned on attrs Attribute Model

33 Exploit efficient generative graph model as proposal distribution to search effectively What to use as acceptance probabilities? Ratio of observed probabilities in original data to sampled probabilities resulting from naive approach!!!!! Original Original This corresponds to rejection sampling Proposing distribution: True distribution: Sampled Attribute value combinations P E (E ij = E ) P o (E ij = f(x i, x j ), E, X ) Attribute value combinations

34 Attributed graph models (Pfeiffer, La Fond, Moreno, N & Gallagher WWW 4) # Learn attribute and graph model # Generate graph with naive approach # Compute acceptance ratios # Sample attributes! while not enough edges: draw (vi,vj) from Q (the model) U ~ Uniform(0,) if U < A(xi, xj) put (vi, vj) into the edges return edges Attribute value combinations a Possible Edges g b h f e d i c b f h g

35 Theorem : AGM samples from the joint distribution of edges and attributes P (E ij = f(x i,x j ), E, F )P (x i,x j X ) Corollary : Expected AGM degree equals expected degree of structural graph model

36 Empirical results on Facebook data 0.4 Correlation Political views AGM preserves characteristics 0. of graph model AGM Key idea: Statistical models of graphs can be exploited to improve sampling from full joint P E (E, X E, X ) AGM captures attribute correlation No AGM Facebook AGM-FCL AGM-TCL AGM-KPGM (x) AGM-KPGM (x) FCL TCL KPGM (x) KPGM (x)

37 Relational learning Data representation 4 Knowledge representation Objective function Search algorithm Representations affect our ability to enforce invariance assumptions Conventional obj. functions do not behave as expected in partially labeled networks (not in this talk) Simpler (graph) models can be used to statistically prune search space

38 Conclusion Relational models have been shown to significantly improve predictions through the use of joint modeling and collective inference But since the (rolled-out) model structure depends on the structure of the underlying data network we need to understand how the data graph affects model/algorithm characteristics in order to better exploit relational information for learning/prediction A careful consideration of interactions between: data representation, knowledge representation, objective function, and search algorithm will improve our understanding of mechanisms that impact performance and this will form the foundation for improved algorithms & methodology

39 Thanks to: Alum ni Hoda Eldardiry Rongjing Xiang Chris Mayfield Karthik Nagaraj Umang Sharan Sebastian Moreno Nesreen Ahmed Hyokun Yun Suvidha Kancharla Tao Wang Timothy La Fond Joel Pfeiffer Ellen Lai Pablo Granda Hogun Park

40 Questions?!

Collective classification in large scale networks. Jennifer Neville Departments of Computer Science and Statistics Purdue University

Collective classification in large scale networks. Jennifer Neville Departments of Computer Science and Statistics Purdue University Collective classification in large scale networks Jennifer Neville Departments of Computer Science and Statistics Purdue University The data mining process Network Datadata Knowledge Selection Interpretation

More information

Supporting Statistical Hypothesis Testing Over Graphs

Supporting Statistical Hypothesis Testing Over Graphs Supporting Statistical Hypothesis Testing Over Graphs Jennifer Neville Departments of Computer Science and Statistics Purdue University (joint work with Tina Eliassi-Rad, Brian Gallagher, Sergey Kirshner,

More information

Semi-supervised learning for node classification in networks

Semi-supervised learning for node classification in networks Semi-supervised learning for node classification in networks Jennifer Neville Departments of Computer Science and Statistics Purdue University (joint work with Paul Bennett, John Moore, and Joel Pfeiffer)

More information

Lifted and Constrained Sampling of Attributed Graphs with Generative Network Models

Lifted and Constrained Sampling of Attributed Graphs with Generative Network Models Lifted and Constrained Sampling of Attributed Graphs with Generative Network Models Jennifer Neville Departments of Computer Science and Statistics Purdue University (joint work with Pablo Robles Granda,

More information

A Shrinkage Approach for Modeling Non-Stationary Relational Autocorrelation

A Shrinkage Approach for Modeling Non-Stationary Relational Autocorrelation A Shrinkage Approach for Modeling Non-Stationary Relational Autocorrelation Pelin Angin Department of Computer Science Purdue University pangin@cs.purdue.edu Jennifer Neville Department of Computer Science

More information

Sampling of Attributed Networks from Hierarchical Generative Models

Sampling of Attributed Networks from Hierarchical Generative Models Sampling of Attributed Networks from Hierarchical Generative Models Pablo Robles Purdue University West Lafayette, IN USA problesg@purdue.edu Sebastian Moreno Universidad Adolfo Ibañez Viña del Mar, Chile

