Chapter (10) lbf Ans. 3-2 Body AB: R R. Body OAC: R R. Chapter 3 - Rev. B, Page 1/100. R R 300 lbf Ans 0 R (10) 100(30) 0

Size: px
Start display at page:

Download "Chapter (10) lbf Ans. 3-2 Body AB: R R. Body OAC: R R. Chapter 3 - Rev. B, Page 1/100. R R 300 lbf Ans 0 R (10) 100(30) 0"

Transcription

1 Chapter - M 0 8RB 6(00) 0. lbf Ans. RB F y 0 R RB 00 0 R 66.7 lbf Ans. R R. lbf Ans. C B - Bdy AB: F x 0 RAx RBx F y 0 RAy RBy M B 0 RAy (0) RAx (0) 0 R R Ax Ay Bdy OAC: 0 R (0) 00(0) 0 M O RAy Ay 00 lbf Ans. 0 R R 00 lbf Ans. F x Ox 0 R R 00 0 F y ROy Oy Ay Ax 00 lbf Ans. Chapter - Rev. B, Page /00

2 - RO RA 0.8 tan 0.9 kn Ans. 0.8 sn 0.6 kn Ans. -4 Step : Fnd R A & R E 4.5 h tan 0 M 0 A m 9R 7.794(400cs0 ) R A E R E 4.5(400sn 0 ) N Ans. F 0 R 400cs 0 0 F x y R Ax Ax N N 0 R sn 0 0 R Ay Ay 00 N Ans Step : Fnd cmpnents f R C n lnk 4 and R D M C 0 400(4.5) R 0 F F R x y D 05.4 N Ans. RCx N 0 ( R ) 400 N Cy 4 D Chapter - Rev. B, Page /00

3 Step : Fnd cmpnents f R C n lnk F 0 x F y R R Cx Cx 0 R Cy N 00 N Chapter - Rev. B, Page /00

4 -5 M C 0 500R 00(5) 00(9) 0 R 8. kn Ans. F y R 0 R 5.8 kn Ans. M 8.(00) 460 N m Ans. M (900) 740 N m Ans. M (00) 0 checks! -6 F y 0 R (6) 740 lbf Ans. M 0 0 M 0 500(8) 40(6)(7) 8080 lbf n Ans. M (8) 60 lbf n Ans. M 60 40(6) 70 lbf n Ans. M 70 (40)(6) 0 checks! Chapter - Rev. B, Page 4/00

5 -7 M B 0.R () (4) 0 R 0.9 kn Ans. 0 F y 0.9 R 4 0 R 6.9 kn Ans. M 0.9(.).09 kn m Ans. M.09.9() 4 knm Ans. M 44() 0 checks! -8 Break at the hnge at B Beam OB: Frm symmetry, R V 00 lbf Ans. B Beam BD: M D 0 00() R (0) 40(0)(5) 0 R 440 lbf Ans. F y (0) R 0 R 60 lbf Ans. Chapter - Rev. B, Page 5/00

6 M 00(4) 800 lbf n Ans. M (4) 0 checks at hnge M (6) 400 lbf n Ans. M (40)(6) 0 lbf n Ans. M 5 0 (60)(4) 0 checks! -9 q R x 9 x00 5 x00 R x V R 9 x00 5 x00 R x500 () M R x9 x00 5 x00 R x500 () At x = V = M = 0. Applyng Eqs. () and (), R95R 0 RR 4 500R 9(500 00) 5(500 00) 0 R 8. kn Ans. R kn Ans. 0 x00 : V 8. kn, M 8. x N m 00 x00 : V kn M 8.x9( x00) 0.8x700 N m 00 x500 : V kn M 8.x9( x 00) 5( x00) 5.8x8700 N m Plts f V and M are the same as n Prb. -5. Chapter - Rev. B, Page 6/00

7 q R x M x 500 x8 40 x4 40 x V R M x 500 x8 40 x4 40 x0 () M R xm 500 x8 0 x4 0 x0 () at x0 n, V M 0, Eqs. () and () gve R R 740 lbf Ans. 0 0 R (0) M 500(0 8) 0(0 4) 0 M 8080 lbf n Ans x 8: V 740 lbf, M 740x 8080 lbf n 8 x4 : V lbf M 740x ( x8) 40x4080 lbf n 4 x 0 : V ( x4) 40x800 lbf M 740x ( x8) 0( x4) 0x 800x8000 lbf n Plts f V and M are the same as n Prb q R x x. R x. 4 x V R x. R x. 4 x. () M R x x. R x. 4 x. () at x =. +, V = M = 0. Applyng Eqs. () and (), R R 4 0 RR 6 ().R() R() 0.RR 4 (4) Slvng Eqs. () and (4) smultaneusly, R = -0.9 kn, R = 6.9 kn Ans. 0 x. : V 0.9 kn, M 0.9 x kn m. x. : V kn M 0.9x( x.).9x.4 kn m. x. : V kn M 0.9x( x.) 6.9( x.) 4x.8 kn m Plts f V and M are the same as n Prb. -7. Chapter - Rev. B, Page 7/00

8 - 0 0 q R x 400 x4 R x0 40 x0 40 x0 R x V R 400 x4 R x0 40 x0 40 x0 R x0 () M Rx400 x4 R x0 0 x0 0 x0 R x0 () M 0 at x8 n 8R 400( 8 4) 0 R 00 lbf Ans. at x = 0 +, V =M = 0. Applyng Eqs. () and (), R 40(0) R 0 R R (0) 400(6) R (0) 0(0) 0 R 440 lbf Ans. R lbf Ans. 0 x 4 : V 00 lbf, M 00 x lbf n 4 x0 : V lbf, M 00x400( x4) 00x600 lbf n 0 x 0 : V ( x0) x lbf M 00x400( x4) 440( x0) 0 x0 0x 640x4800 lbf n Plts f V and M are the same as n Prb Slutn depends upn the beam selected. -4 (a) Mment at center, l a xc w l l wl l M c la a 4 At reactn, w a Mr a =.5, l = 0 n, w = 00 lbf/n M c 00(0) lbf n M r 5 lbf n Ans. (b) Optmal ccurs when Mc M r Chapter - Rev. B, Page 8/00

9 wl l wa 4 a a al l Takng the pstve rt a l l 4 0.5l 0.07 l Ans. fr l = 0 n, w = 00 lbf, a = 0.07(0) =.07 n M mn lbf n l -5 (a) 0 0 C 5 kps 0 0 CD 5 kps R kps 5 7 kps 5 7 kps 8 p tan 4.04 cw 5 R 7 kps ccw s (b) 96 C.5 kps 6 9 CD.5 kps R kps kps kps 5 p tan 7.5 ccw.5 R 6.0 kps cw s Chapter - Rev. B, Page 9/00

10 (c) 4 0 C 7 kps 4 0 CD 7 kps kps R kps kps 7 p 6 R 9. kps 90 tan 69.7 ccw ccw s (d) C 5 kps CD 7 kps R kps kps kps p 7 90 tan 7.9 cw Chapter - Rev. B, Page 0/00

11 R 0.8 kps cw s Chapter - Rev. B, Page /00

12 -6 (a) 87 C 0.5 MPa 8 7 CD 7.5 MPa MPa R MPa Mpa p R 9.60 MPa 90 tan cw cw s (b) 9 6 C.5 MPa 9 6 CD 7.5 MPa MPa R MPa MPa p tan 0.9 cw 7.5 R MPa ccw s Chapter - Rev. B, Page /00

13 (c) 4 C 4 MPa 4 CD 8 MPa MPa R MPa MPa p tan 69.4 ccw R 0.6 MPa ccw s (d) 6 5 C 0.5 MPa 6 5 CD 5.5 MPa MPa R MPa MPa 8 p tan 7.75 ccw 5.5 R 9.7 MPa cw s Chapter - Rev. B, Page /00

14 -7 (a) 6 C 9 kps 6 CD kps 4 5 kps R kps kps 4 p tan 6.6 ccw R 5 kps ccw s (b) 0 0 C 0 kps 0 0 CD 0 kps kps R kps kps 0 p tan.8 ccw 0 R.6 kps cw s Chapter - Rev. B, Page 4/00

15 (c) 0 8 C 4 kps 0 8 CD 4 kps kps R kps kps 4 p 9 R 6.64 kps 90 tan 7.6 cw cw s (d) 99 C 4 kps 9 9 CD 5 kps kps R kps kps 5 p 8 R 9.4 kps 90 tan 6.0 cw cw s Chapter - Rev. B, Page 5/00

16 -8 (a) 80 0 C 55 MPa 80 0 CD 5 MPa MPa R 0 MPa MPa MPa 87.5 MPa,.0 MPa, 4.5 MPa (b) 0 60 C 5 MPa 60 0 CD 45 MPa R MPa MPa 0 MPa MPa MPa MPa MPa Chapter - Rev. B, Page 6/00

17 (c) 40 0 C 0 MPa 40 0 CD 0 MPa R MPa MPa MPa z 0 MPa MPa, 8. MPa, 0.9 MPa (d) 50 C 5 MPa 50 CD 5 MPa MPa R MPa MPa z 0 MPa MPa, 9. MPa,.95 MPa -9 (a) Snce there are n shear stresses n the stress element, the stress element already represents prncpal stresses. x 0 kps 0 kps 4 kps y 0 ( 4) 7 kps 0 5 kps 0 ( 4) kps Chapter - Rev. B, Page 7/00

18 (b) 00 C 5 kps 0 0 CD 5 kps R kps kps 0 kps, kps R 6.40 kps, 5.70 kps, 0.70 kps (c) 8 C 5 kps 8 CD kps R 4 5 kps 550 kps, 0 kps 550 kps 0 5 kps, 0 kps, 5 kps (d) 0 0 C 0 kps 0 0 CD 0 kps R kps kps 0 kps kps kps, 6.8 kps, 6.8 kps Chapter - Rev. B, Page 8/00

19 -0 Frm Eq. (-5), ( 6 8 ) 6(8) ( 6)( ) 8( ) 9 6 ( 5) 6(8)( ) (9)(6)( 5) ( 6)(6) 8( 5) ( )(9) Rts are:.04, 5.67, 6.7 kps Ans kps kps kps Ans. - Frm Eq. (-5) (0 0 0) 0(0) 0(0) 0(0) (0)(0) (40) 0 (0) 0 0 0(0) 0(40) Rts are: 60, 0, 40 kps Ans kps kps kps Ans. Chapter - Rev. B, Page 9/00

20 - Frm Eq. (-5) ( ) 0(40) 0(40) 40(40) (40)(40) (0)( 40)( 0) 0( 40) 40( 0) 40(0) Rts are: 90, 0, 0 MPa Ans MPa Ans. - F ps 4.0 kps Ans. A FL L n Ans. 6 AE E L 60 Frm Table A-5, v = 0.9 v 0.9(0) 0 Ans. Ans 6 6 d d 0 0 (0.75) 48 0 n Ans. -4 F ps 6.79 kps Ans. A FL L n Ans. 6 AE E L 60 Frm Table A-5, v = Ans v 0.(65) 7 Ans. 6 6 d d 7 0 (0.75) 6 0 n Ans. Chapter - Rev. B, Page 0/00

21 -5 d 0.000d d d Frm Table A-5, v = 0.6, E = 9 GPa v 0.6 FL F and, s AE A E 6 9 = E (9) MPa L F A N 5.8 kn Ans. 4 S y = 70 MPa >, s elastc defrmatn assumptn s vald. -6 FL L 8() n Ans. 6 AE E FL L m 5.86 mm Ans. 9 AE E FL L 0() n Ans. 6 AE E Wth z 0, slve the frst tw equatns f Eq. (-9) smulatenusly. Place E n the left-hand sde f bth equatns, and usng Cramer s rule, E x v Ey Ex ve E y x vy x v v v v Lkewse, Chapter - Rev. B, Page /00

22 y E y v x Frm Table A-5, E = 07 GPa and ν = 0.9. Thus, 9 x vy E x 0 8 MPa Ans. v y MPa Ans Wth z 0, slve the frst tw equatns f Eq. (-9) smulatenusly. Place E n the left-hand sde f bth equatns, and usng Cramer s rule, E x v Ey Ex ve E y x vy x v v v Lkewse, E y v y v x Frm Table A-5, E = 7.7 GPa and ν = 0.. Thus, 9 Ex vy x 0 4 MPa Ans. v y MPa Ans c ac R F M Ra F l l 6 M 6 ac F F bh l Ans. bh bh l 6ac (a) (b) m bm bhm h lm l Fm ( s)( s) ( s) s F a a c c ()() s s m m Ans. Fr equal stress, the mdel lad vares by the square f the scale factr. - Chapter - Rev. B, Page /00

