FORMULA FOR SPIRAL CLOUD-RAIN BANDS OF A TROPICAL CYCLONE. Boris S. Yurchak* University of Maryland, Baltimore County, Greenbelt, Maryland =, (2)

Size: px
Start display at page:

Download "FORMULA FOR SPIRAL CLOUD-RAIN BANDS OF A TROPICAL CYCLONE. Boris S. Yurchak* University of Maryland, Baltimore County, Greenbelt, Maryland =, (2)"

Transcription

1 PF.3 FORMULA FOR SPIRAL CLOUD-RAIN BANDS OF A TROPICAL CYCLONE Bois S. Yuchak* Univesity of Mayland, Baltimoe County, Geenbelt, Mayland. INTRODUCTION Spial cloud-ain bands (SCRB) ae some of the most distinguishing featues inheent in satellite and ada images of topical cyclones (TC). The finding of eliable indicatos of the TC s intensity and its cente location is one of the fields in SCRB study. The kind of function that is most fitting fo desciption of an SCRB is an impotant point in such eseach. This poblem is diectly connected with the mechanism of SCRB fomation and evolution. In the cuent wok, the simplest hypothesis of entapment of cloud masses was used. The coe of this hypothesis is an assumption that clouds ae involved by the spial wind steamlines flown into the cente of a cyclone. u S α µ V v φ O. EQUATION FOR WIND STREAMLINE IN TC Accoding to Mamedov and Pavlov (974), the steamline equation in a pola coodinate system can be witten as d ϕ = u v d, () whee is a adius-vecto, ϕ is an angle between adius vecto and the positive diection of X, and u and v ae tangential (to cicula isoba) and adial components of ai paticle motion, espectively. One of the main paametes of SCRB is the so-called cossing angle which is an angle between the tangent to the steamline (cloud tack) and the tangent to the cicula isoba at a paticula point (Fig.). It is known fom many expeimental obsevations, that the cossing angle deceases with the decease of spial adius as the point is coming to the pole of a spial. It also occus at a fixed distance, due to cyclone intensity incease (Repot WMO (985), Raghavan (3)). Depending on elations among the paametes pesented in the steamline equation (), a solution of this equation will be some kind of a spial. In paticulaly, the logaithmic spial R exp( ϕ tgα) =, () *Coesponding autho addess: Bois S. Yuchak Univ. of Mayland, Baltimoe County, GEST, Geenbelt, MD, , yubois@umbc.edu Fig.. Deivation of the steamline equation fo a TC. () wind steamline; () cicula isoba; O is the TC cente; S is an abitay point within a wind steamline; V is the tangential wind speed at the point S; u and v ae tangential (to cicula isoba) and adial components of the tangential wind, espectively; α and µ ae the cossing angle and the inflow angle, espectively; φ is the pola angle; and is a adius-vecto. whee R is cyclone adius (it is estimated by adius of the last cicle isoba of the TC system), ϕ is spial s pola angle (ϕ = at =R), α is cossing angle, means that adial and tangential wind components have the same law of adius dependence (the cossing angle is constant): v/u=tgα=const. Fom the known expeimental data, pointed in Weathefod and Gay (988), fo example, it does not point out that the above conditions eally might be in TC. The logaithmic spial expession can be pesented also as a dependence of pola angle on adius nomalized by R: ϕ = ctgα ln (3) R In the modified logaithmic spial (Anthes (98)): ln m = ϕ tg ( ) R α, (4) whee: tg = m ( ) tgα tg tgα( ) α, α =,