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Using Bayesian Network Representations for Effective Sampling from Generative Network Models

Using Bayesian Network Representations for Effective Sampling from Generative Network Models Using Bayesian Network Representations for Effective Sampling from Generative Network Models Pablo Robles-Granda and Sebastian Moreno and Jennifer Neville Computer Science Department Purdue University

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

Computational Genomics

Computational Genomics Computational Genomics http://www.cs.cmu.edu/~02710 Introduction to probability, statistics and algorithms (brief) intro to probability Basic notations Random variable - referring to an element / event

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

CPSC 340: Machine Learning and Data Mining. MLE and MAP Fall 2017

CPSC 340: Machine Learning and Data Mining. MLE and MAP Fall 2017 CPSC 340: Machine Learning and Data Mining MLE and MAP Fall 2017 Assignment 3: Admin 1 late day to hand in tonight, 2 late days for Wednesday. Assignment 4: Due Friday of next week. Last Time: Multi-Class

More information

High dimensional Ising model selection

High dimensional Ising model selection High dimensional Ising model selection Pradeep Ravikumar UT Austin (based on work with John Lafferty, Martin Wainwright) Sparse Ising model US Senate 109th Congress Banerjee et al, 2008 Estimate a sparse

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Hybrid Models for Text and Graphs. 10/23/2012 Analysis of Social Media

Hybrid Models for Text and Graphs. 10/23/2012 Analysis of Social Media Hybrid Models for Text and Graphs 10/23/2012 Analysis of Social Media Newswire Text Formal Primary purpose: Inform typical reader about recent events Broad audience: Explicitly establish shared context

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Using Bayesian Network Representations for Effective Sampling from Generative Network Models

Using Bayesian Network Representations for Effective Sampling from Generative Network Models Using Bayesian Network Representations for Effective Sampling from Generative Network Models Pablo Robles-Granda and Sebastian Moreno and Jennifer Neville Computer Science Department Purdue University

More information

Based on slides by Richard Zemel

Based on slides by Richard Zemel CSC 412/2506 Winter 2018 Probabilistic Learning and Reasoning Lecture 3: Directed Graphical Models and Latent Variables Based on slides by Richard Zemel Learning outcomes What aspects of a model can we

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 4, February 16, 2012 David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 1 / 27 Undirected graphical models Reminder

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Problem Set 3 Issued: Thursday, September 25, 2014 Due: Thursday,

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

1 Undirected Graphical Models. 2 Markov Random Fields (MRFs)

1 Undirected Graphical Models. 2 Markov Random Fields (MRFs) Machine Learning (ML, F16) Lecture#07 (Thursday Nov. 3rd) Lecturer: Byron Boots Undirected Graphical Models 1 Undirected Graphical Models In the previous lecture, we discussed directed graphical models.

More information

Quilting Stochastic Kronecker Graphs to Generate Multiplicative Attribute Graphs

Quilting Stochastic Kronecker Graphs to Generate Multiplicative Attribute Graphs Quilting Stochastic Kronecker Graphs to Generate Multiplicative Attribute Graphs Hyokun Yun (work with S.V.N. Vishwanathan) Department of Statistics Purdue Machine Learning Seminar November 9, 2011 Overview

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction In this book we will be concerned with supervised learning, which is the problem of learning input-output mappings from empirical data (the training dataset). Depending on the characteristics

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Quilting Stochastic Kronecker Product Graphs to Generate Multiplicative Attribute Graphs

Quilting Stochastic Kronecker Product Graphs to Generate Multiplicative Attribute Graphs Quilting Stochastic Kronecker Product Graphs to Generate Multiplicative Attribute Graphs Hyokun Yun Department of Statistics Purdue University SV N Vishwanathan Departments of Statistics and Computer Science

More information

Inference in Graphical Models Variable Elimination and Message Passing Algorithm

Inference in Graphical Models Variable Elimination and Message Passing Algorithm Inference in Graphical Models Variable Elimination and Message Passing lgorithm Le Song Machine Learning II: dvanced Topics SE 8803ML, Spring 2012 onditional Independence ssumptions Local Markov ssumption

More information

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari Deep Belief Nets Sargur N. Srihari srihari@cedar.buffalo.edu Topics 1. Boltzmann machines 2. Restricted Boltzmann machines 3. Deep Belief Networks 4. Deep Boltzmann machines 5. Boltzmann machines for continuous

More information

Probabilistic Machine Learning. Industrial AI Lab.