23 wl w l l (a) R, M l xl/ wl 8 6M 6 wl Wl 4bh W bh bh 8 4bh l Ans. (b) Wm ( m / )( bm / b)( hm / h) ( s)( s) s W l / l s m Ans. wmlm wm s s s Ans. wl w s Fr equal stress, the mdel lad w vares lnearly wth the scale factr. - (a) Can slve by teratn r derve equatns fr the general case. Fnd mum mment under wheel W. WT W at centrd f W s lxd RA WT l Under wheel, lx d M R x Wa Wa W x Wa Wa l dm W Fr mum, T l d 0ld x x dx l A T l d Substtute nt M M WT Wa W a 4l Ths means the mdpnt f d ntersects the mdpnt f the beam. Fr wheel, Nte fr wheel : l d l d x, M W W a 4l Wa 0 j j T j j j 04.4 WT 04.4, W W W W4 6. kps (00 8) Wheel : d 8 n, M (04.4) 08 kp n 4(00) Wheel : d n Chapter - Rev. B, Page /00

24 (00 54) (04.4) 6.(84) 605 kp n ns. M M A 4(00) Check f all f the wheels are n the ral. (b) x n Ans. (c) See abve sketch. (d) Inner axles -4 (a) Let a = ttal area f entre envelpe Let b = area f sde ntch Aab40()(5) mm I Ia Ib I mm Ans. (b) A 0.75(.875) n a A 0.75(.75) n b A (0.705) n Dmensns n mm. (0.70 5)(0.975) (0.6875) y n Ans (.875) 4 Ia 0.06 n.75(0.75) 4 Ib n I (0.0795) (0.705) n. (c) Use tw negatve areas. A 65 mm, A 565 mm, A 0000 mm a b c A mm ; Ans Chapter - Rev. B, Page 4/00

25 y 6.5 mm, y 50 mm, y 50 mm 0 000(50) 565(50) 65(6.5) y 57.9 mm Ans. 750 c mm Ans. I I I I I a b c a b c 50(.5) 4 88 mm 75(75) mm 00(00) n (7.9) n Ans. (d) A n a b A A A n a b A n (.875) y.88 n Ans I (4) I 5.0 n Ans. -5 (0)(40) mm 4 I A 0(40) 800 mm M s at A. At the bttm f the sectn, Mc (0) 84. MPa Ans. I Due t V, s between A and B at y = 0. V MPa Ans. A 800 Chapter - Rev. B, Page 5/00

26 -6 I ()() n A () n 4 M 0 8R 00(8)() 0 M A R 00 lbf A R 00 00(8) 400 lbf s at A. At the tp f the beam, Mc 00(0.5) 400 ps Ans. I Due t V, s at A, at y = 0. V ps Ans. A -7 I (0.75)() 0.5 n A (0.75)().5 n 4 M A 0 5RB 000(0) 0 RB. lbf R lbf M A s at B. At the tp f the beam, Mc 5000() 0000 ps Ans. I 0.5 Due t V, s between B and C at y = 0. V ps Ans. A.5 Chapter - Rev. B, Page 6/00

27 d (50) I mm d (50) A 96 mm 4 4 M B 0 6(00)(50) 00R A 0 RA 50 kn R 6(00) kn B 4 M s at A. At the tp, Due t V, s at A, at y = 0. Mc I 4 V kn/mm 509 MPa Ans. A 96-9 wl wl c 8 I M w 8 8I cl 4 (a) l 48 n; Table A-8, I 0.57 n w.8 lbf/n Ans. 48 (b) l I 60 n, n w 6.5 lbf/n Ans..560 (c) 4 l 60 n; Table A-6, I n y = 0.77 n, c =.78 n w.0 lbf/n Ans (d) l 60 n, Table A-7, I.07 n w 6.8 lbf/n Ans Chapter - Rev. B, Page 7/00

28 -40 I n, A n Mdel 500(0.5) 500(0.75 / ) M 8.75 lbf n Mc 8.75(0.5) (c) I ps 7.8 kps Ans. 4 V ps.4 kps Ans. A 0.96 Mdel (d) M 500(0.65).5 lbf n Mc.5(0.5) I ps 5.5 kps Ans. 4 V ps.4 kps Ans. A 0.96 Mdel M 500(0.475) 8.75 lbf n Mc 8.75(0.5) I.0680 (e) 7 85 ps 7.8 kps Ans. 4 V ps.4 kps Ans. A Chapter - Rev. B, Page 8/00

29 I 4 08 mm 4, A. mm 64 4 Mdel (c) 000(6) 000(9) M N mm Mc 5 000(6) I N/mm 88.4 MPa Ans. 4 V A..6 N/mm.6 MPa. Ans Mdel (d) M 000() N mm Mc I 4 000(6) N/mm 4.5 MPa. Ans 4 V N/mm.6 MPa Ans. A. Mdel (e) M 000(7.5) 5000 N mm Mc I 5000(6) N/mm 88.4 MPa. Ans 4 V N/mm.6 MPa Ans. A. Mc M d / M -4 (a) 4 I d /64 d Chapter - Rev. B, Page 9/00

30 d M (8.75) (0 000) 0.40 n Ans. V V (b) A d /4 d 4V 4(500) 0.06 n Ans. (5000) 4V 4 V (c) A d /4 4 4V 4 4(500) d 0.8 n A. (5000) ns -4 0 p p qf x p xl xl terms fr xla a p p V Fp xl xl terms fr xla a p p p M Fx xl xl terms fr xla 6a At x ( la), V M 0, terms fr x > l + a = 0 p p F F pa a 0 p p () a a pa p p 6 F( la) Fl ( a) a 0 p p () 6a a F F Frm () and () p (l a), p ( l a) () a a b a ap Frm smlar trang les b p p p p p (4) Chapter - Rev. B, Page 0/00

31 M ccurs where V = 0 x la b p p p M F( la b) ( a b) ( a b) 6a p p p Fl F( a b) ( a b) ( a b) 6a Nrmally M = Fl The fractnal ncrease n the magntude s Fa ( b) p ( a b) p p 6 a( a b) Fl (5) Fr example, cnsder F = 500 lbf, a =. n, l =.5 n () p (500).5 (.) 4 75 lbf/n. p (500) lbf/n. (4) b =.( 875)/( ) = n Substtutng nt (5) yelds = r.7% hgher than -Fl -44 Chapter - Rev. B, Page /00

32 00(0) 40 R lbf 0 00(0) 0 R lbf a n 00 M B = 800(0) = lbfn M x = 7 n = (/)900() = 5 50 lbfn 0.5().5() y.5 n 6 4 I ()( ) 0.5 n ()( ).5 n 4 I Applyng the parallel-axs therem, I z 0.5 (.5 0.5).5 (.5.5) 8.5 n (.5) At x0 n, y.5 n, x 76 ps (.5) At x0 n, y.5 n, x 594 ps (a) (.5) At x7 n, y.5 n, x 4474 ps 8.5 At x7 n, y.5 n, x 550(.5) 7456 ps 8.5 Max tensn 594 ps Ans. Max cmpressn 7456 ps Ans. (b) The mum shear stress due t V s at B, at the neutral axs. V 500 lbf Q ya.5(.5)().5 n VQ 500(.5) 875 ps Ans. V Ib 8.5() (c) There are three ptentally crtcal lcatns fr the mum shear stress, all at x = 7 n: () at the tp where the bendng stress s mum, () at the neutral axs where Chapter - Rev. B, Page /00

33 the transverse shear s mum, r () n the web just abve the flange where bendng stress and shear stress are n ther largest cmbnatn. Fr (): The mum bendng stress was prevusly fund t be 7456 ps, and the shear stress s zer. Frm Mhr s crcle, ps Fr (): The bendng stress s zer, and the transverse shear stress was fund prevusly t be 875 ps. Thus, = 875 ps. Fr (): The bendng stress at y = 0.5 n s 8000( 0.5) x 059 ps 8.5 The transverse shear stress s Q ya ()()().0 n VQ 500(.0) 800 ps Ib 8.5() Frm Mhr s crcle, ps The crtcal lcatn s at x = 7 n, at the tp surface, where = 78 ps. Ans. -45 (a) L = 0 n. Element A: My A I ( / 64)() A VQ, 0 0 A Ib (000)(0)(0.5) kps 0.9 A A (0) 50.9 kps Ans. Element B: B My, y 0 B 0 I 4r r 4r 40.5 Q ya / n 6 6 Chapter - Rev. B, Page /00

34 B VQ Ib ( / 64)() () (000)(/) kps 0 Ans kps. Element C: My C I ( / 64)() (000)(0)(0.5) kps r r r Q yda ( ) y y x dy y r y dy y y r y r r r y r / / / / r y Fr C, y = r / =0.5 n Q / n y bx r y n C VQ (000)(0.054) 4 Ib ( / 64)() (0.866) 0.7 kps 50.9 Ans (.7) 5.50 kps. (b) Neglectng transverse shear stress: Element A: Snce the transverse shear stress at pnt A s zer, there s n change kps Ans. % errr 0% Ans. Element B: Snce the nly stress at pnt B s transverse shear stress, neglectng the transverse shear stress gnres the entre stress. 0 0 ps Ans % errr *(00) 00% Ans..698 Chapter - Rev. B, Page 4/00

35 Element C: kps Ans % errr *(00) 0.% Ans (c) Repeatng the prcess wth dfferent beam lengths prduces the results n the table. Bendng stress, kps) Transverse shear stress, kps) Max shear stress, kps) Max shear stress, neglectng kps) % errr L = 0 n A B C L = 4 n A B C L = n A B C L = 0.n A B C Dscussn: The transverse shear stress s nly sgnfcant n determnng the crtcal stress element as the length f the cantlever beam becmes smaller. As ths length decreases, bendng stress reduces greatly and transverse shear stress stays the same. Ths causes the crtcal element lcatn t g frm beng at pnt A, n the surface, t pnt B, n the center. The mum shear stress s n the uter surface at pnt A fr all cases except L = 0. n, where t s at pnt B at the center. When the crtcal stress element s at pnt A, there s n errr frm neglectng transverse shear stress, snce t s zer at that lcatn. Neglectng the transverse shear stress has extreme sgnfcance at the stress element at the center at pnt B, but that lcatn s prbably nly f practcal sgnfcance fr very shrt beam lengths. Chapter - Rev. B, Page 5/00

36 -46 c R F l c M Fx 0 x a l 6M 6clFx bh bh 6Fcx h 0 xa Ans. lb -47 c Frm Prblem -46, R F V, 0 x a l V ( c/ l) F Fc h Ans. bh bh lb Frm Prblem -46, 6Fcx hx ( ). lb Sub n x = e and equate t h abve. Fc 6Fce lb lb Fc e 8 lb Ans. -48 (a) x-z plane M 0.5(0.5) (.5)sn(0 )(.5) R () O R z.75 kn Ans. F 0 R.5 (.5)sn(0 ).75 z z R z.65 kn Ans. x-y plane M 0 (.5) cs(0 )(.5) R () O R.949 kn Ans. y F 0 R (.5)cs(0 ).949 y y R kn Ans. y y z Chapter - Rev. B, Page 6/00

37 (b) (c) The transverse shear and bendng mments fr mst pnts f nterest can readly be taken straght frm the dagrams. Fr.5 < x <, the bendng mment equatns are parablc, and are btaned by ntegratng the lnear expressns fr shear. Fr cnvenence, use a crdnate shft f x = x.5. Then, fr 0 < x <.5, V x 0.5 z x M y Vzdx 0.5xC At x0, M y C M y 0.5x 0.5x Vy x x Mz x 0.649xC At x0, Mz C Mz 0.866x 0.5x0.975 By prgrammng these bendng mment equatns, we can fnd M y, M z, and ther vectr cmbnatn at any pnt alng the beam. The mum cmbned bendng mment s fund t be at x =.79 m, where M =.4 kn m. The table belw shws values at key lcatns n the shear and bendng mment dagrams. x (m) V z (kn) V y (kn) V (kn) M y (knm) M z (knm) M (knm) Chapter - Rev. B, Page 7/00

