Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK

Size: px
Start display at page:

Download "Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK"

Transcription

1 Fakultät Maschinenwesen Professur für Dynamik und Mechanismentechnik Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK Dipl.-Ing. Johannes Woller Prof. Dr.-Ing. Michael Beitelschmidt Braunschweig,

2 Project presentation Cooperation between the TU Dresden and Bombardier Transportation GmbH Bombardier Center of Competence Railway Vehicle Engineering Integration Center (since 2007) Subsequent results are part of the research project: Topic: Project head: Employee responsible: Seamless integration of standardized Noise Vibration- Harshness (NVH) calculations in the development process of railway vehicle powertrains Prof. Dr.-Ing. Michael Beitelschmidt Dipl.-Ing. Johannes Woller Duration of the project: 4 years starting 2014 Integration of measured receptance into a time domain 2

3 Structure of the presentation Motivation New Approach Test models Final assembly based on measured data Conclusion Integration of measured receptance into a time domain 3

4 Motivation Airborne noise Interior noise Objective: Calculation of the interior noise of the rail vehicle caused by structure-borne noise from the drive train Unbalance, etc. Excitation of the railwheel contact Excitation of the electrical pulse pattern supply Gearing excitation Transfer of structure-borne noise through the bogie Integration of measured receptance into a time domain 4

5 Motivation Calculation of the structure-borne sound power transmitted to the car body (frequency domain): In Situ: Direct calculation of the coupled variables (with car body model) Structure-borne sound power: In Situ: Integration of measured receptance into a time domain 5

6 Motivation Structure borne sound: Forces and velocities must be calculated for all coupling points between the running gear and the car body Transfer characteristics of the car body is only considered via elastic body for comfort calculation (0-30 Hz) The current model approach is not valid in the higher frequency range FE modeling in this frequency range is not feasible Integration of measured receptance into a time domain 6

7 Structure of the presentation Motivation New Approach Test models Final assembly based on measured data Conclusion Integration of measured receptance into a time domain 7

8 Idea of using black box model Reduced Elastic car body Replaced by Black Box model based on measured data Coupling elements Model border Running Gear Integration of measured receptance into a time domain 8

9 General Approach: Black Box modeling in the acoustical frequency range Measurement System Identification Up to 2000 Hz Transform Simulation Black Box State Space Representation Integration of measured receptance into a time domain 9

10 Idea: Black-Box Sub model Use of force elements including Possible Approaches Co-Simulation (SIMPACK - Simulink) Using SIMPACK Force Elements Using FMU-Import in Simpack of Simulinkmodels Elastic body base on the floating frame of reference formulation transfer functions or state space representations 102,103 Force/Torque by Freq-Resp Transfer Function 1 :By Polynomial Quotient (max. 9 DGF) 141,142 State Space Filter 110, 123 Actuator Force Element Use of specialized force elements Dynamic Bushing/Hydromount Cmp 80 Air Spring Advanced 82 Non-linear Airspring 81 FlexiCoil-Springs 79 Shear Spring Implementation of a user element with dynamic transmission behavior Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK 10

11 Structure of the presentation Motivation New Approach Test models Final assembly based on measured data Conclusion Integration of measured receptance into a time domain 11

12 Proof of concept: Minimal models g Higher DOF m c b Simpack q Minimal MIMO-Model SIMPACK g m m c b q c b q m m c b q c q b m q c b Black Box Model Black Box Model c c m m q b q b Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK 12

13 Test Model constrained MDof estimated, without gravity Parameter Value m 100 kg Approximation as MDoF - Oscillator! " R % R % c N m m b 1000 Ns m Reference model n 15 c n b q Sub model n8 m q R % c b m q c b Longitudinal vibrations in a rod (no bending) Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK 13

14 Estimation of a State Space Model Receptance Matlab System Identification Toolbox Tfest command (Matlab 2016b) (using 16 poles, 14 zeros) Driving Point Receptance at q 8 Reference Estimated transfer function model receptance Tolerance: 0.01 Iterations: 1 (max. 50) Initialization Method: n4sid (modal subspace) Result: Number of poles: 16 Number of zeros: 14 Number of free coefficients: 31 Fit to estimation data: 100% Amplitude Frequency in Hz Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK 14

15 Receptance / Mobility Coupling Force Element Joint with Degree of Freedom Black Box Model SSM-File 5 m * 1(z) Sensor Control Element Marker uf & q & q' 5 m m + 1(z) Subvariable Excitation Constraint 85 1(z) Integration of measured receptance into a time domain 15

16 Receptance sub model: Frequency response function Dynamic behavior, Initial: non equilibrium state Frequency domain (Laplace Transformation) Time domain (numerical integration) F jω,f(ωt) Mobility: Response Respose From Black Reference Time Box Domain BlackBox Model Mobility: Respose Response From Black Reference Time Box Domain Reference Model Mobility: x 10x -3 From 10-6 Frequency Domain BlackBox Model Mobility: From Frequency Domain Reference Model Response Mobility Time Domain Diagram 4, q, (jω),q, (t) m/ns z [m/s] Time Domain Excitation: Sine-Sweep Hz in 500 s (0.6 Hz/s) Frequency time time in [s] Hz[s] Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK 16

17 Structure of the presentation Motivation New Approach Test models Final assembly based on measured data Conclusion Integration of measured receptance into a time domain 17

18 Validation: Experimental test model Experimental-Analytical Dynamic Substructuring for Multi Body Simulation A.T. Moorhouse A.S. Elliott Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK 18

19 Reference model Source beam (running gear) X A B Y Timoshenko Beam models Tunable Coupling Stiffness Receiver beam (car body) Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK 19