2 m is maximal wind adius and α is peipheal cossing angle, it is taken into account empiically that the cossing angle deceases as the point appoaches the cente of TC. But it does not depend on TC intensity as well. Thus, these models of the cossing angle change have adjusting and empiical style, and the application of such o othe spial fom is not substantiated. 3. STREAMLINE EQUATION TAKING INTO ACCOUNT THE CHANGES OF THE INFLOW ANGLE AS A FUNCTION OF TC RADIUS Steady-state ai motion in the cyclone causes the fiction foce = kv, whee k is a fiction F f facto. In accodance with Gualnik et al. (97), the deviation angle to the ight fom the gadient foce diected to the cyclone cente (Fig. ) is given by an expession l V ( ) tgµ( ) = +, (5) k k whee l = ω φ sin is the Coiolis paamete (ω is the angula speed of the Eath otation, φ is the altitude) and V is the modulus of paticle s speed vecto. As follows fom the Fig., the cossing angle and inflow angle ae connected by a elationship π α + µ = (6) whence k k tgα ( ) = ctgµ ( ) = = (7) V ( ) l V ( ) l + + l The values of the cossing angle ae povided in Table fo diffeent ations between the Coiolis V ( ) paamete and paamete. Table. The cossing angle values depending on elationship between the paametes of fomula (7) V ( ) ~ 5 5 l α() ~ In calculation of Table, the Coiolis paamete was chosen fo latitude of 9, i.e. 5 l = ω sinφ = 4,8 s, and fiction facto 5 k 8 s. The data of Table show that the ange of the cossing angle is fom to 4 degees, which is in accodance with the values obseved expeimentally (Repot WMO (985)). Because the incease in the atio of wind speed to adius causes the decease in the cossing angle, it is possible to conclude that the cuent model of the cossing angle change is matched qualitatively to the expeimental data (the cossing angle deceases when the point appoaches the cente of a TC and due to TC intensity incease). Solution of the equation () with u v = tgµ, whee tgµ is defined by equation (5), and the speed of wind changes with cyclone adius is in accodance with the powe low (Anthes (98)) m V ( ) = Vm (8) is deived by Yuchak (7) and has a fom: ϕ = A B ln y n y, (9) + whee y = is a elative adius, n ym l m A =, B =, ym =, τ =. kτ ( n +) k V m Equation (9) can be epesented in the exponent-logaithmic fom as well: ( n+ ) ln y ϕ = A { e } B ln y (9а) 3. CROSSING ANGLE OF THE HYPERBOLIC- LOGARITHMIC SPIRAL It is easy to show based on (7) that, in contast to the logaithmic spial, the cossing angle of HLS depends on TC adius: whee k tg( α ( )) = () n+ l m + Ro Vm Ro = is the Rossby numbe. l m Expession () can also be witten as a function of HLS paametes: tg( α ( y)) = n + () B + A n+ y As detailed in (), paticulaly, the coefficient A has a notably geate weight than the coefficient B as the point appoaches the cyclone cente (with deceasing y). This featue, as it will be shown below, is the facto which govens mainly the diffeence between HLS and the logaithmic spial within the cental pat of TC. n

3 4. COMPARISON OF THE LOGARITHMIC AND HYPERBOLIC-LOGARITHMIC SPIRALS Fo illustation, seveal HLSs in pola and Catesian semi-logaithmic (φ-lny) coodinates ae shown in Fig. with paametes: n=.5, V m =4 m/s and 8 m/s, m =4 km, o =4 km, and k=l. At that А=4.374 and А=8.75 espectively and B=. It is easy to show that the logaithmic spial with the most applicable cossing angle of 8 (Willoughby (978)) is the specific case of the HLS with A = and B = This spial is also shown in Fig. fo compaison. The incease of the facto A is due to inceasing TC intensity unde a constant exponent and leads to the ounding of the spial (deceasing of cossing angle). This is in accodance with () as well. It is possible to show also that the change by twice of the facto B at the logaithmic component of the HLS and the exponent n pactically does not impact the shape of the HLS. With A=, the HLS degeneates to the classical logaithmic spial whee tgα = B. Main diffeence between HLS and the logaithmic spial is indicated in the cental pat of a TC. The logaithmic spial goes to the cente much faste then the HLS. The HLS seems like cuve aound the TC s eye. At that, the oundness of this culing is so much the bette as the intensity is highe. 5. SOME EXAMPLES OF APPROXIMATION OF SPIRAL CLOUD-RAIN BANDS IN A TROPICAL CYCLONE BY A HYPERBOLIC- LOGARITHMIC SPIRAL To illustate the pactical applicability of the poposed way of SCRB desciption, the appoximation of spial bands of satellite and ada images of TCs was conducted fo seveal examples. To calculate the HLS and the logaithmic spial paametes, the least-squaes method was applied. An appoximation was done in accodance with a apid design scheme unde the assumption of the constant exponent n equal to.5. The pocessing esults of TC Mitag (UK MetOffice, achive of TC images: e/images.html) and ada images of TC Iving (Yuchak (997)) ae povided in Figs.3-5 and Table. Othe examples of HLS application fo SCRB appoximation and fo a moe exact location of a TC cente ae povided in Yuchak (7)..8.6 HLS_A=4.375 (Vm=4 m/s), B=, n=.5.4. HLS_A=8.75 (Vm=8m/s), B=, n= Log_8 (A=, B=3.77) lny Log_8 (A=, B=3.77) HLS_A=4.375, B=, n=.5 HLS_A=8.75, B=, n=.5 Fig.. Hypebolic-logaithmic spial in pola (top plot) and semi-logaithmic (bottom plot) coodinates with diffeent paametes. Log_8 is the logaithmic spial with 8 cossing angle pola angle, ad lny Iving_33 HLS Log_spial Fig.3. Example of compaative appoximation of the pincipal spial band of TC Iving at 3:3 (7/3/89) by logaithmic spial and HLS. Image at the top is oiginal ada image, bottom plot is spial band points and its appoximation by HLS and logaithmic cuves in semi-logaithmic coodinates. Logaithmic spial is denoted by thin line on ada image and by dashed line on appoximation plot (bottom). Paametes of HLS ae A=.5, B=-.57. Paamete of the logaithmic spial is B L = Fi, ad