38 (d) The bendng stress s btaned frm Eq. (-7), Mzy M A yza x I I z y The mum tensle bendng stress wll be at pnt A n the crss sectn f Prb. -4 (a), where dstances frm the neutral axes fr bth bendng mments wll be mum. At A, fr M z, y A = 7.5 mm, and fr M y, z A = 0 mm. 40(75) 4(5) I z.6(0 ) mm.6(0 ) m 5(40) 5(6) I y.67(0 ) mm.67(0 ) m It s apparent the mum bendng mment, and thus the mum stress, wll be n the parablc sectn f the bendng mment dagrams. Prgrammng Eq. (-7) wth the bendng mment equatns prevusly derved, the mum tensle bendng stress s fund at x =.77 m, where M y = kn m, M z =.075 kn m, and x = 00. MPa. Ans. -49 (a) x-z plane 600 M O 0 (000)(4) (0) M 5 M Oy 84.6 lbf n Ans. 6 Fz 0 ROz (000) lbf Ans. ROz Oy x-y plane M O 0 (000)(4) (0) M 5 M Oz lbf n Ans. 4 6 Fy 0 ROy (000) lbf Ans. ROy Oz Chapter - Rev. B, Page 8/00

39 (b) ( (c) V( x) Vy( x) Vz( x) / M( x) M y( x) Mz( x) / x (m) V z (kn) V y (kn) V (kn) M y (knm) M z (knm) M (knm) (d) The mum tensle bendng stress wll be at the uter crner f the crss sectn n the pstve y, negatve z quadrant, where y =.5 n and z = n. () (.65)(.65) 4 I z.05 n () (.65)(.65) 4 I y.60 n At x = 0, usng Eq. (-7), Mz y M y z x I z I y ( 744.6)(.5) ( 84.6)( ) x 6594 ps Check at x = 4 n, ( 545.4)(.5) ( 545.4)( ) x 706 ps The crtcal lcatn s at x = 0, where x = 6594 ps. Ans. Chapter - Rev. B, Page 9/00

40 -50 The area wthn the wall medan lne, A m, s Square: A ( b t). Frm Eq. (-45) Rund: m sq m all ( ) all T A t b t t rd A ( bt) / 4 m T ( bt) t /4 Rat f Trques T sq ( b t) tall 4.7 T ( b t) t / rd Twst per unt length frm Eq. (-46) s all all TL A t L L L C GA t GA t G A A m m all m all m 4 m 4 m m Square: 4( bt) sq C ( b t ) Rund: ( bt) 4( bt) rd C C ( bt) /4 ( b t) m m Rat equals. Twsts are the same. -5 (a) The area enclsed by the sectn medan lne s A m = ( 0.065) = n and the length f the sectn medan lne s L m = 4( 0.065) =.75 n. Frm Eq. (-45), T A t (0.8789)(0.065)( 000) 8 lbf n Ans. m Frm Eq. (-46), TL ml (8)(.75) 6 l rad 4.59 Ans. 4GA t (0.8789) m (b) The radus at the medan lne s r m = (0.5)(0.065) = n. The area enclsed by the sectn medan lne s A m = ( 0.065) 4(0.565) + 4(π /4)(0.565) = n. The length f the sectn medan lne s L m = 4[ (0.565)] + π(0.565) =.48 n. Chapter - Rev. B, Page 40/00

41 Frm Eq. (-45), T Amt (0.8579)(0.065)( 000) 87 lbf n Ans. Frm Eq. (-46), TL ml (87)(.48) 6 l rad 4.7 Ans. 4GA t (0.8579) m -5 T GLc T GLc G T T T T Lc Ans. Frm Eq. (-47), G c G and are cnstant, therefre the largest shear stress ccurs when c s a mum. G c Ans. -5 (b) Slve part (b) frst snce the twst s needed fr part (a). allw MPa (a) Gc rad/m Ans (0.00) (79.) 0 (0.00)(0.00 ) GLc T.47 N m Ans. 9 GL 0.48(79.) 0 (0.00)(0.00 ) c T 7.45 N m Ans (79.) 0 (0)(0 ) GLc T 0 Ans. T TT T N m Ans. Chapter - Rev. B, Page 4/00

42 -54 (b) Slve part (b) frst snce the twst s needed fr part (a) rad/n Ans. Gc.5 0 (0.5) (a) GLc T 5.86 lbf n Ans. T GLc 6.5 lbf n Ans GLc T 4.88 lbf n Ans. T TT T lbf n Ans. -55 (b) Slve part (b) frst snce the twst s needed fr part (a). allw MPa (a) Gc rad/m Ans (0.00) (79.) 0 (0.00)(0.00 ) GLc T.47 N m Ans. 9 GL 0.48(79.) 0 (0.00)(0.00 ) c T 7.45 N m Ans (79.) 0 (0.05)(0.00 ) GLc T T TT T N m.84 N m Ans. Ans. -56 (a) Frm Eq. (-40), wth tw -mm strps, bc T.08 N m.8 / ( b/ c).8 / 0.00 / 0.00 T (.08) 6.6 N m Ans. Chapter - Rev. B, Page 4/00

43 Frm the table n p. 0, wth b/c = 0/ = 5, and has a value between 0. and 0.. Frm Eq. (-40), 0..8/(0/) Frm Eq. (-4), Tl.08(0.) bc G rad Ans. k t T N m Ans. 0.5 Frm Eq. (-40), wth a sngle 4-mm strp, T bc.9 N m Ans..8 / ( b/ c).8 / 0.00 / Interplatng frm the table n p. 0, wth b/c = 0/4 = 7.5, ( ) Frm Eq. (-4) Tl.9(0.) bc G rad Ans. k t T.9 55 N m Ans (b) Frm Eq. (-47), wth tw -mm strps, Lc T.0 N m T (.0) 6.40 N m Ans. Tl (.0)(0.) 0.5 rad Ans. Lc G k T N m Ans. t Frm Eq. (-47), wth a sngle 4-mm strp, T Lc.8 Nm Ans. Chapter - Rev. B, Page 4/00

44 Tl (.8)(0.) rad Ans. Lc G k T N m Ans. t The results fr the sprng cnstants when usng Eq. (-47) are slghtly larger than when usng Eq. (-40) and Eq. (-4) because the strps are nt nfntesmally thn (.e. b/c des nt equal nfnty). The sprng cnstants when cnsderng ne sld strp are sgnfcantly larger (almst fur tmes larger) than when cnsderng tw thn strps because tw thn strps wuld be able t slp alng the center plane. -57 (a) Obtan the trque frm the gven pwer and speed usng Eq. (-44). H (40 000) T N m n 500 Tr 6T J d 6T 65.8 d 0.0 m. mm Ans H (40000) (b) T Nm n 50 6(58) d m 48. mm Ans (a) Obtan the trque frm the gven pwer and speed usng Eq. (-4). 605H 605(50) T 6 lbf n n 500 Tr 6T J d 6T 6 6 d n Ans. (0 000) 605H 605(50) (b) T 60 lbf n n 50 6(60) d.48 n A. (0000) ns Chapter - Rev. B, Page 44/00

45 T d T 65 Nm d 6 6 Tn 65(000) Eq. (-44), H W 55.5 kw Ans T 6 T d N m d Tl d G 80 l JG T (7) l.89 m Ans. -6 6T T d lbf n d 6 6 Tl Tl (485)(4) 0.67 rad 9.57 Ans. 4 JG 4 6 dg J d J ( d d ) (a) T sld T 4 hllw r 6d r 6d sld Tsld Thllw d % T (00%) (00%) (00%) 65.6% Ans. T d (b) Wsld kd, Whllw kd d sld 6 40 Wsld Whllw d % W (00%) (00%) (00%) 8.0% Ans. W d J 4 d J d xd (a) Tsld Thllw r 6d r 6d 4 Tsld Thllw ( xd) 4 % T (00%) (00%) x (00%) Ans. 4 T d sld Chapter - Rev. B, Page 45/00

46 (b) W kd W k d xd sld sld hllw xd % Wsld Whllw W (00%) (00%) x (00%) Ans. W d Plt %T and %W versus x. The value f greatest dfference n percent reductn f weght and trque s 5% and ccurs at x. -64 Tc 6 (a) d 4 d 0.70d J d d m 6.7 mm 0(0 ) Frm Table A-7, the next preferred sze s d = 80 mm. Ans. d = 0.7d = 56 mm. The next preferred sze smaller s d = 50 mm Ans. (b) Tc 400d MPa Ans. J 4 d d Chapter - Rev. B, Page 46/00

47 -65 H (500) T N m n T 6T d = m 45 mm C 6 dc 800 Frm Table A-7, select 50 mm. Ans (a) start 7 0 Pa 7 MPa Ans (b) Desgn actvty H 6 05() T 7880 lbf n n 8 6T 6T d =.9 n C dc Frm Table A-7, select.40 n. Ans. -67 Fr a square crss sectn wth sde length b, and a crcular sectn wth dameter d, Asquare Acrcular b d b d 4 Frm Eq. (-40) wth b = c, T.8 T.8 T T (4.8) bc b / c b d d square Fr the crcular crss sectn, 6T T 5.09 crcular d d T square d.54 T crcular 5.09 d The shear stress n the square crss sectn s 5.4% greater. Ans. (b) Fr the square crss sectn, frm the table n p. 0, β = 0.4. Frm Eq. (-4), Chapter - Rev. B, Page 47/00

48 Tl Tl Tl Tl bc G b G d G 0.4 d G square 4 Fr the crcular crss sectn, Tl Tl Tl rd GJ G d d G Tl.50 4 sq dg.9 Tl rd dg The angle f twst n the square crss sectn s.9% greater. Ans. -68 (a) T 0.5T T 0 (500 75)(4) T T5 700 T 0.5T T 0 T 400 lbf Ans. T lbf Ans. (b) M 0 575(0) 460(8) R (40) (c) R R C O O lbf Ans. F 0 R O 9.5 lbf Ans. C Chapter - Rev. B, Page 48/00

49 (d) The mum bendng mment s at x = 0 n, and s M = 9.5 lbf n. Snce the shaft rtates, each stress element wll experence bth pstve and negatve bendng stress as t mves frm tensn t cmpressn. The trque transmtted thrugh the shaft frm A t B s T = (500 75)(4) = 700 lbf n. Fr a stress element n the uter surface where the bendng stress and the trsnal stress are bth mum, (e) Mc M ps = 5. kps Ans. I d (.5) Tr 6T 6(700) 44 ps = 4.4 kps Ans. J d (.5) x x 5. 5., kps Ans..9 kps Ans. xy x 5. xy kps Ans. -69 (a) T 0.5T T (00) T T (5) TT T 0 T 880 N Ans. T N Ans. (b) M 0 (0) R (50) 070(80) (c) R C R O O 794 N Ans. F y 0 R O 06 N Ans. C Chapter - Rev. B, Page 49/00

50 (d) The mum bendng mment s at x = 0 mm, and s M = 698. N m. Snce the shaft rtates, each stress element wll experence bth pstve and negatve bendng stress as t mves frm tensn t cmpressn. The trque transmtted thrugh the shaft frm A t B s T = (800 70)(0.00) = 06 N m. Fr a stress element n the uter surface where the bendng stress and the trsnal stress are bth mum, (e) Mc M Pa 6 MPa Ans. I d (0.00) Tr 6T 6(06) Pa 57.7MPa Ans. J d (0.00) x x 6 6, MPa Ans.. MPa Ans. xy x 6 xy MPa Ans. -70 (a) T 0.5T T (4) T T() TT() T 0 T 9.6 lbf Ans. T lbf Ans. (b) Chapter - Rev. B, Page 50/00

51 R Cz R Oz R Cy R Oy M Oy (6) R () 7.99 lbf Ans. z Oz.99 lbf Ans. Oz 0 50(8) R () Cy 7.7 lbf Ans. y 0 R Oy.7 lbf Ans. Cz F 0 R M F Chapter - Rev. B, Page 5/00

52 (c) (d) Cmbne the bendng mments frm bth planes at A and B t fnd the crtcal lcatn. M (98.9) ( 78.84) 05 lbf n A M B (967.84) ( 76.65) lbf n The crtcal lcatn s at B. The trque transmtted thrugh the shaft frm A t B s T = (00 50)(4) = 000 lbf n. Fr a stress element n the uter surface where the bendng stress and the trsnal stress are bth mum, (e) Mc M 50 ps =.5 kps Ans. I d () Tr 6T 6(000) 509 ps = 5.09 kps Ans. J d () x x.5.5, kps Ans..4 kps Ans. xy x.5 xy kps Ans. Chapter - Rev. B, Page 5/00