20 FRF Measurement 4x4 FRF Measurement at Receiver Beam Excitation Impulse Hammer PCP 086C80 0,44g Response Polytec Laser Scanning Vibrometer PSV500 Suspension Resilient Mounting (rubber components) highest mounting frequency 23 Hz Lowest eigenfrequency 150 Hz Signal Processing Sampling Frequency: /s FFT: 3200 FFT Lines Window Function: Force/Exponential Average: 3;complex Estimated Transfer function H1 Integration of measured receptance into a time domain 20

21 Insight model and measurement Receiver Receptance; db Reference= 10-6 m/n 100 From: In(1) To: q A x Magnitude (db) A B Phase (deg) Timoschenko-Model Measured Receptance f_a x to q_a x Frequency (Hz) Integration of measured receptance into a time domain 21

22 System Identification Matlab System Identification Toolbox n4sid command (Matlab 2016b) (modal subspace method) Initial States: 0 Estimated model order: 19 N4Weight: CVA Enforce Stability: on Result: Fit to estimation data: % To: q A x Magnitude (db) x y To: q B To: q A From: f A x Receiver Receptance; db Reference= 10-6 m/n From: f A y Measurement Data Estimated Model From: f B x From: f B y To: q B y Frequency (Hz) Integration of measured receptance into a time domain 22

23 Comparison in the frequency domain X A B Y Admittance Matrix Receiver (db Reference = 10-9 m/ns) Magnitude (db) y x y x To: q Y To: q Y To: q X To: q X From: f X x From: f X y Reference 4x4 translational coupled measured estimation Frequency (Hz) Eigenfrequencies of the 4x4 estimated from measurement paired Eigenfrequencies lower 95% deviation upper 95% deviation frequency fit Eigenfrequencies of the reference model Integration of measured receptance into a time domain 23

24 Structure of the presentation Motivation New Approach Test models Final assembly based on measured data Conclusion Integration of measured receptance into a time domain 24

25 First approach car body : Yaw Damper connection Car body: Triaxle acceleration measurement Yaw damper -150 From: In(1) Bode Diagram From: In(2) From: In(3) To: Out(1) measured estimated Magnitude (db) To: Out(2) To: Out(3) Frequency (Hz) Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK 25

26 Outlook Challenges: Suitable measurement of the experimental test model Just looking at few connection points perfect measurement is needed System identification of MDof models Problems with strongly coupled structures Consideration of the mass properties of the substructure Extrapolation connection points with rotational DoF Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK 26

27 Advantages and Chances Chances: Combining linear acoustic models with Multi Body Simulation Looking at transient behavior instead of just steady state Using general sub models Not restricted to modal models Possible domain overlapping: Combining structure and airborne sound field using vibroacoustic transfer functions Significantly simplified representation of large weakly coupled structures Applications in other fields Extension to non linear sub models possible (using Functional Mockup instead of State Space) Integration of measured receptance into a time domain simulation of a Multi Body Model using SIMPACK 27

28 Thankyoufor your attention! Dipl.-Ing. Johannes Woller Wissenschaftlicher Mitarbeiter Technische Universität Dresden Fakultät Maschinenwesen Institut für Festkörpermechanik Professur Dynamik und Mechanismentechnik Dresden Tel.:

e jωt = cos(ωt) + jsin(ωt),

e jωt = cos(ωt) + jsin(ωt), This chapter introduces you to the most useful mechanical oscillator model, a mass-spring system with a single degree of freedom. Basic understanding of this system is the gateway to the understanding

More information

NV-TECH-Design: Scalable Automatic Modal Hammer (SAM) for structural dynamics testing

NV-TECH-Design: Scalable Automatic Modal Hammer (SAM) for structural dynamics testing NV-TECH-Design: Scalable Automatic Modal Hammer (SAM) for structural dynamics testing NV-TECH-Design Scalable Automatic Modal Hammer (SAM) für structural testing. Patent number: DE 10 2015 110 597.7 Description

More information

EXPERIMENTAL MODAL ANALYSIS OF A SCALED CAR BODY FOR METRO VEHICLES

EXPERIMENTAL MODAL ANALYSIS OF A SCALED CAR BODY FOR METRO VEHICLES EXPERIMENTAL MODAL ANALYSIS OF A SCALED CAR BODY FOR METRO VEHICLES S. Popprath 1, C. Benatzky 2, C. Bilik 2, M. Kozek 2, A. Stribersky 3 and J. Wassermann 1 1 Institute of Mechanics and Mechatronics,

More information

Experimental Modal Analysis (EMA) on a vibration cube fixture M. Sc. Emanuel Malek Eindhoven November 2017

Experimental Modal Analysis (EMA) on a vibration cube fixture M. Sc. Emanuel Malek Eindhoven November 2017 Experimental Modal Analysis (EMA) on a vibration cube fixture M. Sc. Emanuel Malek Eindhoven November 207 Test and Measurement Solutions Content Introduction Basics Why EMA? Preparation and execution Testing

More information

Prediction of Light Rail Vehicle Noise in Running Condition using SEA

Prediction of Light Rail Vehicle Noise in Running Condition using SEA Prediction of Light Rail Vehicle Noise in Running Condition using SEA Sebastian PREIS ; Gérard BORELLO Siemens AG Austria Urban Transport, Austria InterAC, France ABSTRACT A complete Light Rail vehicle

More information

ME scope Application Note 28

ME scope Application Note 28 App Note 8 www.vibetech.com 3/7/17 ME scope Application Note 8 Mathematics of a Mass-Spring-Damper System INTRODUCTION In this note, the capabilities of ME scope will be used to build a model of the mass-spring-damper

More information

Review of modal testing

Review of modal testing Review of modal testing A. Sestieri Dipartimento di Meccanica e Aeronautica University La Sapienza, Rome Presentation layout - Modelling vibration problems - Aim of modal testing - Types of modal testing:

More information

Introduction to Mechanical Vibration

Introduction to Mechanical Vibration 2103433 Introduction to Mechanical Vibration Nopdanai Ajavakom (NAV) 1 Course Topics Introduction to Vibration What is vibration? Basic concepts of vibration Modeling Linearization Single-Degree-of-Freedom

More information

Analysis of shock force measurements for the model based dynamic calibration

Analysis of shock force measurements for the model based dynamic calibration 8 th Worshop on Analysis of Dynamic Measurements May 5-6, 4 Turin Analysis of shoc force measurements for the model based dynamic calibration Michael Kobusch, Sascha Eichstädt, Leonard Klaus, and Thomas

More information

Verification of a Resonating Structural Component s Contribution to NVH Phenomena

Verification of a Resonating Structural Component s Contribution to NVH Phenomena at K a r l s r u h e I n s t i t u t e of Te c h n o l o g y Verification of a Resonating Structural Component s Contribution to NVH Phenomena June 26 th 2018 - Univ.- Prof. Dr.-Ing. Dr. h. c. Albers,

More information

MODEL-BASED ANALYSIS OF THE DYNAMIC BEHAVIOUR OF A 250 KN SHOCK FORCE CALIBRATION DEVICE

MODEL-BASED ANALYSIS OF THE DYNAMIC BEHAVIOUR OF A 250 KN SHOCK FORCE CALIBRATION DEVICE XX IMEKO World Congress Metrology for Green Growth September 9 14, 212, Busan, Republic of Korea MODEL-BASED ANALYSIS OF THE DYNAMIC BEHAVIOUR OF A 25 KN SHOCK FORCE CALIBRATION DEVICE Michael Kobusch,

More information

Acoustics-An An Overview. Lecture 1. Vibro-Acoustics. What? Why? How? Lecture 1

Acoustics-An An Overview. Lecture 1. Vibro-Acoustics. What? Why? How? Lecture 1 Vibro-Acoustics Acoustics-An An Overview 1 Vibro-Acoustics What? Why? How? 2 Linear Non-Linear Force Motion Arbitrary motion Harmonic Motion Mechanical Vibrations Sound (Acoustics) 3 Our heart beat, our

More information

THE subject of the analysis is system composed by

THE subject of the analysis is system composed by MECHANICAL VIBRATION ASSIGNEMENT 1 On 3 DOF system identification Diego Zenari, 182160, M.Sc Mechatronics engineering Abstract The present investigation carries out several analyses on a 3-DOF system.

More information

Dynamic characterization of engine mount at different orientation using sine swept frequency test

Dynamic characterization of engine mount at different orientation using sine swept frequency test Dynamic characterization of engine mount at different orientation using sine swept frequency test Zaidi Mohd Ripin and Ooi Lu Ean, School of Mechanical Engineering Universiti Sains Malaysia (USM), 14300

More information

EXPERIMENTAL MODAL ANALYSIS OF AN ACTIVELY CONTROLLED SCALED METRO VEHICLE CAR BODY

EXPERIMENTAL MODAL ANALYSIS OF AN ACTIVELY CONTROLLED SCALED METRO VEHICLE CAR BODY ICSV14 Cairns Australia 9-12 July, 2007 EXPERIMENTAL MODAL ANALYSIS OF AN ACTIVELY CONTROLLED SCALED METRO VEHICLE CAR BODY S. Popprath 1, A. Schirrer 2 *, C. Benatzky 2, M. Kozek 2, J. Wassermann 1 1

More information

Transverse Vibrate Analysis and Optimization for a Tuck Cab

Transverse Vibrate Analysis and Optimization for a Tuck Cab Transverse Vibrate Analysis and Optimization for a Tuck Cab Shunming Li* and Kun Xu College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 2006, China. Abstract

More information

Computational Acoustics by Means of Finite and Boundary Elements for Woofers, Tweeters, Horns and Small Transducers

Computational Acoustics by Means of Finite and Boundary Elements for Woofers, Tweeters, Horns and Small Transducers Computational Acoustics by Means of Finite and Boundary Elements for Woofers, Tweeters, Horns and Small Transducers Alfred J. Svobodnik NAD - Numerical Analysis and Design GmbH & Co KG as@nadwork.at http://www.nadwork.at

More information

OPERATIONAL TRANSFER PATH ANALYSIS OF A WASHING MACHINE

OPERATIONAL TRANSFER PATH ANALYSIS OF A WASHING MACHINE OPERATIONAL TRANSFER PATH ANALYSIS OF A WASHING MACHINE Gurkan Tutu Istanbul Technical University, Aeronautical & Astronautical Engr. Department, 34469, Istanbul, Turkey email: gurkantutu@hotmail.com Ahmet

More information

Rolf Diehl, Reinhard Gorlich and Georg Holzl 2 1 Introduction In the speed range from about 60 to about 250 km/h rolling noise is the dominant noise f

Rolf Diehl, Reinhard Gorlich and Georg Holzl 2 1 Introduction In the speed range from about 60 to about 250 km/h rolling noise is the dominant noise f Rolf Diehl, Reinhard Gorlich and Georg Holzl 1 Acoustic Optimisation of Railroad Track Using Computer Aided Methods Rolf Diehl and Reinhard Gorlich Muller{BBM GmbH, D{82152 Planegg, Robert-Koch-Str. 11

More information

Analysis of Local Vibration for High-Speed Railway Bridge Based on Finite Element Method

Analysis of Local Vibration for High-Speed Railway Bridge Based on Finite Element Method Send Orders for Reprints to reprints@benthamscience.ae 91 The Open Mechanical Engineering Journal, 214, 8, 91-915 Open Access Analysis of Local Vibration for High-Speed Railway Bridge Based on Finite Element