4 Fig.4. Appoximation of the pincipal cloud-ain band of TC Iving at 4:3am (7/4/89) by two tuns of HLS (bold line) and the logaithmic spial (thin line). Main diffeence between the spials is obseved close to the cente of TC. Paametes of the spials ae listed in Table. Fig.5. Appoximation of thee spial cloud-ain bands of TC Mitag by one tun of logaithmic (thin line) and HLS (bold line) spials. Top left pictue is an oiginal image (souce: UK MetOffice]. Edited spial cloud-ain bands ae annotated by numbes: is pincipal band, and 3 ae seconday bands. Paametes of spials ae listed in Table.

5 Table. Results of appoximation of the spial cloud-ain bands by hypebolic-logaithmic and logaithmic spials of seveal examples of satellite and ada measuements of TCs TC name, Date, (Refeence) Numbe of a spial Paametes of the HLS A σ A B σ B Residual vaiance B L Paametes of the logaithmic spial σ BL Residual vaiance Residual vaiance atio MITAG, 3/5/ GMS-5 (UK MetOffice) IRVING, 7/4/989, 4:3am, MRL-5 (Yuchak (997)) SUMMARY In this pape, a physically substantiated fomula fo spial cloud-ain bands of TC based on the physical appoach utilization of the law of inflow angle dependence in TC on its adius is pesented. The main featue of the HLS is the dependence of its coefficients on the physical paametes of TC and the envionment. The hypebolic-logaithmic spial obtained includes the known logaithmic spial as a specific case. Main advantage of the HLS ove the empiical logaithmic appoximation is in moe exact desciption of the cental pat of a TC s spial cloud-ain complex. Thee is a base to popose that the obtained fomula might be used also fo appoximation of steamline by pocessing the ada wind field measuement data (Tuttle and Gall (999)) to locate moe exactly the TC s eye cente position. 7. REFERENCES R. Anthes, Topical Cyclones. Thei Evolution, Stuctue and Effects. AMS, Meteoological Monogaphs, No. 4, 98. I. Gualnik, Dubinskii, G.P., and S. V. Mamikonova, The Meteoology. Handbook fo Univesities, Gidometeoizdat, Leningad, 97 (in Russian). S. Raghavan, 3, Rada Meteoology. Kluwe Academic Publishes, 3. Repot of the Semina on the Application of Rada Data to Topical Cyclone Foecasting. Topical Cyclone Pogamme, Repot No. TCP- 9, Bangkok, Thailand Nov. Dec., 983, WMO, Geneva, Switzeland, 985. Weathefod, C.L., and W. M. Gay, 988: Typhoon Stuctue as Revealed by Aicaft Reconnaissance. Pat I: Data Analysis and Climatology. Mon. Wea. Rev., 6, Willoughby, H.E., 978: A Possible Mechanism fo the Fomation of Huicane Rainbands. J. Atmos. Sci., 35, Tuttle, J., and R.Gall, 999: A single-rada Technique fo Estimating the Winds in Topical Cyclones. BAMS, vol. 8, No. 4, Yuchak, B.S., 997: Rada Study of the Eye of Topical Cyclone Iving Passing ove the Gulf of Tonkin. Russian Meteoology and Hydology, No.6, 7-3 (in Russian). Yuchak, B.S., 7: Desciption of Cloud-Rain Bands in a Topical Cyclone by a Hypebolic- Logaithmic Spial. Russian Meteoology and Hydology, vol. 3, No., 8-8. E. Mamedov and N.I.Pavlov, Typhoons. Gidometeoizdat, Leningad, 974 (in Russian).