Probabilistic Machine Learning. Industrial AI Lab. Probabilistic Machine Learning Industrial AI Lab. Probabilistic Linear Regression Outline Probabilistic Classification Probabilistic Clustering Probabilistic Dimension Reduction 2 Probabilistic Linear

More information

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated Fall 3 Computer Vision Overview of Statistical Tools Statistical Inference Haibin Ling Observation inference Decision Prior knowledge http://www.dabi.temple.edu/~hbling/teaching/3f_5543/index.html Bayesian

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Random Field Models for Applications in Computer Vision

Random Field Models for Applications in Computer Vision Random Field Models for Applications in Computer Vision Nazre Batool Post-doctorate Fellow, Team AYIN, INRIA Sophia Antipolis Outline Graphical Models Generative vs. Discriminative Classifiers Markov Random

More information

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io

Machine Learning. Lecture 4: Regularization and Bayesian Statistics. Feng Li. https://funglee.github.io Machine Learning Lecture 4: Regularization and Bayesian Statistics Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 207 Overfitting Problem

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 18 Oct, 21, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models CPSC

More information

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 7: Learning Fully Observed BNs Theo Rekatsinas 1 Exponential family: a basic building block For a numeric random variable X p(x ) =h(x)exp T T (x) A( ) = 1

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Final Exam, Machine Learning, Spring 2009

Final Exam, Machine Learning, Spring 2009 Name: Andrew ID: Final Exam, 10701 Machine Learning, Spring 2009 - The exam is open-book, open-notes, no electronics other than calculators. - The maximum possible score on this exam is 100. You have 3

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining CPSC 340: Machine Learning and Data Mining MLE and MAP Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1 Admin Assignment 4: Due tonight. Assignment 5: Will be released

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Introduction to Graphical Models

Introduction to Graphical Models Introduction to Graphical Models The 15 th Winter School of Statistical Physics POSCO International Center & POSTECH, Pohang 2018. 1. 9 (Tue.) Yung-Kyun Noh GENERALIZATION FOR PREDICTION 2 Probabilistic

More information

Probability and Information Theory. Sargur N. Srihari

Probability and Information Theory. Sargur N. Srihari Probability and Information Theory Sargur N. srihari@cedar.buffalo.edu 1 Topics in Probability and Information Theory Overview 1. Why Probability? 2. Random Variables 3. Probability Distributions 4. Marginal

More information

Conditional Independence

Conditional Independence Conditional Independence Sargur Srihari srihari@cedar.buffalo.edu 1 Conditional Independence Topics 1. What is Conditional Independence? Factorization of probability distribution into marginals 2. Why

More information

Introduction to Bayesian Learning

Introduction to Bayesian Learning Course Information Introduction Introduction to Bayesian Learning Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Apprendimento Automatico: Fondamenti - A.A. 2016/2017 Outline

More information

An Introduction to Bayesian Machine Learning

An Introduction to Bayesian Machine Learning 1 An Introduction to Bayesian Machine Learning José Miguel Hernández-Lobato Department of Engineering, Cambridge University April 8, 2013 2 What is Machine Learning? The design of computational systems

More information

Machine Learning, Fall 2012 Homework 2

Machine Learning, Fall 2012 Homework 2 0-60 Machine Learning, Fall 202 Homework 2 Instructors: Tom Mitchell, Ziv Bar-Joseph TA in charge: Selen Uguroglu email: sugurogl@cs.cmu.edu SOLUTIONS Naive Bayes, 20 points Problem. Basic concepts, 0

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Collaborative topic models: motivations cont

Collaborative topic models: motivations cont Collaborative topic models: motivations cont Two topics: machine learning social network analysis Two people: " boy Two articles: article A! girl article B Preferences: The boy likes A and B --- no problem.