53 -7 (a) T 0.5T T (5) T T(50) TT(50) T 0 T 50 N mm Ans. T N mm Ans. (b) MOy 0 45sn 45 (00) 87.5(700) RCz(850) R 50.7 N Ans. (c) R R Cz R Oz Cy Oy Fz 07. N Ans. 0 ROz 45cs MOz 86.0 N Ans. F y 0 45sn 45 (00) RCy(850) 0 ROy 45cs N Ans. ( d ) F r m t h e b e n dng mment dagrams, t s clear that the crtcal lcatn s at A where bth planes have the mum bendng mment. Cmbnng the bendng mments frm the tw planes, M N m Chapter - Rev. B, Page 5/00

54 The trque transmtted thrugh the shaft frm A t B s T = (00 45)(0.5) =.88 N m. Fr a stress element n the uter surface where the bendng stress and the trsnal stress are bth mum, Mc M Pa 7.9 MPa Ans. I d (0.00) Tr 6T 6(.88) Pa 0. MPa Ans. J d (0.00) (e) x x , MPa Ans. 5.7 MPa Ans. xy x 7.9 xy MPa Ans. -7 (a) (b) F R B R T 0 00(cs 0º )(0) F (cs 0º )(4) Cy R Oy Cz R Oz 750 lbf Ans. M F Oz B 0 00(cs 0º )(6) 750(sn 0º )(9) R (0) 8. lbf Ans. y 0 R 00(cs 0º ) 8.750(sn 0º ) Oy 08.5 lbf Ans. M Oy 0 00(sn 0º )(6) R (0) 750(cs 0º )(9) 86.5 lbf Ans. Fz 0 ROz 00(sn 0º ) (cs 0º ) 59. lbf Ans. Cz Cy Chapter - Rev. B, Page 54/00

55 (c) (d) Cmbne the bendng mments frm bth planes at A and C t fnd the crtcal lcatn. M ( 6) ( 449) 54 lbf n M A C ( 08) ( 64) 6750 lbf n The crtcal lcatn s at C. The trque transmtted thrugh the shaft frm A t B s T 00 cs0º 0 89 lbf n. Fr a stress element n the uter surface where the bendng stress and the trsnal stress are bth mum, Mc M ps = 5. kps Ans. I d (.5) Tr 6T 6(89) 75 ps = 7.5 kps Ans. J d (.5) (e) x x 5. 5., kps Ans..47 kps Ans. xy x 5. xy kps Ans. Chapter - Rev. B, Page 55/00

56 -7 (a) (b) (c) F R B T 0 000(cs 0º )(00) F (cs 5º )(50) Cy R Oy R Cz R Oz 80 N Ans. M F Oz B 0 000(sn 0º )(400) 80(sn 5º )(750) R (050) 89 N Ans. y 0 R 000(sn 0º ) 80sn(5º ) 89 Oy 508 N Ans. M Oy 0 000(cs 0º )(400) 80(cs 5º )(750) R (050) 0 80 N Ans. F 0 R 000(cs 0º ) 80(cs 5º ) 0 80 z Oz 494 N Ans. Cy Cz (d) Frm the bendng mment dagrams, t s clear that the crtcal lcatn s at B where bth planes have the mum bendng mment. Cmbnng the bendng mments frm the tw planes, M N m The trque transmtted thrugh the shaft frm A t B s T 000cs0º 0.0 N m. Fr a stress element n the uter surface where the bendng stress and the trsnal stress are bth mum, Chapter - Rev. B, Page 56/00

57 (e) Mc M 4097 Ans I d (0.050) Tr 6T 6(0) Pa 6. MPa Ans. J d (0.050) Pa.9 MPa. x x.9.9, MPa Ans. 4.4 MPa Ans. xy x.9 xy MPa Ans. -74 (a) M 6.C.8(9.8).88(6.8) 0 Cx D z 87. lbf Ans lbf Ans. x M 6.D.(9.8).88(6.8) 0 Dx C z x.8 M D 0 Cz (808) lbf x 6. Ans.. M C 0 Dz (808) 07. lbf x 6. Ans. (b) Fr DQC, let x, y, z crrespnd t the rgnal y, x, z axes. Chapter - Rev. B, Page 57/00

58 (c) The crtcal stress element s just t the rght f Q, where the bendng mment n bth planes s mum, and where the trsnal and axal lads exst. T 808(.88) 5 lbf n M lbf n 6T 6(5) 070 ps Ans. d. M (45) b 9495 ps Ans. d. F 6.8 a 6 ps Ans. A ( / 4). (d) The crtcal stress element wll be where the bendng stress and axal stress are bth n cmpressn ps 9857 Ans ps. kps , ps 7.9 kps Ans ps 7.0 kps Ans. -75 (a) M 0 D z 6.C x.8(46.6).88(40) lbf Ans. Cx M 0 C z 6.Dx.(46.6).88(40) 0 Dx 70.9 lbf Ans..8 M D 0 Cz (406) 5.7 lbf x 6. Ans.. M C 0 Dz (406) 54. lbf x 6. Ans. Chapter - Rev. B, Page 58/00

59 (b) Fr DQC, let x, y, z crrespnd t the rgnal y, x, z axes. (c) The crtcal stress element s just t the rght f Q, where the bendng mment n bth planes s mum, and where the trsnal and axal lads exst. T 406(.88) 575 lbf n M lbf n 6T 6(575) 80 ps Ans. d M (647.) b 659 ps Ans. d F 40 a 78. ps Ans. A ( /4) (d) The crtcal stress element wll be where the bendng stress and axal stress are bth n cmpressn ps 6769 Ans ps 8.7 kps , 80 Chapter - Rev. B, Page 59/00

60 5 ps 5. kps Ans. 090 ps. kps Ans. -76 (b) M 5.6(6.8).(9.8) A 0 B z A 69.4 lbf Ans. y M.6(6.8).(9.8) B 0 A z B 76.6 lbf Ans. y 5.6 MB 0 Az (808) 5.7 lbf y Ans..6 M A 0 Bz (808) lbf y Ans. y y (c) The crtcal stress element s just t the left f A, where the bendng mment n bth planes s mum, and where the trsnal and axal lads exst. Chapter - Rev. B, Page 60/00

61 T 808(.) 050 lbf n 6(050) 7847 ps Ans M (89.8) (7) 74 lbf n M (74) b 990 ps Ans. d 0.88 F 9.8 a 5 ps Ans. A ( / 4) 0.88 (d) The crtcal stress wll ccur when the bendng stress and axal stress are bth n cmpressn ps 44 Ans ps 8.8 kps , ps.7 kps Ans ps 5.9 kps Ans. -77 F t T N c / 0.5 / Fn 600 tan N TC Ftb N m TC 00 P 667 N a 0.50 M 0 A z 450R 58.4(5) 667(75) 0 R Dy Dy 865. N MA 0 450RDz 600(5) y Fy RAy F 0 R z Az RAz R Dz 56 N R Ay 84 N 444 N Chapter - Rev. B, Page 6/00

62 AB The mum bendng mment wll ether be at B r C. If ths s nt bvus, sketch the shear and bendng mment dagrams. We wll drectly btan the cmbned mments frm each plane. B Ay Az M AB R R N m C Dy Dz M CD R R N m The stresses at B and C are almst dentcal, but the mum stresses ccur at B. M B (8.9) 6 B Pa 68.6 MPa d TB 6(00) 6 B Pa 7.7 MPa d B B B MPa Ans B B MPa Ans. Ans. -78 F t T N c / 0.5 / F T n C 600 tan N F b N m t TC 00 P 667 N a 0.50 M 0 450R 58.4(5) R 40.6 N A z Dy Dy M 0 450R 600(5) 667(75) R 7. N A y Dz Dz F 0 R R 6.8 N y Ay Ay F 0 R N z Az R Az Chapter - Rev. B, Page 6/00

63 The mum bendng mment wll ether be at B r C. If ths s nt bvus, sketch shear and bendng mment dagrams. We wll drectly btan the cmbned mments frm each plane. M AB R R N m B Ay Az C Dy Dz M CD R R N m The mum stresses ccur at B. Ans. M B (.9) 6 B Pa 50.5 MPa d TB 6(00) 6 B Pa 7.7 MPa d B B B MPa Ans B B MPa Ans. -79 T 900 Ft 80 lbf c / 0/ F 80 tan lbf T n C F b lbf n t TC 450 P 50 lbf a 6 M 0 0R 65.5(4) 50(4) R 75.9 lbf A z Dy Dy M 0 0R 80(4) R 6 lbf A y Dz Dz F 0 R R 40 lbf y Ay Ay F 0 R lbf z Az R Az Chapter - Rev. B, Page 6/00

64 The mum bendng mment wll ether be at B r C. If ths s nt bvus, sketch shear and bendng mment dagrams. We wll drectly btan the cmbned mments frm each plane. B Ay Az M AB R R lbf n C Dy Dz M CD R R lbf n The mum stresses ccur at C. Ans. MC (88) C 460 ps d.75 6TC 6(450) C 88 ps d C C C ps Ans. 460 C C ps Ans. -80 (a) Rd AB experences cnstant trsn thrughut ts length, and mum bendng mment at the wall. Bth trsnal shear stress and bendng stress wll be mum n the uter surface. The transverse shear wll be very small cmpared t bendng and trsn, due t the reasnably hgh length t dameter rat, s t wll nt dmnate the determnatn f the crtcal lcatn. The crtcal stress element wll be at the wall, at ether the tp (cmpressn) r the bttm (tensn) n the y axs. We wll select the bttm element fr ths analyss. (b) Transverse shear s zer at the crtcal stress elements n the tp and bttm surfaces. / M /64 / 6T / Mc M d x 6 97 ps 6. kps I d d Tr T d xz 509 ps 5.09 kps J d d Chapter - Rev. B, Page 64/00

65 (c) x x 6. 6., xz kps Ans..46 kps Ans. x 6. xz kps Ans. -8 (a) Rd AB experences cnstant trsn thrughut ts length, and mum bendng mments at the wall n bth planes f bendng. Bth trsnal shear stress and bendng stress wll be mum n the uter surface. The transverse shear wll be very small cmpared t bendng and trsn, due t the reasnably hgh length t dameter rat, s t wll nt dmnate the determnatn f the crtcal lcatn. The crtcal stress element wll be n the uter surface at the wall, wth ts crtcal lcatn determned by the plane f the cmbned bendng mments. M y = (00)(8) = 800 lbf n M z = (75)(8) = 400 lbf n M M M tt y z lbf n M y 800 = tan tan 9.7º M z 400 The cmbned bendng mment vectr s at an angle f 9.7º CCW frm the z axs. The crtcal bendng stress lcatn, and thus the crtcal stress element, wll be ±90º frm ths vectr, as shwn. There are tw equally crtcal stress elements, ne n tensn (9.7º CCW frm the z axs) and the ther n cmpressn (60.º CW frm the z axs). We ll cntnue the analyss wth the element n tensn. (b) Transverse shear s zer at the crtcal stress elements n the uter surfaces. Mttc Mtt d / M tt 6 x 6 40 ps 6.4 kps 4 I d /64 d / 6T / Tr T d 4456 ps 4.46 kps J d d Chapter - Rev. B, Page 65/00

66 (c) x x, kps Ans.. kps Ans. 6.4 x kps Ans. -8 (a) Rd AB experences cnstant trsn and cnstant axal tensn thrughut ts length, and mum bendng mments at the wall frm bth planes f bendng. Bth trsnal shear stress and bendng stress wll be mum n the uter surface. The transverse shear wll be very small cmpared t bendng and trsn, due t the reasnably hgh length t dameter rat, s t wll nt dmnate the determnatn f the crtcal lcatn. The crtcal stress element wll be n the uter surface at the wall, wth ts crtcal lcatn determned by the plane f the cmbned bendng mments. M y = (00)(8) (75)(5) = 75 lbf n M z = ( 00)(8) = 600 lbf n M M M tt y z lbf n M y 75 = tan tan 6.º M z 600 The cmbned bendng mment vectr s at an angle f 6.º CW frm the negatve z axs. The crtcal bendng stress lcatn wll be ±90º frm ths vectr, as shwn. Snce there s an axal stress n tensn, the crtcal stress element wll be where the bendng s als n tensn. The crtcal stress element s therefre n the uter surface at the wall, at an angle f 6.º CW frm the y axs. (b) Transverse shear s zer at the crtcal stress element n the uter surface. Mttc Mtt d / M tt 985 x,bend 0 0 ps 0. kps 4 I d /64 d Fx Fx 75 x,axal 95.5 ps 0. kps A d /4 /4, whch s essentally neglgble x x,axal x,bend ps 0. kps Tr 6T ps 5.09 kps J d Chapter - Rev. B, Page 66/00