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website: Lectue 6 Chapte 4 Physics I Rotational Motion Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi Today we ae going to discuss: Chapte 4: Unifom Cicula Motion: Section 4.4 Nonunifom Cicula

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II Reading: Matin, Section. ROTATING REFERENCE FRAMES ESCI 34 Atmospheic Dnamics I Lesson 3 Fundamental Foces II A efeence fame in which an object with zeo net foce on it does not acceleate is known as an

More information

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

Kunming, , R.P. China. Kunming, , R.P. China. *Corresponding author: Jianing He

Kunming, , R.P. China. Kunming, , R.P. China. *Corresponding author: Jianing He Applied Mechanics and Mateials Online: 2014-04-28 ISSN: 1662-7482, Vol. 540, pp 92-95 doi:10.4028/www.scientific.net/amm.540.92 2014 Tans Tech Publications, Switzeland Reseach on Involute Gea Undecutting

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS

COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS Pogess In Electomagnetics Reseach, PIER 73, 93 105, 2007 COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS T.-X. Song, Y.-H. Liu, and J.-M. Xiong School of Mechanical Engineeing

More information

Radial Inflow Experiment:GFD III

Radial Inflow Experiment:GFD III Radial Inflow Expeiment:GFD III John Mashall Febuay 6, 003 Abstact We otate a cylinde about its vetical axis: the cylinde has a cicula dain hole in the cente of its bottom. Wate entes at a constant ate

More information

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLIN MODUL 5 ADVANCD MCHANICS GRAVITATIONAL FILD: MOTION OF PLANTS AND SATLLITS SATLLITS: Obital motion of object of mass m about a massive object of mass M (m

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface . CONICAL PROJECTIONS In elementay texts on map pojections, the pojection sufaces ae often descibed as developable sufaces, such as the cylinde (cylindical pojections) and the cone (conical pojections),

More information

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS The 8 th Intenational Confeence of the Slovenian Society fo Non-Destuctive Testing»pplication of Contempoay Non-Destuctive Testing in Engineeing«Septembe 1-3, 5, Potoož, Slovenia, pp. 17-1 MGNETIC FIELD

More information

COUPLED MODELS OF ROLLING, SLIDING AND WHIRLING FRICTION

COUPLED MODELS OF ROLLING, SLIDING AND WHIRLING FRICTION ENOC 008 Saint Petesbug Russia June 30-July 4 008 COUPLED MODELS OF ROLLING SLIDING AND WHIRLING FRICTION Alexey Kieenkov Ins ti tu te fo P ob le ms in Me ch an ic s Ru ss ia n Ac ad em y of Sc ie nc es

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G-type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this investigation

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Tutorial Exercises: Central Forces

Tutorial Exercises: Central Forces Tutoial Execises: Cental Foces. Tuning Points fo the Keple potential (a) Wite down the two fist integals fo cental motion in the Keple potential V () = µm/ using J fo the angula momentum and E fo the total

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

The study of the motion of a body along a general curve. the unit vector normal to the curve. Clearly, these unit vectors change with time, u ˆ