More information

INVESTIGATION OF IMPACT HAMMER CALIBRATIONS

INVESTIGATION OF IMPACT HAMMER CALIBRATIONS IMEKO 23 rd TC3, 13 th TC5 and 4 th TC22 International Conference 30 May to 1 June, 2017, Helsinki, Finland INVESTIGATION OF IMPACT HAMMER CALIBRATIONS M. Kobusch 1, L. Klaus 1, and L. Muñiz Mendoza 2

More information

Curve squeal in the presence of two wheel/rail contact points

Curve squeal in the presence of two wheel/rail contact points Curve squeal in the presence of two wheel/rail contact points G. Squicciarini 1, S. Usberti 2, D.J. hompson 1, R. Corradi 2 and A. Barbera 2 1 Institute of Sound and Vibration Research, University of Southampton

More information

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record Watanabe, N., & Stoten, D. P. (214). Actuator control for a rapid prototyping railway bogie, using a dynamically substructured systems approach. In Proceedings of 12th International Conference on Motion

More information

Finite Element Modules for Demonstrating Critical Concepts in Engineering Vibration Course

Finite Element Modules for Demonstrating Critical Concepts in Engineering Vibration Course Finite Element Modules for Demonstrating Critical Concepts in Engineering Vibration Course Shengyong Zhang Assistant Professor of Mechanical Engineering College of Engineering and Technology Purdue University

More information

DYNAMICS OF MACHINERY 41514

DYNAMICS OF MACHINERY 41514 DYNAMICS OF MACHINERY 454 PROJECT : Theoretical and Experimental Modal Analysis and Validation of Mathematical Models in Multibody Dynamics Holistic Overview of the Project Steps & Their Conceptual Links

More information

Application of a novel method to identify multi-axis joint properties

Application of a novel method to identify multi-axis joint properties Application of a novel method to identify multi-axis joint properties Scott Noll, Jason Dreyer, and Rajendra Singh The Ohio State University, 219 W. 19 th Avenue, Columbus, Ohio 4321 USA ABSTRACT This

More information

PROJECT 1 DYNAMICS OF MACHINES 41514

PROJECT 1 DYNAMICS OF MACHINES 41514 PROJECT DYNAMICS OF MACHINES 454 Theoretical and Experimental Modal Analysis and Validation of Mathematical Models in Multibody Dynamics Ilmar Ferreira Santos, Professor Dr.-Ing., Dr.Techn., Livre-Docente

More information

Multi physical domain simulation of a NVH reduction system for a generator-electric vehicle

Multi physical domain simulation of a NVH reduction system for a generator-electric vehicle Multi physical domain simulation of a NVH reduction system for a generator-electric vehicle Christoph TAMM 1 ; Torsten BARTEL 2 ; Alexander DAUTFEST 3 ; Christian DEBES 4 ; Sven HEROLD 5 ; Chalid EL DSOKI

More information

ME 563 Mechanical Vibrations Lecture #1. Derivation of equations of motion (Newton-Euler Laws)

ME 563 Mechanical Vibrations Lecture #1. Derivation of equations of motion (Newton-Euler Laws) ME 563 Mechanical Vibrations Lecture #1 Derivation of equations of motion (Newton-Euler Laws) Derivation of Equation of Motion 1 Define the vibrations of interest - Degrees of freedom (translational, rotational,

More information

D. BARD DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY

D. BARD DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY Transmission, Reflections, Eigenfrequencies, Eigenmodes Tranversal and Bending waves D. BARD DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY Outline Introduction Types of waves Eigenfrequencies & Eigenmodes

More information

interaction and ground borne vibration Excitation mechanisms of train/track Structural Mechanics, Department of Civil Engineering, KU Leuven

interaction and ground borne vibration Excitation mechanisms of train/track Structural Mechanics, Department of Civil Engineering, KU Leuven RIVAS Training Workshop 9//23, Hotel Bloom, Brussels, Belgium "Reducing railway induced ground vibration by controlling the source" Excitation mechanisms of train/track interaction and ground borne vibration

More information

Vibration Dynamics and Control

Vibration Dynamics and Control Giancarlo Genta Vibration Dynamics and Control Spri ringer Contents Series Preface Preface Symbols vii ix xxi Introduction 1 I Dynamics of Linear, Time Invariant, Systems 23 1 Conservative Discrete Vibrating

More information

2.003 Engineering Dynamics Problem Set 10 with answer to the concept questions

2.003 Engineering Dynamics Problem Set 10 with answer to the concept questions .003 Engineering Dynamics Problem Set 10 with answer to the concept questions Problem 1 Figure 1. Cart with a slender rod A slender rod of length l (m) and mass m (0.5kg)is attached by a frictionless pivot

More information

APPENDIX 1 MATLAB AND ANSYS PROGRAMS

APPENDIX 1 MATLAB AND ANSYS PROGRAMS APPENDIX 1 MATLAB AND ANSYS PROGRAMS This appendix lists all the MATLAB and ANSYS codes used in each chapter, along with a short description of the purpose of each. MATLAB codes have the suffix.m and the

More information

Experimental validation of a numerical model for the ground vibration from trains in tunnels

Experimental validation of a numerical model for the ground vibration from trains in tunnels Experimental validation of a numerical model for the ground vibration from trains in tunnels Qiyun Jin; David Thompson; Daniel Lurcock; Martin Toward; Evangelos Ntotsios; Samuel Koroma Institute of Sound

More information

Vibration Testing. an excitation source a device to measure the response a digital signal processor to analyze the system response