67 (c) x x, kps Ans..0 kps Ans. 0. x kps Ans. -8 T = ()(00) = 400 lbf n The mum shear stress due t trsn ccurs n the mddle f the lngest sde f the rectangular crss sectn. Frm the table n p. 0, wth b/c =.5/0.5 = 6, = Frm Eq. (-40), T ps 4. kps Ans. bc (a) The crss sectn at A wll experence bendng, trsn, and transverse shear. Bth trsnal shear stress and bendng stress wll be mum n the uter surface. The transverse shear wll be very small cmpared t bendng and trsn, due t the reasnably hgh length t dameter rat, s t wll nt dmnate the determnatn f the crtcal lcatn. The crtcal stress element wll be at ether the tp (cmpressn) r the bttm (tensn) n the y axs. We ll select the bttm element fr ths analyss. (b) Transverse shear s zer at the crtcal stress elements n the tp and bttm surfaces. Mc M d / M 50 x 8 0 ps 8.0 kps I d 4 /64 d / 6T / Tr T d xz 5 79 ps 5. kps J d d Chapter - Rev. B, Page 67/00

68 (c) x x , xz kps Ans. 6.7 kps Ans. x 8.0 xz kps Ans. -85 (a) The crss sectn at A wll experence bendng, trsn, axal, and transverse shear. Bth trsnal shear stress and bendng stress wll be mum n the uter surface. The transverse shear wll be very small cmpared t bendng and trsn, due t the reasnably hgh length t dameter rat, s t wll nt dmnate the determnatn f the crtcal lcatn. The crtcal stress element wll be n the uter surface, wth ts crtcal lcatn determned by the plane f the cmbned bendng mments. M y = (00)() = 600 lbf n M z = (50)() = 750 lbf n M M M tt y z lbf n M 750 z = tan tan 7.4º M y 600 The cmbned bendng mment vectr s at an angle f 7.4º CCW frm the y axs. The crtcal bendng stress lcatn wll be 90º CCW frm ths vectr, where the tensle bendng stress s addtve wth the tensle axal stress. The crtcal stress element s therefre n the uter surface, at an angle f 7.4º CCW frm the z axs. (b) Mttc Mtt d / M tt 450 x,bend 46 4 ps 46. kps 4 I d /64 d Fx Fx 00 x,axal 8 ps 0.8 kps A d /4 /4 x x,axal x,bend ps 46.5 kps Tr 6T ps 5. kps J d Chapter - Rev. B, Page 68/00

69 (c) x x, kps Ans kps Ans x kps Ans. -86 (a) The crss sectn at A wll experence bendng, trsn, axal, and transverse shear. Bth trsnal shear stress and bendng stress wll be mum n the uter surface. The transverse shear wll be very small cmpared t bendng and trsn, due t the reasnably hgh length t dameter rat, s t wll nt dmnate the determnatn f the crtcal lcatn. The crtcal stress element wll be n the uter surface, wth ts crtcal lcatn determned by the plane f the cmbned bendng mments. M y = (00)() ( 00)() = 4700 lbf n M z = (50)() = 750 lbf n M M M tt y z lbf n M 750 z = tan tan 0.º M y 4700 The cmbned bendng mment vectr s at an angle f 0.º CCW frm the y axs. The crtcal bendng stress lcatn wll be 90º CCW frm ths vectr, where the tensle bendng stress s addtve wth the tensle axal stress. The crtcal stress element s therefre n the uter surface, at an angle f 0.º CCW frm the z axs. (b) Mttc Mtt d / M tt 5445 x,bend ps 55.5 kps 4 I d /64 d Chapter - Rev. B, Page 69/00

70 F F 00 8 ps 0.8 kps A d /4 /4 x x x,axal x x,axal x,bend ps 55.8 kps Tr 6T ps 5. kps J d (c) x x, kps Ans..9 kps Ans x 5..8 kps Ans. -87 (a) The crss sectn at A wll experence bendng, trsn, and transverse shear. Bth trsnal shear stress and bendng stress wll be mum n the uter surface, where the stress cncentratn wll als be applcable. The transverse shear wll be very small cmpared t bendng and trsn, due t the reasnably hgh length t dameter rat, s t wll nt dmnate the determnatn f the crtcal lcatn. The crtcal stress element wll be at ether the tp (cmpressn) r the bttm (tensn) n the y axs. We ll select the bttm element fr ths analyss. (b) Transverse shear s zer at the crtcal stress elements n the tp and bttm surfaces. r/ d 0.5 / 0.5 D/ d.5/.5 Kt,trsn.9 Fg. A-5-8 Kt,bend.59 Fg. A-5-9 Mc M 50 x Kt,bend Kt,bend (.59) ps 44.5 kps I d Tr 6T 650 xz Kt,trsn Kt,trsn (.9) 8 ps. kps J d Chapter - Rev. B, Page 70/00

71 (c) x x , xz. 5.0 kps Ans kps Ans. x 44.5 xz. 0.7 kps Ans. -88 (a) The crss sectn at A wll experence bendng, trsn, axal, and transverse shear. Bth trsnal shear stress and bendng stress wll be mum n the uter surface, where the stress cncentratn wll als be applcable. The transverse shear wll be very small cmpared t bendng and trsn, due t the reasnably hgh length t dameter rat, s t wll nt dmnate the determnatn f the crtcal lcatn. The crtcal stress element wll be n the uter surface, wth ts crtcal lcatn determned by the plane f the cmbned bendng mments. M y = (00)() = 600 lbf n M z = (50)() = 750 lbf n M M M tt y z lbf n M 750 z = tan tan 7.4º M y 600 The cmbned bendng mment vectr s at an angle f 7.4º CCW frm the y axs. The crtcal bendng stress lcatn wll be 90º CCW frm ths vectr, where the tensle bendng stress s addtve wth the tensle axal stress. The crtcal stress element s therefre n the uter surface, at an angle f 7.4º CCW frm the z axs. (b) r/ d 0.5 / 0.5 D/ d.5/.5 Ktaxal,.75 Fg. A-5-7 Kt,trsn.9 Fg. A-5-8 Kt,bend.59 Fg. A-5-9 Chapter - Rev. B, Page 7/00

72 Mc M 450 K K (.59) 7 66 ps 7.4 kps I d x,bend t,bend t,bend F 00 K ps kps A /4 x x,axal t,axal x x,axal x,bend ps 74.0 kps Tr 6T 650 Kt,trsn Kt,trsn (.9) 8 ps. kps J d (c) x x, kps Ans kps Ans x. 4.6 kps Ans. -89 (a) The crss sectn at A wll experence bendng, trsn, axal, and transverse shear. Bth trsnal shear stress and bendng stress wll be mum n the uter surface, where the stress cncentratn s als applcable. The transverse shear wll be very small cmpared t bendng and trsn, due t the reasnably hgh length t dameter rat, s t wll nt dmnate the determnatn f the crtcal lcatn. The crtcal stress element wll be n the uter surface, wth ts crtcal lcatn determned by the plane f the cmbned bendng mments. M y = (00)() ( 00)() = 4700 lbf n M z = (50)() = 750 lbf n M M M tt y z lbf n M z 750 = tan tan 0.º M y 4700 Chapter - Rev. B, Page 7/00

73 The cmbned bendng mment vectr s at an angle f 0.º CCW frm the y axs. The crtcal bendng stress lcatn wll be 90º CCW frm ths vectr, where the tensle bendng stress s addtve wth the tensle axal stress. The crtcal stress element s therefre n the uter surface, at an angle f 0.º CCW frm the z axs. (b) r/ d 0.5 / 0.5 D/ d.5/.5 Ktaxal,.75 Fg. A-5-7 Kt,trsn.9 Fg. A-5-8 Kt,bend.59 Fg. A-5-9 Mc M 5445 x,bend Kt,bend Kt,bend (.59) 8885 ps 88. kps I d Fx 00 x,axal Kt,axal ps kps A /4 x x,axal x,bend ps 88.9 kps Tr 6T 650 Kt,trsn Kt,trsn (.9) 8 ps. kps J d (c) x x,. 9.7 kps Ans kps Ans x. 49. kps Ans. -90 (a) M = F(p / 4), c = p / 4, I = bh /, b = d r n t, h = p / Chapter - Rev. B, Page 7/00

74 /4 /4 Mc F p p Fp b I bh dn p 6F b Ans. dnp r t F F 4F (b) a A d /4 d r / 6 r t / / r Ans. Tr T dr / 6T t Ans. 4 J dr / dr (c) The bendng stress causes cmpressn n the x drectn. The axal stress causes cmpressn n the y drectn. The trsnal stress shears acrss the y face n the negatve z drectn. (d) Analyze the stress element frm part (c) usng the equatns develped n parts (a) and (b). d d p n r r.5 r F x b 4584 ps = kps dnp r t 4F y a = = ps =. kps d yz 6 T 6 5 t = = 6.8 ps = 0.68 kps d Use Eq. (-5) fr the three-dmensnal stress element The rts are at 0.54, 4.584, and.476. Thus, the rdered prncpal stresses are = 0.54 kps, =.476 kps, and = kps. Ans. Frm Eq. (-6), the prncpal shear stresses are Chapter - Rev. B, Page 74/00

75 / kps Ans /.554 kps Ans /.49 kps Ans. -9 As shwn n Fg. -, the mum stresses ccur at the nsde fber where r = r. Therefre, frm Eq. (-50) r p r t, r r r r r p Ans. r r r p r r, p. Ans r r r -9 If p = 0, Eq. (-49) becmes p r r r p / r t r r pr r r r r The mum tangental stress ccurs at r = r. S pr t, r r Ans. Fr σ r, we have p r r r p / r r r r pr r r r r S σ r = 0 at r = r. Thus at r = r pr r r r, p. Ans r r r Chapter - Rev. B, Page 75/00

76 -9 The frce due t the pressure n half f the sphere s ressted by the stress that s dstrbuted arund the center plane f the sphere. All planes are the same, s /4 p d pd ( t ) av Ans. dt 4t The radal stress n the nner surface f the shell s, = p Ans. -94 σ t > σ l > σ r τ = (σ t σ r )/ at r = r r r r r r r r r r r.75 p (0 000) 597 ps Ans. r p r r p r r p r -95 σ t > σ l > σ r τ = (σ t σ r )/ at r = r r p r r p r r p r r p r r r r r r r r r r r ( p ) (5 4) mm 6 r r t r r mm Ans. -96 σ t > σ l > σ r τ = (σ t σ r )/ at r = r r p r r p r r p r r p r r r r r r r r r r r 4 (500) 49 ps Ans Frm Eq. (-49) wth p = 0, Chapter - Rev. B, Page 76/00

77 r p r t r r r r p r r r r r σ t > σ l > σ r, and snce σ t and σ r are negatve, τ = (σ r σ t )/ at r = r r r r r r r r r r r r r r.75 p (0 000) 900 ps Ans. r p r r p r r p r r p r Frm Eq. (-49) wth p = 0, r p r t r r r r p r r r r r σ t > σ l > σ r, and snce σ t and σ r are negatve, τ = (σ r σ t )/ at r = r r p r r p r r p r r p r r r r r r r r r r r 6 r r 6 ( p ) mm t r r mm Ans. -99 Frm Eq. (-49) wth p = 0, r p r t r r r r p r r r r r σ t > σ l > σ r, and snce σ t and σ r are negatve, τ = (σ r σ t )/ at r = r Chapter - Rev. B, Page 77/00

78 r r r r r r r r r r r.75 (500) r p r r p r r p r r p 69 ps Ans Frm Table A-0, S y =490 MPa Frm Eq. (-49) wth p = 0, r p r t r r r Maxmum wll ccur at r = r 0.8( 490) 5 9 r, ( ) p t r r t, p 8.8 MPa. Ans r r r (5 ) -0 Frm Table A-0, S y = 7 kps Frm Eq. (-49) wth p = 0, r p r t r r r Maxmum wll ccur at r = r r r 0.8( 7) 0.75 r p t, t, p.4 kps. Ans r r r ( ) -0 Frm Table A-0, S y =490 MPa Frm Eq. (-50) r p r t r r r Maxmum wll ccur at r = r r p r t, r r r r r t, r r p r r (5 9 ) p r r ( ) 0.8(490) (5 9 ) 05 MPa Ans. Chapter - Rev. B, Page 78/00

