Bayesian Nonparametric Meta-Analysis Model George Karabatsos University of Illinois-Chicago (UIC)

Size: px
Start display at page:

Download "Bayesian Nonparametric Meta-Analysis Model George Karabatsos University of Illinois-Chicago (UIC)"

Transcription

1 Bayesian Nonparametric Meta-Analysis Model George Karabatsos University of Illinois-Chicago (UIC) Collaborators: Elizabeth Talbott, UIC. Stephen Walker, UT-Austin. August 9, 5, 4:5-4:45pm JSM 5 Meeting, Seattle Session on Multivariate Meta-Analysis 4: PM - 5:5 PM, CC-3 Organizer: Simina M. Boca, Georgetown University Chair: Valerie Langberg, Brown University Supported by NSF Research Grant SES-5637.

2 I. Aims of meta analysis Outline A. Meta analysis data framework. Examples of effect sizes. B. Aims of meta analysis. (Main aim: infer overall effect size from a universe of studies) C. Publication bias assessment. D. Conventional normal models for meta-analysis. E. Potential issues: Normality assumptions about errors (and random effects), when not supported by the effect size data, can cause misleading meta-analytic conclusions. II. Proposed solution: A Bayesian nonparametric (BNP) meta-analysis model, which allows the entire effect-size distribution (density) to vary flexibly as a function of covariates. A covariate-dependent infinite mixture model. III. Illustration of the BNP model on real meta-analytic data involving behavioral genetics research of antisocial behavior. IV. Conclusions. Free menu-based software for BNP analysis.

3 Meta Analysis Data Framework Data: D n = {y i,, x i } i=:n i n' ( n) studies provide data on n study reports y i of a common effect size variable (Y). Each effect size report y i has sample size n i, sampling variance, i and covariates x i = (, x i,, x ip ) describing study characteristics. 3

4 Meta Analysis Data Framework Examples of effect sizes: Effect-size Description Effect-size (y i ) Variance ( i ) Unbiased standardized mean difference, two independent groups (Hedges, 98). i i n i i n i i n i n i c n i n i n i n i y i n i n i c ; c 3 4 n i n i Fisher z transformation of the correlation i. log i i n i 3 Log odds ratio for two binary (-) variables. log n i/n i n i /n i n i n i n i n i More examples: E.g., see Cooper, Hedges, Valentine (9). 4

5 Aims of Meta Analysis Given a set of meta analytic data, D n = {y i,, x i } i=:n, infer the overall effect size, after accounting for the covariates x i and the observation weights /. Basic (regression) Parameters: = (,,, p ) T. Mean overall effect size: i i Publication bias (e.g., file drawer effect) may affect meta-analytic conclusions. Publication bias may be assessed from the data by / including ˆ as one of the p covariates in x. This provides regression analysis for the funnel plot (Egger et al., 997; Thompson & Sharp, 999). Significant regression slope coefficient for the covariate suggests a presence of publication bias. 5 ˆ /

6 Conventional Meta Analytic Models General f y i x i, i ; n yi x i i t i, i, i,,n; Normal x Model: i x i p x ip ;,, n n n, I n M n ; t n,, t,,t. Meta-analysis model: (,, p ) =. Meta-regression-analysis model: (,, p ) can be non-zero. Fixed effects model: = = =. -level random effects model: = =. 3-level random effects model: =. Model with correl. between study reports (Stevens-Ta.9). Each model can be fit by restricted ML (Harville,977) or by Bayesian MCMC methods (Spiegelhalter et.al. 9). 6

7 Conventional Meta Analytic Models General f y i x i, i ; n yi x i i t i, i, i,,n; Normal x Model: i x i p x ip ;,, n n n, I n M n ; t n,, t,,t. However, the normality assumptions (above) may not be exactly true for real meta-analytic data. This may cast doubt on the adequacy of the meta-analysis. Also, the normal model focuses inferences on how the mean effect size changes as a function of x, instead of how additional features of the effect size distribution (e.g., variance, quantiles, entire distribution/density, etc.) changes as a function of x. 7

8 Proposed BNP Meta-Analytic Model f y i x i, i ; n y i x i, i dgx j n y i j x i, i j x i,, i,,n, j x i, j x i / j x i / j n,, j,,, n,v k, k n, v k v k.5 k.5 k, k,,p ga a /,a / un,b, n p, 5 I p ga,. 8

9 Density f(y x) BNP Meta-Analytic Model (behavior) = / = / = = Mixture weight j Index j - Index j - Index j - Index j y - y - y - y 9

10 Proposed BNP Meta-Analytic Model f y i x i, i ; n y i x i, i dgx n y i j x i, i j x i,, i,,n, j j x i, j x i / j x i / j n,, j,,, n,v k, k n, v k v k.5 k.5 k, k,,p ga a /,a / un,b, n p, 5 I p ga,. The posterior distribution of the model can be estimated by standard MCMC Gibbs sampling methods. Slice sampler for. See Karabatsos & Walker (, Appendix, Elec. J Stat.).