Vibration Testing. an excitation source a device to measure the response a digital signal processor to analyze the system response Vibration Testing For vibration testing, you need an excitation source a device to measure the response a digital signal processor to analyze the system response i) Excitation sources Typically either

More information

NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS

NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS Clemens A.J. Beijers and André de Boer University of Twente P.O. Box 7, 75 AE Enschede, The Netherlands email: c.a.j.beijers@utwente.nl Abstract An important

More information

Automotive NVH Research Instrumentation and Infrastructure at UC-SDRL

Automotive NVH Research Instrumentation and Infrastructure at UC-SDRL Automotive NVH Research Instrumentation and Infrastructure at UC-SDRL Teik C. Lim, Jay Kim, Randall Allemang Structural Dynamics Research Laboratory Mechanical, Industrial & Nuclear Engineering University

More information

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017 Program System for Machine Dynamics Abstract Version 5.0 November 2017 Ingenieur-Büro Klement Lerchenweg 2 D 65428 Rüsselsheim Phone +49/6142/55951 hd.klement@t-online.de What is MADYN? The program system

More information

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F By Tom Irvine Email: tomirvine@aol.com May 19, 2011 Introduction Consider a launch vehicle with a payload. Intuitively, a realistic payload

More information

Experimental Modal Analysis

Experimental Modal Analysis Experimental Modal Analysis Modal Analysis 1 Shanghai Jiaotong University 2006 m f(t) x(t) SDOF and MDOF Models c k Different Modal Analysis Techniques Exciting a Structure = + + + + Measuring Data Correctly

More information

A STUDY OF THE ACCURACY OF GROUND VIBRATION TEST DATA USING A REPLICA OF THE GARTEUR SM-AG19 TESTBED STRUCTURE

A STUDY OF THE ACCURACY OF GROUND VIBRATION TEST DATA USING A REPLICA OF THE GARTEUR SM-AG19 TESTBED STRUCTURE A STUDY OF THE ACCURACY OF GROUND VIBRATION TEST DATA USING A REPLICA OF THE GARTEUR SM-AG19 TESTBED STRUCTURE Pär Gustafsson*, Andreas Linderholt** *SAAB Aeronautics, ** Linnaeus University Keywords:

More information

The present paper concentrates on the results of in situ vibration measurements performed within the

The present paper concentrates on the results of in situ vibration measurements performed within the EXPERIMENTAL RESULTS OF FREE FIELD AND STRUCTURAL VIBRATIONS DUE TO UNDERGROUND RAILWAY TRAFFIC P. Chatterjee a, G. Degrande a, S. Jacobs a, J. Charlier b, P. Bouvet b and D. Brassenx c a K.U.Leuven, Department

More information

Experimental Modal Analysis

Experimental Modal Analysis Copyright 2003 Brüel & Kjær Sound & Vibration Measurement A/S All Rights Reserved Experimental Modal Analysis Modal Analysis 1 m f(t) x(t) SDOF and MDOF Models c k Different Modal Analysis Techniques Exciting

More information

Comparison of Path Rank Ordering Schemes for Structure-Borne Noise

Comparison of Path Rank Ordering Schemes for Structure-Borne Noise Comparison of Path Rank Ordering Schemes for Structure-Borne Noise A Thesis Presented in Partial Fulfillment of the Requirements for The Degree of Bachelor of Science in Mechanical Engineering at The Ohio

More information

Stochastic Dynamics of SDOF Systems (cont.).

Stochastic Dynamics of SDOF Systems (cont.). Outline of Stochastic Dynamics of SDOF Systems (cont.). Weakly Stationary Response Processes. Equivalent White Noise Approximations. Gaussian Response Processes as Conditional Normal Distributions. Stochastic

More information

CHAPTER 2. Frequency Domain Analysis

CHAPTER 2. Frequency Domain Analysis FREQUENCY DOMAIN ANALYSIS 16 CHAPTER 2 Frequency Domain Analysis ASSESSMENTOF FREQUENCY DOMAIN FORCE IDENTIFICATION PROCEDURES CHAPTE,R 2. FREQUENCY DOMAINANALYSIS 17 2. FREQUENCY DOMAIN ANALYSIS The force

More information

Reduction of Structure-Borne Noise in Automobiles by Multivariable Feedback

Reduction of Structure-Borne Noise in Automobiles by Multivariable Feedback Reduction of Structure-Borne Noise in Automobiles by Multivariable Feedbac M.-P. Jolicoeur, J.-G. Roumy, S. Vanreusel, D. Dionne, H. Douville, B. Boulet, Member, IEEE, H. Michalsa, Member, IEEE, P. Masson,

More information

Methods for Running Stability Prediction and their Sensitivity to Wheel/Rail Contact Geometry

Methods for Running Stability Prediction and their Sensitivity to Wheel/Rail Contact Geometry Methods for Running Stability Prediction and their Sensitivity to Wheel/Rail Contact Geometry Oldrich POLACH and Adrian VETTER Bombardier Transportation Winterthur, Switzerland Contents Motivation Methods

More information

Grandstand Terraces. Experimental and Computational Modal Analysis. John N Karadelis

Grandstand Terraces. Experimental and Computational Modal Analysis. John N Karadelis Grandstand Terraces. Experimental and Computational Modal Analysis. John N Karadelis INTRODUCTION Structural vibrations caused by human activities are not known to be particularly damaging or catastrophic.