79 -0 Frm Table A-0, S y =7 MPa Frm Eq. (-50) r p r t r r r Maxmum wll ccur at r = r r p r p( r r ) t, r r r r r p 5.9 ks Ans. t, ( r r ) 0.8(7) ( 0.75 ) r r ( 0.75 ) -04 The lngtudnal stress wll be due t the weght f the vessel abve the mum stress pnt. Frm Table A-5, the unt weght f steel s s = 0.8 lbf/n. The area f the wall s A wall = ( /4)( ) = n The vlume f the wall and dme are V wall = A wall h = (70) = (0 ) n V dme = ( /)( ) = 5.0 (0 ) n The weght f the structure n the wall area at the tank bttm s W = s V ttal = 0.8( ) (0 ) = 4.7(0 ) lbf W 4.70 l 54 ps Awall The mum pressure wll ccur at the bttm f the tank, p = water h. Frm Eq. (-50) wth r r r p r r r t p r r r r r ft (55) ps Ans. 44 n r p r ft r 6.4(55).8 ps. p Ans r r r 44 n Nte: These stresses are very dealzed as the flr f the tank wll restrct the values calculated. Chapter - Rev. B, Page 79/00

80 Snce, = t = 5708 ps, = r = 4 ps and = l = 54 ps. Frm Eq. (-6), ps ps Ans ps -05 Stresses frm addtnal pressure are, Eq. (-5), l 596 ps 50ps ( r ) 50 ps = 50 ps Eq. (-50) t ps 50ps Addng these t the stresses fund n Prb. -04 gves t = = 768 ps = 7.7 kps Ans. r =.8 50 = 7.8 ps Ans. l = = 5709 ps Ans. Nte: These stresses are very dealzed as the flr f the tank wll restrct the values calculated. Frm Eq. (-6) ps ps Ans ps -06 Snce σ t and σ r are bth pstve and σ t > σ r t Frm Eq. (-55), t s mum at r = r = 0.5 n. The term Chapter - Rev. B, Page 80/00

81 lbf/n t (0.9) ps ps Ans. Radal stress: rr r kr r r r Maxma: d r rr k r 0 dr r r rr 0.5(.75) 0.97 n r ps Ans. -07 = (000)/60 = 09.4 rad/s, = 0 0 kg/m, = 0.4, r = 0.0 m, r = 0.5 m Usng Eq. (-55) 0.4 (0.4) 6 t 0(09.4) 0.0 (0.5) (0.5) 0.0 (0) MPa Ans. -08 = ( 000)/60 = 56.6 rad/s, 5/ lbf s / n The mum shear stress ccurs at bre where = t /. Frm Eq. (-55) (0.0) ( t ) 6.749(0 ) (0.75) ps 4 Chapter - Rev. B, Page 8/00

82 = 560 / = 680 ps Ans. -09 = (500)/60 = 66.5 rad/s, mass f blade = m = V = (0.8 / 86) [.5(0)(0.5)] =.45(0 ) lbfs /n F = (m/) r = [.45(0 )/]( 66.5 )(7.5) = 75 lbf A nm = (.5 0.5)(/8) = n nm = F/ A nm = 75/ = ps Ans. Nte: Stress cncentratn Fg. A-5- gves K t =.5 whch ncreases σ and fatgue. -0 = 0.9, E = 07 GPa, r = 0, R = 5 mm, r = 50 mm Eq. (-57), 9 07(0 ) ( )(0.05 0) 9 p 0.05(0 ) () (0.05) (0.05 0) where p s n MPa and s n mm. Maxmum nterference, [ ] 0.0 mm Ans. Mnmum nterference, mn [ ] mm Ans. Frm Eq. () p =.05(0 )(0.0) = 65. MPa Ans. p mn =.05(0 )(0.0005) =.55 MPa Ans. - = 0.9, E = 0 Mps, r = 0, R = n, r = n Eq. (-57), 6 0(0 ) ( )( 0) 7 p.5(0 ) () ( ) ( 0) where p s n ps and s n nches. Maxmum nterference, Chapter - Rev. B, Page 8/00

83 [ ] n Ans. Mnmum nterference, mn [ ] 0 Ans. Frm Eq. (), p =.5(0 7 )(0.0008) = ps Ans. p mn =.5(0 7 )(0) = 0 Ans. - = 0.9, E = 07 GPa, r = 0, R = 5 mm, r = 50 mm Eq. (-57), 9 07(0 ) ( )(0.05 0) 9 p 0.05(0 ) () (0.05) (0.05 0) where p s n MPa and s n mm. Maxmum nterference, [ ] mm Ans. Mnmum nterference, mn [ ] mm Ans. Frm Eq. () p =.05(0 )(0.095) = 9.6 MPa Ans. p mn =.05(0 )(0.009) = 7.9 MPa Ans. - = 0.9, E = 0 Mps, r = 0, R = n, r = n Eq. (-57), 6 0(0 ) ( )( 0) 7 p.5(0 ) () ( ) ( 0) where p s n ps and s n nches. Maxmum nterference, [ ] n Ans. Mnmum nterference, Chapter - Rev. B, Page 8/00

84 mn [ ] Ans. Frm Eq. (), p =.5(0 7 )(0.005) = 940 ps Ans. p mn =.5(0 7 )(0.0005) = 98 Ans. -4 = 0.9, E = 07 GPa, r = 0, R = 5 mm, r = 50 mm Eq. (-57), 9 07(0 ) ( )(0.05 0) 9 p 0.05(0 ) () (0.05) (0.05 0) where p s n MPa and s n mm. Maxmum nterference, [ ] 0.04 mm Ans. Mnmum nterference, mn [ ] 0.05 mm Ans. Frm Eq. () p =.05(0 )(0.04) = 4 MPa Ans. p mn =.05(0 )(0.05) = 69.9 MPa Ans. -5 = 0.9, E = 0 Mps, r = 0, R = n, r = n Eq. (-57), 6 0(0 ) ( )( 0) 7 p.5(0 ) () ( ) ( 0) where p s n ps and s n nches. Maxmum nterference, [ ] n Ans. Mnmum nterference, mn [ ] Ans. Frm Eq. (), Chapter - Rev. B, Page 84/00

85 p =.5(0 7 )(0.007) = 9 0 ps Ans. p mn =.5(0 7 )(0.0009) = 0 0 Ans. -6 Frm Table A-5, E = E = 0 Mps, r = 0, R = n, r =.5 n The radal nterference s n Ans. Eq. (-57), r R R r 6 E p R r r ps 8. kps Ans. The tangental stresses at the nterface fr the nner and uter members are gven by Eqs. (-58) and (-59), respectvely. R r 0 ( t) p (8) 8 ps 8. kps Ans. rr R r 0 r R.5 ( t) p (8) 670 ps.7 kps Ans. rr r R.5-7 Frm Table A-5, E = 0 Mps, E =4.5 Mps, r = 0, R = n, r =.5 n The radal nterference s n Ans. Eq. (-56), p r R R r R E r R E R r 0.00 p 4599 ps Ans The tangental stresses at the nterface fr the nner and uter members are gven by Eqs. (-58) and (-59), respectvely. R r 0 ( t) p (4599) 4599 ps Ans. rr R r 0 Chapter - Rev. B, Page 85/00

86 r R.5 ( t) p (4599) 960 ps Ans. rr r R.5-8 Frm Table A-5, E = E = 0 Mps, r = 0, R = 0.5 n, r = n The mnmum and mum radal nterferences are mn n Ans n Ans. Snce the mnmum nterference s zer, the mnmum pressure and tangental stresses are zer. Ans. The mum pressure s btaned frm Eq. (-57). r R R r E p R r r p ps Ans The mum tangental stresses at the nterface fr the nner and uter members are gven by Eqs. (-58) and (-59), respectvely. R r ( t) p ( 500) 500 ps Ans. rr R r r R 0.5 ( t) p ( 500) ps Ans. rr r R Frm Table A-5, E = 0.4 Mps, E =0 Mps, r = 0, R = n, r =.5 n The mnmum and mum radal nterferences are mn [.00.00] n Ans. [ ] 0.00 n Ans. Eq. (-56), Chapter - Rev. B, Page 86/00

87 p r R R r R E r R E R r p Ans 6 6 mn 6 6 p ps. p p mn ps. kps Ans ps 8.7 kps Ans. The tangental stresses at the nterface fr the nner and uter members are gven by Eqs. (-58) and (-59), respectvely. Mnmum nterference: R r 0 ( t) p mn mn (.). kps Ans. R r 0 r R.5 ( ) p (.) 8.09 kps Ans. t mn mn r R.5 Maxmum nterference: R r 0 ( t) p (8.7) 8.7 kps Ans. R r 0 r R.5 ( ) p (8.7) 48.6 kps Ans. t r R.5-0 d 0 mm, r 7.5 mm, r 57.5 mm Frm Table -4, fr R = 0 mm, rc mm 0 rn mm erc rn mm c rn r mm c r rn mm Ad / 4 (0) / mm M Fr c 4000(47.5) N mm Usng Eq. (-65) fr the bendng stress, and cmbnng wth the axal stress, Chapter - Rev. B, Page 87/00

88 F Mc (9.4677) 00 MPa Ans. A Aer (0.58)(7.5) F Mc (0.5) 95 MPa Ans. A Aer (0.58)(57.5) - d 0.75 n, r.5 n, r.0 n Frm Table -4, fr R = 0.75 n, rc n 0.75 rn n erc rn n c rn r n c r rn n Ad / 4 (0.75) / n M Fr c 750(.65) 8.8 lbf n Usng Eq. (-65) fr the bendng stress, and cmbnng wth the axal stress, F Mc (0.507) 7 0 ps 7. kps Ans. A Aer (0.09)(.5) F Mc (0.969) 69 ps. kps Ans. A Aer (0.09)(.0) - d 6 mm, r 0 mm, r 6 mm Frm Table -4, fr R = mm, rc 0 mm rn.8456 mm erc rn mm c rn r mm c r rn mm Ad / 4 (6) / mm M Fr c 00() 900 N mm Usng Eq. (-65) fr the bendng stress, and cmbnng wth the axal stress, Chapter - Rev. B, Page 88/00

89 F Mc (.8456) MPa Ans. A Aer (0.7544)(0) F Mc (.7544) 45 MPa Ans. A Aer (0.7544)(6) - d 6 mm, r 0 mm, r 6 mm Frm Table -4, fr R = mm, rc 0 mm rn.8456 mm erc rn mm c rn r mm c r rn mm Ad / 4 (6) / mm The angle f the lne f radus centers s Rd / 06/ sn sn 0 Rd R M F Rd / sn / sn N mm Usng Eq. (-65) fr the bendng stress, and cmbnng wth the axal stress, F sn Mc 00sn 0 950(.8456) 6 MPa Ans. A Aer (0.7544)(0) F sn Mc 00sn 0 950(.7544) 7.7 MPa Ans. A Aer (0.7544)(6) Nte that the shear stress due t the shear frce s zer at the surface. -4 d 0.5 n, r 0.5 n, r 0.75 n Frm Table -4, fr R = 0.5 n, rc n 0.5 rn n erc rn n c rn r n c r r n n Chapter - Rev. B, Page 89/00

90 Ad / 4 (0.5) / n M Fr c 75(0.65) lbf n Usng Eq. (-65) fr the bendng stress, and cmbnng wth the axal stress, F Mc (0.8686) 7 48 ps 7.4 kps Ans. A Aer (0.0064)(0.5) F Mc (0.4) 4 95 ps 5.0 kps Ans. A Aer (0.0064)(0.75) -5 d 0.5 n, r 0.5 n, r 0.75 n Frm Table -4, fr R = 0.5 n, rc n 0.5 rn n erc rn n c rn r n c r rn n Ad / 4 (0.5) / n The angle f the lne f radus centers s Rd / / sn sn 0 Rd R M F Rd / sn / sn 0.44 lbf n Usng Eq. (-65) fr the bendng stress, and cmbnng wth the axal stress, F sn Mc 75sn 0.44(0.8686) 8 76 ps 8.7 kps Ans. A Aer (0.0064)(0.5) F sn Mc 75sn 0.44(0.4) 478 ps.5 kps Ans. A Aer (0.0064)(0.75) Nte that the shear stress due t the shear frce s zer at the surface. -6 Mc (4) 0.5(0.094) (a) 80 ps 8.0 kps Ans. I (0.75) / (b) r = 0.5 n, r = r + h = = 0.44 n Frm Table -4, Chapter - Rev. B, Page 90/00

Chapter 3, Solution 1C.