The study of the motion of a body along a general curve. the unit vector normal to the curve. Clearly, these unit vectors change with time, u ˆ Section. Cuilinea Motion he study of the motion of a body along a geneal cue. We define u ˆ û the unit ecto at the body, tangential to the cue the unit ecto nomal to the cue Clealy, these unit ectos change

More information

is the instantaneous position vector of any grid point or fluid

is the instantaneous position vector of any grid point or fluid Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in

More information

Circular Orbits. and g =

Circular Orbits. and g = using analyse planetay and satellite motion modelled as unifom cicula motion in a univesal gavitation field, a = v = 4π and g = T GM1 GM and F = 1M SATELLITES IN OBIT A satellite is any object that is

More information

3.2 Centripetal Acceleration

3.2 Centripetal Acceleration unifom cicula motion the motion of an object with onstant speed along a cicula path of constant adius 3.2 Centipetal Acceleation The hamme thow is a tack-and-field event in which an athlete thows a hamme

More information

Sections and Chapter 10

Sections and Chapter 10 Cicula and Rotational Motion Sections 5.-5.5 and Chapte 10 Basic Definitions Unifom Cicula Motion Unifom cicula motion efes to the motion of a paticle in a cicula path at constant speed. The instantaneous

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

Surveillance Points in High Dimensional Spaces

Surveillance Points in High Dimensional Spaces Société de Calcul Mathématique SA Tools fo decision help since 995 Suveillance Points in High Dimensional Spaces by Benad Beauzamy Januay 06 Abstact Let us conside any compute softwae, elying upon a lage

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy Fascati Physics Seies Vol. X (998), pp. 47-54 4 th Advanced ICFA Beam Dynamics Wokshop, Fascati, Oct. -5, 997 EFFECTS OF FRININ FIELDS ON SINLE PARTICLE DYNAMICS M. Bassetti and C. Biscai INFN-LNF, CP

More information

Liquid gas interface under hydrostatic pressure

Liquid gas interface under hydrostatic pressure Advances in Fluid Mechanics IX 5 Liquid gas inteface unde hydostatic pessue A. Gajewski Bialystok Univesity of Technology, Faculty of Civil Engineeing and Envionmental Engineeing, Depatment of Heat Engineeing,

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion Reading Assignment: Lab #9: The Kinematics & Dynamics of Cicula Motion & Rotational Motion Chapte 6 Section 4 Chapte 11 Section 1 though Section 5 Intoduction: When discussing motion, it is impotant to

More information

7.2.1 Basic relations for Torsion of Circular Members

7.2.1 Basic relations for Torsion of Circular Members Section 7. 7. osion In this section, the geomety to be consideed is that of a long slende cicula ba and the load is one which twists the ba. Such poblems ae impotant in the analysis of twisting components,

More information

Chapter 12. Kinetics of Particles: Newton s Second Law

Chapter 12. Kinetics of Particles: Newton s Second Law Chapte 1. Kinetics of Paticles: Newton s Second Law Intoduction Newton s Second Law of Motion Linea Momentum of a Paticle Systems of Units Equations of Motion Dynamic Equilibium Angula Momentum of a Paticle

More information

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract A themodynamic degee of feedom solution to the galaxy cluste poblem of MOND E.P.J. de Haas (Paul) Nijmegen, The Nethelands (Dated: Octobe 23, 2015) Abstact In this pape I discus the degee of feedom paamete

More information

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

HW Solutions # MIT - Prof. Please study example 12.5 from the earth to the moon. 2GmA v esc HW Solutions # 11-8.01 MIT - Pof. Kowalski Univesal Gavity. 1) 12.23 Escaping Fom Asteoid Please study example 12.5 "fom the eath to the moon". a) The escape velocity deived in the example (fom enegy consevation)

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM Poceedings of the ASME 2010 Intenational Design Engineeing Technical Confeences & Computes and Infomation in Engineeing Confeence IDETC/CIE 2010 August 15-18, 2010, Monteal, Quebec, Canada DETC2010-28496

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1 PROBLEM SET #3A AST242 Figue 1. Two concentic co-axial cylindes each otating at a diffeent angula otation ate. A viscous fluid lies between the two cylindes. 1. Couette Flow A viscous fluid lies in the

More information

Designing a Sine-Coil for Measurement of Plasma Displacements in IR-T1 Tokamak

Designing a Sine-Coil for Measurement of Plasma Displacements in IR-T1 Tokamak Designing a Sine-Coil fo Measuement of Plasma Displacements in IR-T Tokamak Pejman Khoshid, M. Razavi, M. Ghoanneviss, M. Molaii, A. TalebiTahe, R. Avin, S. Mohammadi and A. NikMohammadi Dept. of Physics,

More information

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces.