11 MZ-DZ Twin Comparison Sample Probability Density BNP Meta-Analysis Data Illustration Heritability (Effect Size) Data Heritability and Variance (+) Heritability Distribution Over Studies Mean=.5 Med=.5 Var= Skew=-. Kurt=8.3.5 Heritability Falconer (& Mackay 996) (antisocial) heritability: Sampling Variance: 4 MZ /n MZ DZ /n DZ h MZ DZ

12 BNP Meta-Analysis Data Illustration 4 covariates in data: Publication year; Square root heritability variance SE(ES) to assess for publication bias; Indicators (-) of female status versus male; Ten indicators of antisocial behavior ratings done by mother, father, teacher, self, independent observer, and ratings done on conduct disorder, aggression, delinquency, and externalizing antisocial behavior; Indicator of whether weighted aver of heritability measures was taken within study over different groups of raters who rated the same twins; Mean of the study subjects in months; Indicators of hi-majority ( 6%) white twins in study, zygosity obtained by questionnaire or through DNA samples, study inclusion of low socioeconomic (SES) status subjects versus mid-to-high SES subjects, missing SES information, representative sample, longitudinal sample; Latitude and longitude of study.

13 BNP Meta-Analysis Data Illustration Model D m Model D m BNP-ss. 6 DL-x 5. 5 DL L-x 5. 5 L-, by MZ-DZ 4. 8 L-, by Study L FE DL-ss 5. 4 L-ss, by Study 6. L-ss, by MZ-DZ 5. 4 FE-ss 6. 3L-ss 5. 4 L-x, by Study 6. L-x, by MZ-DZ 5. 5 FE-x 6. Model comparisons: D(m) is posterior predictive mean-square error criterion (Laud & Ibrahim, 995). 3

14 Heritability Heritability BNP Meta-Analysis Data Illustration.8.8 Mom.8 Dad SE(ES) Teacher.8 Self.8 Observer Posterior predictive median and IQR of heritability, as a function of rater type and child. Overall mean heritability ES estimate (of β₀) was.5. 4

15 Heritability Heritability BNP Meta-Analysis Data Illustration.8.8 Mom.8 Dad SE(ES) Teacher.8 Self.8 Observer The SE(ES) covariate was not significant according to the spike-and-slab prior indicators. Thus, no significant publication bias in data. 5

16 Conclusions We proposed a useful and flexible BNP model for meta-analysis. Illustrated the model on real data. Better predictive utility vs. normal meta-analytic models. This leads to more reliable inferences. Provides richer meta-analysis compared to normal models. E.g., provides quantile regression of effect size. Article on BNP meta-analytic model: Karabatsos, G., Talbott, E., & Walker, S.G. (4). A Bayesian nonparametric meta-analysis model. Research Synthesis Methods, 6(),

17 Conclusions Free User-friendly menu-driven software for BNP model (user point and click): Paper/software user s manual: Software currently offers 83 Bayesian mixture models, including normal mixture models, several versions of the BNP infinite-mixture model of this talk, as well as other BNP infinite-mixture models, with mixture distribution assigned a prior defined by either the Dirichlet process (Ferguson 973); Pitman-Yor (997) process, the normalized stable process (Kingman, 975); geometric weights process (Fuentes-Garcia, Mena, Walker ); or the normalized inverse-gaussian process (Lijoi et al. 5). 7

18 8

A Workshop on Bayesian Nonparametric Regression Analysis

A Workshop on Bayesian Nonparametric Regression Analysis A Workshop on Bayesian Nonparametric Regression Analysis George Karabatsos University of Illinois-Chicago Methodological Illustration Presentation (90 min.) Modern Modeling Methods (M 3 ) Conference University

More information

Bayesian Nonparametric Rasch Modeling: Methods and Software

Bayesian Nonparametric Rasch Modeling: Methods and Software Bayesian Nonparametric Rasch Modeling: Methods and Software George Karabatsos University of Illinois-Chicago Keynote talk Friday May 2, 2014 (9:15-10am) Ohio River Valley Objective Measurement Seminar

More information

Bayesian Methods for Testing Axioms of Measurement

Bayesian Methods for Testing Axioms of Measurement Bayesian Methods for Testing Axioms of Measurement George Karabatsos University of Illinois-Chicago University of Minnesota Quantitative/Psychometric Methods Area Department of Psychology April 3, 2015,

More information

Bayesian nonparametric predictive approaches for causal inference: Regression Discontinuity Methods

Bayesian nonparametric predictive approaches for causal inference: Regression Discontinuity Methods Bayesian nonparametric predictive approaches for causal inference: Regression Discontinuity Methods George Karabatsos University of Illinois-Chicago ERCIM Conference, 14-16 December, 2013 Senate House,

More information

Bayesian Nonparametrics: some contributions to construction and properties of prior distributions

Bayesian Nonparametrics: some contributions to construction and properties of prior distributions Bayesian Nonparametrics: some contributions to construction and properties of prior distributions Annalisa Cerquetti Collegio Nuovo, University of Pavia, Italy Interview Day, CETL Lectureship in Statistics,