More information

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau Final Exam Solution Dynamics 2 191157140 31-01-2013 8:45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

Non-linear Modal Behaviour in Cantilever Beam Structures

Non-linear Modal Behaviour in Cantilever Beam Structures Non-linear Modal Behaviour in Cantilever Beam Structures Thamthada Suwanwong and Paul.W.Bland* Department of Mechanical Engineering Simulation & Design, The Sirindhorn International Thai-German Graduate

More information

System Identification and Model Updating of the Four Seasons Building

System Identification and Model Updating of the Four Seasons Building System Identification and Model Updating of the Four Seasons Building Eunjong Yu, Ying Lei, Derek Skolnik, John W. Wallace OVERVIEW Building Description Testing & Data Acquisition System Identification

More information

Module SimBeam with Element of Linear Variable Cross Sections. SIMPACK USER Meeting 2011

Module SimBeam with Element of Linear Variable Cross Sections. SIMPACK USER Meeting 2011 Module SimBeam with Element of Linear Variable Cross Sections by Prof. Dr. Oskar Wallrapp, Wessling, Germany Dr. Stefan Dietz, SIMPACK AG Byunghoon Song (Trainee Student) SIMPACK AG SIMPACK USER Meeting

More information

INTER-NOISE AUGUST 2007 ISTANBUL, TURKEY

INTER-NOISE AUGUST 2007 ISTANBUL, TURKEY INTER-NOIE 2007 28-31 UGUT 2007 ITNU, TURKEY NVH tools and methods for sound design of vehicles Roland ottek a and ernhard Müller-Held b HED acoustics GmbH Ebertstr. 30a D-52134 Herzogenrath GERMNY TRT

More information

1820. Selection of torsional vibration damper based on the results of simulation

1820. Selection of torsional vibration damper based on the results of simulation 8. Selection of torsional vibration damper based on the results of simulation Tomasz Matyja, Bogusław Łazarz Silesian University of Technology, Faculty of Transport, Gliwice, Poland Corresponding author

More information

Dynamic design of automotive systems: Engine mounts and structural joints

Dynamic design of automotive systems: Engine mounts and structural joints SaÅdhanaÅ, Vol. 25, Part 3, June 2000, pp. 319±330. # Printed in India Dynamic design of automotive systems: Engine mounts and structural joints R SINGH Department of Mechanical Engineering, Ohio State

More information

Author(s) Malekjafarian, Abdollah; O'Brien, Eugene J.

Author(s) Malekjafarian, Abdollah; O'Brien, Eugene J. Provided by the author(s) and University College Dublin Library in accordance with publisher policies. Please cite the published version when available. Title Application of Laser Measurement to the Drive-by

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

MATERIAL CHARACTERIZATION, VIBRO-ACOUSTIC ANALYSIS AND MANUFACTURING OF TEXTILE-REINFORCED COMPLEX 3-D COMPOSITE STRUCTURES

MATERIAL CHARACTERIZATION, VIBRO-ACOUSTIC ANALYSIS AND MANUFACTURING OF TEXTILE-REINFORCED COMPLEX 3-D COMPOSITE STRUCTURES 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MATERIAL CHARACTERIZATION, VIBRO-ACOUSTIC ANALYSIS AND MANUFACTURING OF TEXTILE-REINFORCED COMPLEX 3-D COMPOSITE STRUCTURES Hufenbach, Werner*, Täger,

More information

CHARACTERISATION OF VIBRATORY, PULSATION AND NOISE SOURCES

CHARACTERISATION OF VIBRATORY, PULSATION AND NOISE SOURCES CHARACTERISATION OF VIBRATORY, PULSATION AND NOISE SOURCES Goran Pavić INSA Lyon, France CAV April 2017 0/20 scope Objectives: predict the transmission source surroundings allow meaningful specs formulation

More information

Dessi, D., D Orazio, D.

Dessi, D., D Orazio, D. CORRELATION OF MODEL-SCALE AND FULL-SCALE DATA: SENSOR VALIDATION AND ELASTIC SCALING EVALUATION Dessi, D., D Orazio, D. INSEAN-CNR Rome - Italy 1 Project structure hydroelastic side This work was funded

More information

Structural Dynamics Modification and Modal Modeling

Structural Dynamics Modification and Modal Modeling SEM Handboo of Experimental Structural Dynamics - Structural Dynamics Modification and Modal Modeling Structural Dynamics Modification and Modal Modeling Structural Dynamics Modification (SDM) also nown

More information

A Software Tool Applying Linear Control Methods to Satellite Thermal Analysis. Martin Altenburg Johannes Burkhardt (EADS Astrium, Germany)

A Software Tool Applying Linear Control Methods to Satellite Thermal Analysis. Martin Altenburg Johannes Burkhardt (EADS Astrium, Germany) 119 Appendix H A Software Tool Applying Linear Control Methods to Satellite Thermal Analysis Martin Altenburg Johannes Burkhardt (EADS Astrium, Germany) 120 A Software Tool Applying Linear Control Methods

More information

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 PROBLEM 1: Given the mass matrix and two undamped natural frequencies for a general two degree-of-freedom system with a symmetric stiffness matrix, find the stiffness

More information

5.5 Exercises for This Chapter Two-Axle Vehicle on Cosine Track Two-Axle Vehicle on Generally Periodic Track...

5.5 Exercises for This Chapter Two-Axle Vehicle on Cosine Track Two-Axle Vehicle on Generally Periodic Track... Contents 1 Introduction... 1 1.1 The Basic Function of the Wheel/rail System.... 1 1.2 Significance of Dynamics on the Operation of Rail Vehicles... 2 1.3 On the History of Research in the Field of Railway

More information

Characterisation of structure-borne sound sources

Characterisation of structure-borne sound sources Proceedings of ACOUSTICS 16 9-11 November 16, Brisbane, Australia Characterisation of structure-borne sound sources Oliver Kornadt, Albert Vogel Department of Building Physics/ Energy Efficient Buildings,