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces. 4.8. Cental foces The most inteesting poblems in classical mechanics ae about cental foces. Definition of a cental foce: (i) the diection of the foce F() is paallel o antipaallel to ; in othe wods, fo

More information

Nuclear and Particle Physics - Lecture 20 The shell model

Nuclear and Particle Physics - Lecture 20 The shell model 1 Intoduction Nuclea and Paticle Physics - Lectue 0 The shell model It is appaent that the semi-empiical mass fomula does a good job of descibing tends but not the non-smooth behaviou of the binding enegy.

More information

Swissmetro: design methods for ironless linear transformer

Swissmetro: design methods for ironless linear transformer Swissmeto: design methods fo ionless linea tansfome Nicolas Macabey GESTE Engineeing SA Scientific Pak PSE-C, CH-05 Lausanne, Switzeland Tel (+4) 2 693 83 60, Fax. (+4) 2 693 83 6, nicolas.macabey@geste.ch

More information

Dymore User s Manual Two- and three dimensional dynamic inflow models

Dymore User s Manual Two- and three dimensional dynamic inflow models Dymoe Use s Manual Two- and thee dimensional dynamic inflow models Contents 1 Two-dimensional finite-state genealized dynamic wake theoy 1 Thee-dimensional finite-state genealized dynamic wake theoy 1

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

This is a very simple sampling mode, and this article propose an algorithm about how to recover x from y in this condition.

This is a very simple sampling mode, and this article propose an algorithm about how to recover x from y in this condition. 3d Intenational Confeence on Multimedia echnology(icm 03) A Simple Compessive Sampling Mode and the Recovey of Natue Images Based on Pixel Value Substitution Wenping Shao, Lin Ni Abstact: Compessive Sampling

More information

9.1 POLAR COORDINATES

9.1 POLAR COORDINATES 9. Pola Coodinates Contempoay Calculus 9. POLAR COORDINATES The ectangula coodinate system is immensely useful, but it is not the only way to assign an addess to a point in the plane and sometimes it is

More information

Pulse Neutron Neutron (PNN) tool logging for porosity Some theoretical aspects

Pulse Neutron Neutron (PNN) tool logging for porosity Some theoretical aspects Pulse Neuton Neuton (PNN) tool logging fo poosity Some theoetical aspects Intoduction Pehaps the most citicism of Pulse Neuton Neuon (PNN) logging methods has been chage that PNN is to sensitive to the

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

Math Section 4.2 Radians, Arc Length, and Area of a Sector

Math Section 4.2 Radians, Arc Length, and Area of a Sector Math 1330 - Section 4. Radians, Ac Length, and Aea of a Secto The wod tigonomety comes fom two Geek oots, tigonon, meaning having thee sides, and mete, meaning measue. We have aleady defined the six basic

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

Scattering in Three Dimensions

Scattering in Three Dimensions Scatteing in Thee Dimensions Scatteing expeiments ae an impotant souce of infomation about quantum systems, anging in enegy fom vey low enegy chemical eactions to the highest possible enegies at the LHC.