Chapter 3, Solution 1C. COSMOS: Cmplete Onlne Slutns Manual Organzatn System Chapter 3, Slutn C. (a If the lateral surfaces f the rd are nsulated, the heat transfer surface area f the cylndrcal rd s the bttm r the tp surface

More information

Conduction Heat Transfer

Conduction Heat Transfer Cnductn Heat Transfer Practce prblems A steel ppe f cnductvty 5 W/m-K has nsde and utsde surface temperature f C and 6 C respectvely Fnd the heat flw rate per unt ppe length and flux per unt nsde and per

More information

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function Mdellng Physcal Systems The Transer Functn Derental Equatns U Plant Y In the plant shwn, the nput u aects the respnse the utput y. In general, the dynamcs ths respnse can be descrbed by a derental equatn

More information

Spring 2002 Lecture #17

Spring 2002 Lecture #17 1443-51 Sprng 22 Lecture #17 r. Jaehn Yu 1. Cndtns fr Equlbrum 2. Center f Gravty 3. Elastc Prpertes f Slds Yung s dulus Shear dulus ulk dulus Tday s Hmewrk Assgnment s the Hmewrk #8!!! 2 nd term eam n

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California Vlume Change fr a Unaxal Stress Istrpc lastcty n 3D Istrpc = same n all drectns The cmplete stress-stran relatns fr an strpc elastc Stresses actng n a dfferental vlume element sld n 3D: (.e., a generalzed

More information

Physics 107 HOMEWORK ASSIGNMENT #20

Physics 107 HOMEWORK ASSIGNMENT #20 Physcs 107 HOMEWORK ASSIGNMENT #0 Cutnell & Jhnsn, 7 th etn Chapter 6: Prblems 5, 7, 74, 104, 114 *5 Cncept Smulatn 6.4 prves the ptn f explrng the ray agram that apples t ths prblem. The stance between

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

Conservation of Energy

Conservation of Energy Cnservatn f Energy Equpment DataStud, ruler 2 meters lng, 6 n ruler, heavy duty bench clamp at crner f lab bench, 90 cm rd clamped vertcally t bench clamp, 2 duble clamps, 40 cm rd clamped hrzntally t

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Summer 2014 Fnal Exam NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

More information

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1 Lecture 2 Heat Exchangers Heat Exchangers Chee 38 Heat Exchangers A heat exchanger s used t exchange heat between tw fluds f dfferent temperatures whch are separated by a sld wall. Heat exchangers are

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Frst CIRCLE YOUR DIVISION: Dv. 1 (9:30 am) Dv. (11:30 am) Dv. 3 (:30 m) Prf. Ruan Prf. Na Mr. Sngh Schl f Mechancal Engneerng Purdue Unversty ME315 Heat and Mass ransfer Eam #3 Wednesday Nvember 17 010

More information

I have not received unauthorized aid in the completion of this exam.

I have not received unauthorized aid in the completion of this exam. ME 270 Sprng 2013 Fnal Examnaton Please read and respond to the followng statement, I have not receved unauthorzed ad n the completon of ths exam. Agree Dsagree Sgnature INSTRUCTIONS Begn each problem

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Sprng 2014 Fnal Exam NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

More information

Transient Conduction: Spatial Effects and the Role of Analytical Solutions

Transient Conduction: Spatial Effects and the Role of Analytical Solutions Transent Cnductn: Spatal Effects and the Rle f Analytcal Slutns Slutn t the Heat Equatn fr a Plane Wall wth Symmetrcal Cnvectn Cndtns If the lumped capactance apprxmatn can nt be made, cnsderatn must be

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:

More information

MECHANICS OF SOLIDS TORSION TUTORIAL 2 TORSION OF THIN WALLED SECTIONS AND THIN STRIPS

MECHANICS OF SOLIDS TORSION TUTORIAL 2 TORSION OF THIN WALLED SECTIONS AND THIN STRIPS MECHANICS OF SOLIDS ORSION UORIAL ORSION OF HIN WALLED SECIONS AND HIN SRIPS Yu shuld judge yur prgress by cmpleting the self assessment exercises. On cmpletin f this tutrial yu shuld be able t d the fllwing.

More information

Fundamental Concepts in Structural Plasticity

Fundamental Concepts in Structural Plasticity Lecture Fundamental Cncepts in Structural Plasticit Prblem -: Stress ield cnditin Cnsider the plane stress ield cnditin in the principal crdinate sstem, a) Calculate the maximum difference between the

More information

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas Sectn : Detaled Slutns f Wrd Prblems Unt : Slvng Wrd Prblems by Mdelng wth Frmulas Example : The factry nvce fr a mnvan shws that the dealer pad $,5 fr the vehcle. If the stcker prce f the van s $5,, hw

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Fall 2013 Fnal Exam NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

More information

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Fall 2012 Fnal Exam Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem

More information

CHAPTER 8b Static Equilibrium Units

CHAPTER 8b Static Equilibrium Units CHAPTER 8b Static Equilibrium Units The Cnditins fr Equilibrium Slving Statics Prblems Stability and Balance Elasticity; Stress and Strain The Cnditins fr Equilibrium An bject with frces acting n it, but

More information

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power EE 204 Lecture 25 Mre Examples n Pwer Factr and the Reactve Pwer The pwer factr has been defned n the prevus lecture wth an example n pwer factr calculatn. We present tw mre examples n ths lecture. Example

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

{ } MATH section 7.2 Volumes (Washer Method) Page 1 of 8. = = 5 ; about x-axis. y x y x. r i. x 5= interval: 0. = x + 0 = x + = + = +

{ } MATH section 7.2 Volumes (Washer Method) Page 1 of 8. = = 5 ; about x-axis. y x y x. r i. x 5= interval: 0. = x + 0 = x + = + = + MATH sectn 7. Vlumes (Washer Methd) Page f 8 6) = = 5 ; abut x-axs x x x = 5 x 5 ( x+ )( x ) = 5 x 5= x+ = x = 5 x= x= ( x ) = nterval: x r = (5 x ) + = (5 x ) r = x + = x A = (5 x ) = (5 x + x ) A = x

More information

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER 70 CHAPTER 3 ANALYSIS OF KY BOOST CONERTER 3.1 Intrductn The KY Bst Cnverter s a recent nventn made by K.I.Hwu et. al., (2007), (2009a), (2009b), (2009c), (2010) n the nn-slated DC DC cnverter segment,

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

Increase Decrease Remain the Same (Circle one) (2 pts)

Increase Decrease Remain the Same (Circle one) (2 pts) ME 270 Sample Fnal Eam PROBLEM 1 (25 ponts) Prob. 1 questons are all or nothng. PROBLEM 1A. (5 ponts) FIND: A 2000 N crate (D) s suspended usng ropes AB and AC and s n statc equlbrum. If θ = 53.13, determne

More information

Analysis The characteristic length of the junction and the Biot number are

Analysis The characteristic length of the junction and the Biot number are -4 4 The temerature f a gas stream s t be measured by a thermule. The tme t taes t regster 99 erent f the ntal ΔT s t be determned. Assumtns The juntn s sheral n shae wth a dameter f D 0.00 m. The thermal

More information

CHAPTER 17 COMPOSITES

CHAPTER 17 COMPOSITES CHAPTER 17 COMPOSITES EXERCISE 64, Page 373 1. Calculate the stiffness matrix (Q) and derive the (A), (B) and (D) matrices fr a sheet f aluminium 1 mm thick. The fllwing material prperties can be assumed:

More information

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004 Jós, G GEE 401 wer Electrnc Systems Slutn t Mdterm Examnatn Fall 2004 Specal nstructns: - Duratn: 75 mnutes. - Materal allwed: a crb sheet (duble sded 8.5 x 11), calculatr. - Attempt all questns. Make

More information

Thermodynamics of Materials

Thermodynamics of Materials Thermdynamcs f Materals 14th Lecture 007. 4. 8 (Mnday) FUGACITY dg = Vd SdT dg = Vd at cnstant T Fr an deal gas dg = (RT/)d = RT dln Ths s true fr deal gases nly, but t wuld be nce t have a smlar frm fr

More information

3-42. Chapter 15 Steady Heat Conduction. Heat Conduction in Cylinders and Spheres

3-42. Chapter 15 Steady Heat Conduction. Heat Conduction in Cylinders and Spheres Chapter 5 Steady Heat Cnductn Heat Cnductn n Cylnders and Spheres 3-64C When the dameter f cylnder s very small cmpared t ts length, t can be treated as an ndefntely lng cylnder. Cylndrcal rds can als

More information

Module B3. VLoad = = V S V LN

Module B3. VLoad = = V S V LN Mdule B Prblem The -hase lads are cnnected n arallel. One s a urely resste lad cnnected n wye. t cnsumes 00kW. The secnd s a urely nducte 00kR lad cnnected n wye. The thrd s a urely caacte 00kR lad cnnected

More information

A/2 l,k. Problem 1 STRATEGY. KNOWN Resistance of a complete spherical shell: r rk. Inner and outer radii

A/2 l,k. Problem 1 STRATEGY. KNOWN Resistance of a complete spherical shell: r rk. Inner and outer radii Prblem 1 STRATEGY KNOWN Resstance f a cmplete sphercal shell: R ( r r / (4 π r rk sphere Inner an uter ra r an r, SOLUTION Part 1: Resstance f a hemsphercal shell: T calculate the resstance f the hemsphere,

More information

Wp/Lmin. Wn/Lmin 2.5V

Wp/Lmin. Wn/Lmin 2.5V UNIVERITY OF CALIFORNIA Cllege f Engneerng Department f Electrcal Engneerng and Cmputer cences Andre Vladmrescu Hmewrk #7 EEC Due Frday, Aprl 8 th, pm @ 0 Cry Prblem #.5V Wp/Lmn 0.0V Wp/Lmn n ut Wn/Lmn.5V

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Grade 12 Physics Exam Review

Grade 12 Physics Exam Review Grade 12 Physcs Exam Revew 1. A 40 kg wagn s pulled wth an appled frce f 50 N [E 37 degrees abve the hrzntal. The wagn mves 8 m [E] hrzntally whle 5 N f frctn act. Fnd the wrk dne n the wagn by the...

More information

Analytical Modeling of Natural Convection in Horizontal Annuli

Analytical Modeling of Natural Convection in Horizontal Annuli Analytcal Mdelng f Natural Cnvectn n Hrzntal Annul Peter Teertstra, M. Mchael Yvanvch, J. Rchard Culham Mcrelectrncs Heat Transfer Labratry Department f Mechancal Engneerng Unversty f Waterl Waterl, Ontar,

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

WYSE Academic Challenge 2014 Sectional Physics Exam SOLUTION SET. [ F][ d] [ t] [ E]

WYSE Academic Challenge 2014 Sectional Physics Exam SOLUTION SET. [ F][ d] [ t] [ E] WYSE Aaem Challenge 0 Setnal hss Exam SOLUTION SET. Crret answer: E Unts Trque / unts pwer: [ r ][ ] [ E] [ t] [ r ][ ][ t] [ E] [ r ][ ][ t] [ ][ ] [ r ][ t] [ ] m s m s. Crret answer: D The net external

More information

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES Mhammadreza Dlatan Alreza Jallan Department f Electrcal Engneerng, Iran Unversty f scence & Technlgy (IUST) e-mal:

More information

Physic 231 Lecture 33

Physic 231 Lecture 33 Physc 231 Lecture 33 Man pnts f tday s lecture: eat and heat capacty: Q cm Phase transtns and latent heat: Q Lm ( ) eat flw Q k 2 1 t L Examples f heat cnductvty, R values fr nsulatrs Cnvectn R L / k Radatn

More information

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

V. Electrostatics Lecture 27a: Diffuse charge at electrodes V. Electrstatcs Lecture 27a: Dffuse charge at electrdes Ntes by MIT tudent We have talked abut the electrc duble structures and crrespndng mdels descrbng the n and ptental dstrbutn n the duble layer. Nw

More information

WYSE Academic Challenge 2004 Sectional Physics Solution Set

WYSE Academic Challenge 2004 Sectional Physics Solution Set WYSE Acadec Challenge 004 Sectnal Physcs Slutn Set. Answer: e. The axu pssble statc rctn r ths stuatn wuld be: ax µ sn µ sg (0.600)(40.0N) 4.0N. Snce yur pushng rce s less than the axu pssble rctnal rce,

More information

Chapter 6 : Gibbs Free Energy

Chapter 6 : Gibbs Free Energy Wnter 01 Chem 54: ntrductry hermdynamcs Chapter 6 : Gbbs Free Energy... 64 Defntn f G, A... 64 Mawell Relatns... 65 Gbbs Free Energy G(,) (ure substances)... 67 Gbbs Free Energy fr Mtures... 68 ΔG f deal

More information

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review Chapter Four States of Stress Part Three When makng your choce n lfe, do not neglect to lve. Samuel Johnson Revew When we use matrx notaton to show the stresses on an element The rows represent the axs

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electrnc Crcuts Feedback & Stablty Sectns f Chapter 2. Kruger Feedback & Stablty Cnfguratn f Feedback mplfer S S S S fb Negate feedback S S S fb S S S S S β s the feedback transfer functn Implct

More information

Introduction to Electronic circuits.