More information

Tuning TMDs to Fix Floors in MDOF Shear Buildings

Tuning TMDs to Fix Floors in MDOF Shear Buildings Tuning TMDs to Fix Floors in MDOF Shear Buildings This is a paper I wrote in my first year of graduate school at Duke University. It applied the TMD tuning methodology I developed in my undergraduate research

More information

EXPERIMENTAL AND THEORETICAL SYSTEM IDENTIFICATION OF FLEXIBLE STRUCTURES WITH PIEZOELECTRIC ACTUATORS

EXPERIMENTAL AND THEORETICAL SYSTEM IDENTIFICATION OF FLEXIBLE STRUCTURES WITH PIEZOELECTRIC ACTUATORS 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL AND THEORETICAL SYSTEM IDENTIFICATION OF FLEXIBLE STRUCTURES WITH PIEZOELECTRIC ACTUATORS Aghil Yousefi-Koma*, David Zimcik* and Andrei

More information

MOOC QP Set 2 Principles of Vibration Control

MOOC QP Set 2 Principles of Vibration Control Section I Section II Section III MOOC QP Set 2 Principles of Vibration Control (TOTAL = 100 marks) : 20 questions x 1 mark/question = 20 marks : 20 questions x 2 marks/question = 40 marks : 8 questions

More information

ASSESMENT OF THE EFFECT OF BOUNDARY CONDITIONS ON CYLINDRICAL SHELL MODAL RESPONSES

ASSESMENT OF THE EFFECT OF BOUNDARY CONDITIONS ON CYLINDRICAL SHELL MODAL RESPONSES ASSESMENT OF THE EFFECT OF BOUNDARY CONDITIONS ON CYLINDRICAL SHELL MODAL RESPONSES ABSTRACT Eduards Skukis, Kaspars Kalnins, Olgerts Ozolinsh Riga Technical University Institute of Materials and Structures

More information

Influence of simulation model detail on determinable natural frequencies and loads

Influence of simulation model detail on determinable natural frequencies and loads Dr.-Ing. Thomas Rosenlöcher Institute of Machine Elements and Machine Design Chair of Machine Elements Influence of simulation model detail on determinable natural frequencies and loads Dassault Systèmes

More information

Fundamentals of noise and Vibration analysis for engineers

Fundamentals of noise and Vibration analysis for engineers Fundamentals of noise and Vibration analysis for engineers M.P.NORTON Department of Mechanical Engineering, University of Western Australia CAMBRIDGE UNIVERSITY PRESS Preface xii Acknowledgements xv Introductory

More information

Towards Rotordynamic Analysis with COMSOL Multiphysics

Towards Rotordynamic Analysis with COMSOL Multiphysics Towards Rotordynamic Analysis with COMSOL Multiphysics Martin Karlsson *1, and Jean-Claude Luneno 1 1 ÅF Sound & Vibration *Corresponding author: SE-169 99 Stockholm, martin.r.karlsson@afconsult.com Abstract:

More information

Drop towers and fitness flooring assemblies

Drop towers and fitness flooring assemblies Drop towers and fitness flooring assemblies Paul Gartenburg (1), Matt Golden (2) (1) Pliteq Inc, Toronto, Canada (2) Pliteq Inc, Toronto, Canada ABSTRACT Typical practice for quantifying acoustic performance

More information

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS 1 Macchiavello, Sergio *, 2 Tonelli, Angelo 1 D Appolonia S.p.A., Italy, 2 Rina Services S.p.A., Italy KEYWORDS pleasure vessel, vibration analysis,

More information

Experimental validation of a numerical model for subway induced vibrations

Experimental validation of a numerical model for subway induced vibrations Experimental validation of a numerical model for subway induced vibrations S. Gupta, G. Degrande, G. Lombaert Department of Civil Engineering, K.U.Leuven, Kasteelpark Arenberg, B-3001, Leuven, Belgium

More information

ANALYSIS AND IDENTIFICATION IN ROTOR-BEARING SYSTEMS

ANALYSIS AND IDENTIFICATION IN ROTOR-BEARING SYSTEMS ANALYSIS AND IDENTIFICATION IN ROTOR-BEARING SYSTEMS A Lecture Notes Developed under the Curriculum Development Scheme of Quality Improvement Programme at IIT Guwahati Sponsored by All India Council of

More information

LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE

LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE Figure 3.18 (a) Imbalanced motor with mass supported by a housing mass m, (b) Freebody diagram for, The product is called the imbalance vector.

More information

Vibration Testing. Typically either instrumented hammers or shakers are used.

Vibration Testing. Typically either instrumented hammers or shakers are used. Vibration Testing Vibration Testing Equipment For vibration testing, you need an excitation source a device to measure the response a digital signal processor to analyze the system response Excitation

More information

A pragmatic approach to including complex natural modes of vibration in aeroelastic analysis

A pragmatic approach to including complex natural modes of vibration in aeroelastic analysis A pragmatic approach to including complex natural modes of vibration in aeroelastic analysis International Aerospace Symposium of South Africa 14 to 16 September, 215 Stellenbosch, South Africa Louw van

More information

Motion System Classes. Motion System Classes K. Craig 1

Motion System Classes. Motion System Classes K. Craig 1 Motion System Classes Motion System Classes K. Craig 1 Mechatronic System Design Integration and Assessment Early in the Design Process TIMING BELT MOTOR SPINDLE CARRIAGE ELECTRONICS FRAME PIPETTE Fast

More information

STRUCTURAL OPTIMIZATION OF TRACTOR FRAME FOR NOISE REDUCTION

STRUCTURAL OPTIMIZATION OF TRACTOR FRAME FOR NOISE REDUCTION STRUCTURAL OPTIMIZATION OF TRACTOR FRAME FOR NOISE REDUCTION Takayuki Koizumi, Nobutaka Tsujiuchi, Shigeyuki Sawabe Doshisha Univercity, Kyotanabe, Kyoto, Japan, ntsujiuc@mail.doshisha.ac.jp Isamu Kubomoto,