More information

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden Applied Mathematical Sciences, Vol. 7, 13, no. 7, 335-348 Mathematical Model of Magnetometic Resistivity Sounding fo a Conductive Host with a Bulge Ovebuden Teeasak Chaladgan Depatment of Mathematics Faculty

More information

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G =

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G = ics Announcements day, embe 9, 004 Ch 1: Gavity Univesal Law Potential Enegy Keple s Laws Ch 15: Fluids density hydostatic equilibium Pascal s Pinciple This week s lab will be anothe physics wokshop -

More information

The Schwartzchild Geometry

The Schwartzchild Geometry UNIVERSITY OF ROCHESTER The Schwatzchild Geomety Byon Osteweil Decembe 21, 2018 1 INTRODUCTION In ou study of geneal elativity, we ae inteested in the geomety of cuved spacetime in cetain special cases

More information

Astronomy 142 Recitation #9

Astronomy 142 Recitation #9 Astonomy 142 Recitation #9 29 Mach 2013 Fomulas to emembe Rotation cuves v ( ) GM Point mass: Kepleian otation v ( ) 4G0 3 Constant density: solid-body otation 2 2 v 4 G00 constant 1 density distibution:

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

Contact impedance of grounded and capacitive electrodes

Contact impedance of grounded and capacitive electrodes Abstact Contact impedance of gounded and capacitive electodes Andeas Hödt Institut fü Geophysik und extateestische Physik, TU Baunschweig The contact impedance of electodes detemines how much cuent can

More information

APPLICATION OF MAC IN THE FREQUENCY DOMAIN

APPLICATION OF MAC IN THE FREQUENCY DOMAIN PPLICION OF MC IN HE FREQUENCY DOMIN D. Fotsch and D. J. Ewins Dynamics Section, Mechanical Engineeing Depatment Impeial College of Science, echnology and Medicine London SW7 2B, United Kingdom BSRC he

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Fall 06 Semeste METR 33 Atmospheic Dynamics I: Intoduction to Atmospheic Kinematics Dynamics Lectue 7 Octobe 3 06 Topics: Scale analysis of the equations of hoizontal motion Geostophic appoximation eostophic

More information

The condition for maximum intensity by the transmitted light in a plane parallel air film is. For an air film, μ = 1. (2-1)

The condition for maximum intensity by the transmitted light in a plane parallel air film is. For an air film, μ = 1. (2-1) hapte Two Faby--Peot ntefeomete A Faby-Peot intefeomete consists of two plane paallel glass plates A and B, sepaated by a distance d. The inne sufaces of these plates ae optically plane and thinly silveed

More information

Gaia s Place in Space

Gaia s Place in Space Gaia s Place in Space The impotance of obital positions fo satellites Obits and Lagange Points Satellites can be launched into a numbe of diffeent obits depending on thei objectives and what they ae obseving.

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion constant speed Pick a point in the objects motion... What diection is the velocity? HINT Think about what diection the object would tavel if the sting wee cut Unifom Cicula Motion

More information

Axisymmetric Stokes Flow past a Swarm of Porous Cylindrical Shells

Axisymmetric Stokes Flow past a Swarm of Porous Cylindrical Shells Jounal of Applied Fluid Mechanics Vol. 9 No. pp. 957-963 06. Available online at www.jafmonline.net ISSN 735-357 EISSN 735-365. Axisymmetic Stokes Flow past a Swam of Poous Cylindical Shells S. Deo and

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

20th Century Atomic Theory - Hydrogen Atom

20th Century Atomic Theory - Hydrogen Atom 0th Centuy Atomic Theoy - Hydogen Atom Ruthefod s scatteing expeiments (Section.5, pp. 53-55) in 1910 led to a nuclea model of the atom whee all the positive chage and most of the mass wee concentated

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

TheWaveandHelmholtzEquations

TheWaveandHelmholtzEquations TheWaveandHelmholtzEquations Ramani Duaiswami The Univesity of Mayland, College Pak Febuay 3, 2006 Abstact CMSC828D notes (adapted fom mateial witten with Nail Gumeov). Wok in pogess 1 Acoustic Waves 1.1

More information

Basic Bridge Circuits

Basic Bridge Circuits AN7 Datafoth Copoation Page of 6 DID YOU KNOW? Samuel Hunte Chistie (784-865) was bon in London the son of James Chistie, who founded Chistie's Fine At Auctionees. Samuel studied mathematics at Tinity

More information

Galactic Contraction and the Collinearity Principle

Galactic Contraction and the Collinearity Principle TECHNISCHE MECHANIK, Band 23, Heft 1, (2003), 21-28 Manuskipteingang: 12. August 2002 Galactic Contaction and the Collineaity Pinciple F.P.J. Rimott, FA. Salusti In a spial galaxy thee is not only a Keplefoce

More information

Name. Date. Period. Engage Examine the pictures on the left. 1. What is going on in these pictures?