More information

Submodularity in Machine Learning

Submodularity in Machine Learning Saifuddin Syed MLRG Summer 2016 1 / 39 What are submodular functions Outline 1 What are submodular functions Motivation Submodularity and Concavity Examples 2 Properties of submodular functions Submodularity

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Structure Learning in Sequential Data

Structure Learning in Sequential Data Structure Learning in Sequential Data Liam Stewart liam@cs.toronto.edu Richard Zemel zemel@cs.toronto.edu 2005.09.19 Motivation. Cau, R. Kuiper, and W.-P. de Roever. Formalising Dijkstra's development

More information

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides Probabilistic modeling The slides are closely adapted from Subhransu Maji s slides Overview So far the models and algorithms you have learned about are relatively disconnected Probabilistic modeling framework

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

11. Learning graphical models

11. Learning graphical models Learning graphical models 11-1 11. Learning graphical models Maximum likelihood Parameter learning Structural learning Learning partially observed graphical models Learning graphical models 11-2 statistical

More information

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning Clustering K-means Machine Learning CSE546 Sham Kakade University of Washington November 15, 2016 1 Announcements: Project Milestones due date passed. HW3 due on Monday It ll be collaborative HW2 grades

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Unsupervised Learning

Unsupervised Learning CS 3750 Advanced Machine Learning hkc6@pitt.edu Unsupervised Learning Data: Just data, no labels Goal: Learn some underlying hidden structure of the data P(, ) P( ) Principle Component Analysis (Dimensionality

More information

Material presented. Direct Models for Classification. Agenda. Classification. Classification (2) Classification by machines 6/16/2010.

Material presented. Direct Models for Classification. Agenda. Classification. Classification (2) Classification by machines 6/16/2010. Material presented Direct Models for Classification SCARF JHU Summer School June 18, 2010 Patrick Nguyen (panguyen@microsoft.com) What is classification? What is a linear classifier? What are Direct Models?

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Probabilistic Graphical Models: MRFs and CRFs CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Why PGMs? PGMs can model joint probabilities of many events. many techniques commonly

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

CS Lecture 4. Markov Random Fields

CS Lecture 4. Markov Random Fields CS 6347 Lecture 4 Markov Random Fields Recap Announcements First homework is available on elearning Reminder: Office hours Tuesday from 10am-11am Last Time Bayesian networks Today Markov random fields

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

Gaussian discriminant analysis Naive Bayes

Gaussian discriminant analysis Naive Bayes DM825 Introduction to Machine Learning Lecture 7 Gaussian discriminant analysis Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. is 2. Multi-variate

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

Representation. Stefano Ermon, Aditya Grover. Stanford University. Lecture 2

Representation. Stefano Ermon, Aditya Grover. Stanford University. Lecture 2 Representation Stefano Ermon, Aditya Grover Stanford University Lecture 2 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 2 1 / 32 Learning a generative model We are given a training

More information

Bayesian Networks Representation

Bayesian Networks Representation Bayesian Networks Representation Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University March 19 th, 2007 Handwriting recognition Character recognition, e.g., kernel SVMs a c z rr r r

More information

Probabilistic Time Series Classification

Probabilistic Time Series Classification Probabilistic Time Series Classification Y. Cem Sübakan Boğaziçi University 25.06.2013 Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 1 / 54 Problem Statement The goal is to assign

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Content-based Recommendation

Content-based Recommendation Content-based Recommendation Suthee Chaidaroon June 13, 2016 Contents 1 Introduction 1 1.1 Matrix Factorization......................... 2 2 slda 2 2.1 Model................................. 3 3 flda 3

More information

11 : Gaussian Graphic Models and Ising Models

11 : Gaussian Graphic Models and Ising Models 10-708: Probabilistic Graphical Models 10-708, Spring 2017 11 : Gaussian Graphic Models and Ising Models Lecturer: Bryon Aragam Scribes: Chao-Ming Yen 1 Introduction Different from previous maximum likelihood

More information

Learning Bayesian network : Given structure and completely observed data

Learning Bayesian network : Given structure and completely observed data Learning Bayesian network : Given structure and completely observed data Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani Learning problem Target: true distribution

More information

Alternative Parameterizations of Markov Networks. Sargur Srihari

Alternative Parameterizations of Markov Networks. Sargur Srihari Alternative Parameterizations of Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics Three types of parameterization 1. Gibbs Parameterization 2. Factor Graphs 3. Log-linear Models with Energy functions

More information

Basic Sampling Methods

Basic Sampling Methods Basic Sampling Methods Sargur Srihari srihari@cedar.buffalo.edu 1 1. Motivation Topics Intractability in ML How sampling can help 2. Ancestral Sampling Using BNs 3. Transforming a Uniform Distribution

More information

Modeling and measuring training information in a network. SML 2014 Jan Ramon

Modeling and measuring training information in a network. SML 2014 Jan Ramon Modeling and measuring training information in a network SML 2014 Jan Ramon Contents Modeling example dependencies Problem of measuring training information Contributions Conclusion Networked examples

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 18 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 31, 2012 Andre Tkacenko

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information