Introduction to Electronic circuits. Intrductn t Electrnc crcuts. Passve and Actve crcut elements. Capactrs, esstrs and Inductrs n AC crcuts. Vltage and current dvders. Vltage and current surces. Amplfers, and ther transfer characterstc.

More information

Chapter 6. Dielectrics and Capacitance

Chapter 6. Dielectrics and Capacitance Chapter 6. Dielectrics and Capacitance Hayt; //009; 6- Dielectrics are insulating materials with n free charges. All charges are bund at mlecules by Culmb frce. An applied electric field displaces charges

More information

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1 Crdinatr: Al-Shukri Thursday, May 05, 2011 Page: 1 1. Particles A and B are electrically neutral and are separated by 5.0 μm. If 5.0 x 10 6 electrns are transferred frm particle A t particle B, the magnitude

More information

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m) 7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to

More information

Exploiting vector space properties for the global optimization of process networks

Exploiting vector space properties for the global optimization of process networks Exptng vectr space prpertes fr the gbal ptmzatn f prcess netwrks Juan ab Ruz Ignac Grssmann Enterprse Wde Optmzatn Meetng March 00 Mtvatn - The ptmzatn f prcess netwrks s ne f the mst frequent prblems

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback PHYSICS 536 Experment : Applcatns f the Glden Rules fr Negatve Feedback The purpse f ths experment s t llustrate the glden rules f negatve feedback fr a varety f crcuts. These cncepts permt yu t create

More information

Lecture 7 Further Development of Theory and Applications

Lecture 7 Further Development of Theory and Applications P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 7 Further Develpment f Ther and Applicatins Hke s law fr plane stress. Relatinship between the elastic cnstants. lume change and bulk mdulus. Spherical

More information

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76 PHYS 1101 Practce problem set 1, Chapter 3: 1,, 4, 57, 61, 83 Chapter 33: 7, 1, 3, 38, 44, 49, 76 3.1. Vsualze: Please reer to Fgure Ex3.1. Solve: Because B s n the same drecton as the ntegraton path s

More information

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada Department f Cvl Engneerng & Appled Mechancs McGll Unversty, Mntreal, Quebec Canada CIVE 90 THEMODYNAMICS & HEAT TANSFE Assgnment #6 SOUTIONS. Cnsder a.-m hgh and -m-wde duble-pane wndw cnsstng f tw 3-mmthck

More information

Feedback Principle :-

Feedback Principle :- Feedback Prncple : Feedback amplfer s that n whch a part f the utput f the basc amplfer s returned back t the nput termnal and mxed up wth the nternal nput sgnal. The sub netwrks f feedback amplfer are:

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

Kinetics of Particles. Chapter 3

Kinetics of Particles. Chapter 3 Kinetics f Particles Chapter 3 1 Kinetics f Particles It is the study f the relatins existing between the frces acting n bdy, the mass f the bdy, and the mtin f the bdy. It is the study f the relatin between

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 6 Shearing Stress in Beams & Thin-Walled Members

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 6 Shearing Stress in Beams & Thin-Walled Members EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 6 Shearing Stress in Beams & Thin-Walled Members Beams Bending & Shearing EMA 3702 Mechanics & Materials Science Zhe Cheng (2018)

More information

GAUSS' LAW E. A. surface

GAUSS' LAW E. A. surface Prf. Dr. I. M. A. Nasser GAUSS' LAW 08.11.017 GAUSS' LAW Intrductin: The electric field f a given charge distributin can in principle be calculated using Culmb's law. The examples discussed in electric

More information

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o? Crcuts Op-Amp ENGG1015 1 st Semester, 01 Interactn f Crcut Elements Crcut desgn s cmplcated by nteractns amng the elements. Addng an element changes vltages & currents thrughut crcut. Example: clsng a

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Lucas Imperfect Information Model

Lucas Imperfect Information Model Lucas Imerfect Infrmatn Mdel 93 Lucas Imerfect Infrmatn Mdel The Lucas mdel was the frst f the mdern, mcrfundatns mdels f aggregate suly and macrecnmcs It bult drectly n the Fredman-Phels analyss f the

More information

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2. Phys10 Final-133 Zer Versin Crdinatr: A.A.Naqvi Wednesday, August 13, 014 Page: 1 Q1. A string, f length 0.75 m and fixed at bth ends, is vibrating in its fundamental mde. The maximum transverse speed

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Desgn f Analg Integrated Crcuts I. Amplfers Desgn f Analg Integrated Crcuts Fall 2012, Dr. Guxng Wang 1 Oerew Basc MOS amplfer structures Cmmn-Surce Amplfer Surce Fllwer Cmmn-Gate Amplfer Desgn f Analg

More information

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution 39th Internatinal Physics Olympiad - Hani - Vietnam - 8 Theretical Prblem N. /Slutin Slutin. The structure f the mrtar.. Calculating the distance TG The vlume f water in the bucket is V = = 3 3 3 cm m.

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Energy & Work

Energy & Work rk Dne by a Cntant Frce 6.-6.4 Energy & rk F N m jule () J rk Dne by a Cntant Frce Example Pullng a Sutcae-n-heel Fnd the wrk dne the rce 45.0-N, the angle 50.0 degree, and the dplacement 75.0 m. 3 ( F

More information

Surface and Contact Stress

Surface and Contact Stress Surface and Cntact Stress The cncept f the frce is fundamental t mechanics and many imprtant prblems can be cast in terms f frces nly, fr example the prblems cnsidered in Chapter. Hwever, mre sphisticated

More information

6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS

6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS 6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS Elutratn s the prcess n whch fne partcles are carred ut f a fludzed bed due t the flud flw rate passng thrugh the bed. Typcally, fne partcles are elutrated

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V. Physcs 4 Solutons to Chapter 3 HW Chapter 3: Questons:, 4, 1 Problems:, 15, 19, 7, 33, 41, 45, 54, 65 Queston 3-1 and 3 te (clockwse), then and 5 te (zero), then 4 and 6 te (counterclockwse) Queston 3-4

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

JEE ADVANCE : 2015 P1 PHASE TEST 4 ( )

JEE ADVANCE : 2015 P1 PHASE TEST 4 ( ) I I T / P M T A C A D E M Y IN D IA JEE ADVANCE : 5 P PHASE TEST (.8.7) ANSWER KEY PHYSICS CHEMISTRY MATHEMATICS Q.No. Answer Key Q.No. Answer Key Q.No. Answer Key. () () (). () () (). (9) () (). () ()

More information

ENGI 4430 Parametric Vector Functions Page 2-01

ENGI 4430 Parametric Vector Functions Page 2-01 ENGI 4430 Parametric Vectr Functins Page -01. Parametric Vectr Functins (cntinued) Any nn-zer vectr r can be decmpsed int its magnitude r and its directin: r rrˆ, where r r 0 Tangent Vectr: dx dy dz dr

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Bsystems Mdeln and Cntrl Cell Electrcal Actvty: In Mvement acrss Cell Membrane and Membrane Ptental Dr. Zv Rth (FAU) 1 References Hppensteadt-Peskn, Ch. 3 Dr. Rbert Farley s lecture ntes Inc Equlbra

More information

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods Chapter Eght Energy Method 8. Introducton 8. Stran energy expressons 8.3 Prncpal of statonary potental energy; several degrees of freedom ------ Castglano s frst theorem ---- Examples 8.4 Prncpal of statonary

More information

1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F.

1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F. Hmewrk- Capter 25 4. REASONING Te bject stance ( = cm) s srter tan te cal lengt ( = 8 cm) te mrrr, s we expect te mage t be vrtual, appearng ben te mrrr. Takng Fgure 25.8a as ur mel, we wll trace ut: tree

More information

FUZZY FINITE ELEMENT METHOD

FUZZY FINITE ELEMENT METHOD FUZZY FINITE ELEMENT METHOD RELIABILITY TRUCTURE ANALYI UING PROBABILITY 3.. Maxmum Normal tress Internal force s the shear force, V has a magntude equal to the load P and bendng moment, M. Bendng moments

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with Schl f Aerspace Chemcal D: Mtvatn Prevus D Analyss cnsdered systems where cmpstn f flud was frzen fxed chemcal cmpstn Chemcally eactng Flw but there are numerus stuatns n prpulsn systems where chemcal

More information

205MPa and a modulus of elasticity E 207 GPa. The critical load 75kN. Gravity is vertically downward and the weight of link 3 is W3

205MPa and a modulus of elasticity E 207 GPa. The critical load 75kN. Gravity is vertically downward and the weight of link 3 is W3 ME 5 - Machine Design I Fall Semester 06 Name f Student: Lab Sectin Number: Final Exam. Open bk clsed ntes. Friday, December 6th, 06 ur name lab sectin number must be included in the spaces prvided at

More information

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle? Physics 0 Public Exam Questins Unit 1: Circular Mtin NAME: August 009---------------------------------------------------------------------------------------------------------------------- 1. Which describes

More information

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below. hapter 4, Slutn. H ( H(, where H π H ( φ H ( tan - ( Th a hghpa lter. The requency repne the ame a that r P.P.4. except that. Thu, the ketche H and φ are hwn belw. H.77 / φ 9 45 / hapter 4, Slutn. H(,

More information

Assume that the water in the nozzle is accelerated at a rate such that the frictional effect can be neglected.

Assume that the water in the nozzle is accelerated at a rate such that the frictional effect can be neglected. 1 HW #3: Cnservatin f Linear Mmentum, Cnservatin f Energy, Cnservatin f Angular Mmentum and Turbmachines, Bernulli s Equatin, Dimensinal Analysis, and Pipe Flws Prblem 1. Cnservatins f Mass and Linear

More information

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle? Physics 3204 Public Exam Questins Unit 1: Circular Mtin NAME: August 2009---------------------------------------------------------------------------------------------------------------------- 12. Which

More information

The Schrödinger Equation

The Schrödinger Equation Chapter 1 The Schrödnger Equaton 1.1 (a) F; () T; (c) T. 1. (a) Ephoton = hν = hc/ λ =(6.66 1 34 J s)(.998 1 8 m/s)/(164 1 9 m) = 1.867 1 19 J. () E = (5 1 6 J/s)( 1 8 s) =.1 J = n(1.867 1 19 J) and n

More information

Experiment 1 Mass, volume and density

Experiment 1 Mass, volume and density Experment 1 Mass, volume and densty Purpose 1. Famlarze wth basc measurement tools such as verner calper, mcrometer, and laboratory balance. 2. Learn how to use the concepts of sgnfcant fgures, expermental

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

Chem 204A, Fall 2004, Mid-term (II)

Chem 204A, Fall 2004, Mid-term (II) Frst tw letters f yur last name Last ame Frst ame McGll ID Chem 204A, Fall 2004, Md-term (II) Read these nstructns carefully befre yu start tal me: 2 hurs 50 mnutes (6:05 PM 8:55 PM) 1. hs exam has ttal

More information

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp.

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp. Clck to Vew Mathcad Document 2011 Knovel Corp. Buldng Structural Desgn. homas P. Magner, P.E. 2011 Parametrc echnology Corp. Chapter 3: Renforced Concrete Slabs and Beams 3.2 Renforced Concrete Beams -

More information

Dynamic Systems on Graphs

Dynamic Systems on Graphs Prepared by F.L. Lews Updated: Saturday, February 06, 200 Dynamc Systems on Graphs Control Graphs and Consensus A network s a set of nodes that collaborates to acheve what each cannot acheve alone. A network,

More information

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _ Dsrder and Suppse I have 10 partcles that can be n ne f tw states ether the blue state r the red state. Hw many dfferent ways can we arrange thse partcles amng the states? All partcles n the blue state:

More information

Types of Gear Pg xxx. Spur Gear Teeth is parallel to axis of rotation Can transmit power between parallel shaft The simplest form for gear

Types of Gear Pg xxx. Spur Gear Teeth is parallel to axis of rotation Can transmit power between parallel shaft The simplest form for gear [Pg / 2] Gears Objectives. 2. 3. 4. 5. Cmpute the frces exerted n gear teeth as they rtate and transmit pwer. Use apprpriate stress analyses t determine the relatinships amng the applied frces, the gemetry

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 4 ME 76 Spring 017-018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a

More information