Name. Date. Period. Engage Examine the pictures on the left. 1. What is going on in these pictures? AP Physics 1 Lesson 9.a Unifom Cicula Motion Outcomes 1. Define unifom cicula motion. 2. Detemine the tangential velocity of an object moving with unifom cicula motion. 3. Detemine the centipetal acceleation

More information

2 Governing Equations

2 Governing Equations 2 Govening Equations This chapte develops the govening equations of motion fo a homogeneous isotopic elastic solid, using the linea thee-dimensional theoy of elasticity in cylindical coodinates. At fist,

More information

PS113 Chapter 5 Dynamics of Uniform Circular Motion

PS113 Chapter 5 Dynamics of Uniform Circular Motion PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied

More information

TAMPINES JUNIOR COLLEGE 2009 JC1 H2 PHYSICS GRAVITATIONAL FIELD

TAMPINES JUNIOR COLLEGE 2009 JC1 H2 PHYSICS GRAVITATIONAL FIELD TAMPINES JUNIOR COLLEGE 009 JC1 H PHYSICS GRAVITATIONAL FIELD OBJECTIVES Candidates should be able to: (a) show an undestanding of the concept of a gavitational field as an example of field of foce and

More information

Nuclear models: Shell model

Nuclear models: Shell model Lectue 3 Nuclea models: Shell model WS0/3: Intoduction to Nuclea and Paticle Physics,, Pat I Nuclea models Nuclea models Models with stong inteaction between the nucleons Liquid dop model α-paticle model

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 10-: MOTION IN A GRAVITATIONAL FIELD Questions Fom Reading Activity? Gavity Waves? Essential Idea: Simila appoaches can be taken in analyzing electical

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

Circular Motion. Mr. Velazquez AP/Honors Physics

Circular Motion. Mr. Velazquez AP/Honors Physics Cicula Motion M. Velazquez AP/Honos Physics Objects in Cicula Motion Accoding to Newton s Laws, if no foce acts on an object, it will move with constant speed in a constant diection. Theefoe, if an object

More information

ME 425: Aerodynamics

ME 425: Aerodynamics ME 5: Aeodynamics D ABM Toufique Hasan Pofesso Depatment of Mechanical Engineeing, BUET Lectue- 8 Apil 7 teachebuetacbd/toufiquehasan/ toufiquehasan@mebuetacbd ME5: Aeodynamics (Jan 7) Flow ove a stationay

More information

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole Spheical Solutions due to the Exteio Geomety of a Chaged Weyl Black Hole Fain Payandeh 1, Mohsen Fathi Novembe 7, 018 axiv:10.415v [g-qc] 10 Oct 01 1 Depatment of Physics, Payame Noo Univesity, PO BOX

More information

On the Sun s Electric-Field

On the Sun s Electric-Field On the Sun s Electic-Field D. E. Scott, Ph.D. (EE) Intoduction Most investigatos who ae sympathetic to the Electic Sun Model have come to agee that the Sun is a body that acts much like a esisto with a

More information

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity Solving Poblems of Advance of Mecuy s Peihelion and Deflection of Photon Aound the Sun with New Newton s Fomula of Gavity Fu Yuhua (CNOOC Reseach Institute, E-mail:fuyh945@sina.com) Abstact: Accoding to

More information

Δt The textbook chooses to say that the average velocity is

Δt The textbook chooses to say that the average velocity is 1-D Motion Basic I Definitions: One dimensional motion (staight line) is a special case of motion whee all but one vecto component is zeo We will aange ou coodinate axis so that the x-axis lies along the

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

6.1: Angles and Their Measure

6.1: Angles and Their Measure 6.1: Angles and Thei Measue Radian Measue Def: An angle that has its vetex at the cente of a cicle and intecepts an ac on the cicle equal in length to the adius of the cicle has a measue of one adian.

More information