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Accuracy, and the prediction of ground vibration from underground railways Hugh Hunt 1 and Mohammed Hussein 2

Accuracy, and the prediction of ground vibration from underground railways Hugh Hunt 1 and Mohammed Hussein 2 5 th Australasian Congress on Applied Mechanics, ACAM 2007 10-12 December 2007, Brisbane, Australia Accuracy, and the prediction of ground vibration from underground railways Hugh Hunt 1 and Mohammed Hussein

More information

Diagnosing Vibration Problems with Embedded Sensitivity Functions

Diagnosing Vibration Problems with Embedded Sensitivity Functions Diagnosing Vibration Problems with Embedded Sensitivity Functions Chulho Yang and Douglas E. Adams, Purdue University, West Lafayette, Indiana Sung-Woo Yoo, ArvinMeritor, Columbus, Indiana When noise or

More information

Vibration Absorber Design via Frequency Response Function Measurements

Vibration Absorber Design via Frequency Response Function Measurements Proceedings of the IMAC-XXVIII February 1 4, 2010, Jacksonville, Florida USA 2010 Society for Experimental Mechanics Inc. Vibration Absorber Design via Frequency Response Function Measurements N. Nematipoor,

More information

Monitoring the Condition of a Bridge using a Traffic Speed Deflectometer Vehicle Travelling at Highway Speed

Monitoring the Condition of a Bridge using a Traffic Speed Deflectometer Vehicle Travelling at Highway Speed Monitoring the Condition of a Bridge using a Traffic Speed Deflectometer Vehicle Travelling at Highway Speed Eugene J. OBrien 1, 2, Enrique Sevillano 1, Daniel Martinez 1 1 School of Civil Engineering,

More information

In situ determination of dynamic stiffness for resilient elements

In situ determination of dynamic stiffness for resilient elements In situ determination of dynamic stiffness for resilient elements Meggitt, JWR, Elliott, AS, Moorhouse, AT and Lai, K http://dx.doi.org/10.1177/0954406215618986 Title Authors Type URL In situ determination

More information

T1 T e c h n i c a l S e c t i o n

T1 T e c h n i c a l S e c t i o n 1.5 Principles of Noise Reduction A good vibration isolation system is reducing vibration transmission through structures and thus, radiation of these vibration into air, thereby reducing noise. There

More information

The use of transmissibility properties to estimate FRFs on modified structures

The use of transmissibility properties to estimate FRFs on modified structures Shock and Vibration 7 (00) 56 577 56 DOI 0./SAV-00-058 IOS Press The use of transmissibility properties to estimate FRFs on modified structures R.A.B. Almeida a,, A.P.V. Urgueira a and N.M.M. Maia b a

More information

Analysis of the Temperature Influence on a Shift of Natural Frequencies of Washing Machine Pulley

Analysis of the Temperature Influence on a Shift of Natural Frequencies of Washing Machine Pulley American Journal of Mechanical Engineering, 2015, Vol. 3, No. 6, 215-219 Available online at http://pubs.sciepub.com/ajme/3/6/12 Science and Education Publishing DOI:10.12691/ajme-3-6-12 Analysis of the

More information

REAL-TIME HYBRID EXPERIMENTAL SIMULATION SYSTEM USING COUPLED CONTROL OF SHAKE TABLE AND HYDRAULIC ACTUATOR

REAL-TIME HYBRID EXPERIMENTAL SIMULATION SYSTEM USING COUPLED CONTROL OF SHAKE TABLE AND HYDRAULIC ACTUATOR October -7, 8, Beijing, China REAL-TIME HYBRID EXPERIMENTAL SIMULATION SYSTEM USING COUPLED CONTROL OF SHAKE TABLE AND HYDRAULIC ACTUATOR A. Igarashi and Y.Kikuchi and H.Iemura 3 Assoc. Professor, Dept.

More information

Space mission environments: sources for loading and structural requirements

Space mission environments: sources for loading and structural requirements Space structures Space mission environments: sources for loading and structural requirements Prof. P. Gaudenzi Università di Roma La Sapienza, Rome Italy paolo.gaudenzi@uniroma1.it 1 THE STRUCTURAL SYSTEM

More information

Session 2: MDOF systems

Session 2: MDOF systems BRUFACE Vibrations and Acoustics MA Academic year 7-8 Cédric Dumoulin (cedumoul@ulb.ac.be) Arnaud Deraemaeker (aderaema@ulb.ac.be) Session : MDOF systems Exercise : Multiple DOFs System Consider the following

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 One degree of freedom systems in real life 2 1 Reduction of a system to a one dof system Example

More information

Reciprocity as an Analysing Technique in Building Acoustics

Reciprocity as an Analysing Technique in Building Acoustics Reciprocity as an Analysing Technique in Building Acoustics Nathalie Geebelen a, Gerrit Vermeir b a,b Laboratory of Acoustics and Thermal Physics & Laboratory of Building Physics, Katholieke Universiteit

More information

Vibration source identification method of equipment and its application

Vibration source identification method of equipment and its application INTER-NOISE 06 Vibration source identification method of equipment and its application Xuhong MIAO ;KaifuYE ;XuerenWANG 3 ; Fuzhen PANG 4 Naval Academy of Armament, Harbin Engineering University, China

More information

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 29. Shock Response Spectrum Synthesis via Wavelets

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 29. Shock Response Spectrum Synthesis via Wavelets SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 29. Shock Response Spectrum Synthesis via Wavelets By Tom Irvine Email: tomirvine@aol.com Introduction Mechanical shock can cause electronic components

More information