More information

Plausible Values for Latent Variables Using Mplus

Plausible Values for Latent Variables Using Mplus Plausible Values for Latent Variables Using Mplus Tihomir Asparouhov and Bengt Muthén August 21, 2010 1 1 Introduction Plausible values are imputed values for latent variables. All latent variables can

More information

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California Texts in Statistical Science Bayesian Ideas and Data Analysis An Introduction for Scientists and Statisticians Ronald Christensen University of New Mexico Albuquerque, New Mexico Wesley Johnson University

More information

A new strategy for meta-analysis of continuous covariates in observational studies with IPD. Willi Sauerbrei & Patrick Royston

A new strategy for meta-analysis of continuous covariates in observational studies with IPD. Willi Sauerbrei & Patrick Royston A new strategy for meta-analysis of continuous covariates in observational studies with IPD Willi Sauerbrei & Patrick Royston Overview Motivation Continuous variables functional form Fractional polynomials

More information

A marginal sampler for σ-stable Poisson-Kingman mixture models

A marginal sampler for σ-stable Poisson-Kingman mixture models A marginal sampler for σ-stable Poisson-Kingman mixture models joint work with Yee Whye Teh and Stefano Favaro María Lomelí Gatsby Unit, University College London Talk at the BNP 10 Raleigh, North Carolina

More information

DNA polymorphisms such as SNP and familial effects (additive genetic, common environment) to

DNA polymorphisms such as SNP and familial effects (additive genetic, common environment) to 1 1 1 1 1 1 1 1 0 SUPPLEMENTARY MATERIALS, B. BIVARIATE PEDIGREE-BASED ASSOCIATION ANALYSIS Introduction We propose here a statistical method of bivariate genetic analysis, designed to evaluate contribution

More information

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm Strength of the Gibbs sampler Metropolis-Hastings Algorithm Easy algorithm to think about. Exploits the factorization properties of the joint probability distribution. No difficult choices to be made to

More information

Estimation of Optimally-Combined-Biomarker Accuracy in the Absence of a Gold-Standard Reference Test

Estimation of Optimally-Combined-Biomarker Accuracy in the Absence of a Gold-Standard Reference Test Estimation of Optimally-Combined-Biomarker Accuracy in the Absence of a Gold-Standard Reference Test L. García Barrado 1 E. Coart 2 T. Burzykowski 1,2 1 Interuniversity Institute for Biostatistics and

More information

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

A Fully Nonparametric Modeling Approach to. BNP Binary Regression A Fully Nonparametric Modeling Approach to Binary Regression Maria Department of Applied Mathematics and Statistics University of California, Santa Cruz SBIES, April 27-28, 2012 Outline 1 2 3 Simulation

More information

Bayesian inference for sample surveys. Roderick Little Module 2: Bayesian models for simple random samples

Bayesian inference for sample surveys. Roderick Little Module 2: Bayesian models for simple random samples Bayesian inference for sample surveys Roderick Little Module : Bayesian models for simple random samples Superpopulation Modeling: Estimating parameters Various principles: least squares, method of moments,

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Review: Probabilistic Matrix Factorization. Probabilistic Matrix Factorization (PMF)

Review: Probabilistic Matrix Factorization. Probabilistic Matrix Factorization (PMF) Case Study 4: Collaborative Filtering Review: Probabilistic Matrix Factorization Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 2 th, 214 Emily Fox 214 1 Probabilistic

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses*

Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses* Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses* Amy G. Froelich Michael D. Larsen Iowa State University *The work presented in this talk was partially supported by

More information

Semiparametric Generalized Linear Models

Semiparametric Generalized Linear Models Semiparametric Generalized Linear Models North American Stata Users Group Meeting Chicago, Illinois Paul Rathouz Department of Health Studies University of Chicago prathouz@uchicago.edu Liping Gao MS Student

More information

Flexible Regression Modeling using Bayesian Nonparametric Mixtures

Flexible Regression Modeling using Bayesian Nonparametric Mixtures Flexible Regression Modeling using Bayesian Nonparametric Mixtures Athanasios Kottas Department of Applied Mathematics and Statistics University of California, Santa Cruz Department of Statistics Brigham

More information

Luke B Smith and Brian J Reich North Carolina State University May 21, 2013

Luke B Smith and Brian J Reich North Carolina State University May 21, 2013 BSquare: An R package for Bayesian simultaneous quantile regression Luke B Smith and Brian J Reich North Carolina State University May 21, 2013 BSquare in an R package to conduct Bayesian quantile regression

More information

STA 216, GLM, Lecture 16. October 29, 2007

STA 216, GLM, Lecture 16. October 29, 2007 STA 216, GLM, Lecture 16 October 29, 2007 Efficient Posterior Computation in Factor Models Underlying Normal Models Generalized Latent Trait Models Formulation Genetic Epidemiology Illustration Structural

More information

Bayesian Inference for Regression Parameters

Bayesian Inference for Regression Parameters Bayesian Inference for Regression Parameters 1 Bayesian inference for simple linear regression parameters follows the usual pattern for all Bayesian analyses: 1. Form a prior distribution over all unknown

More information

Introduction to Multivariate Genetic Analysis. Meike Bartels, Hermine Maes, Elizabeth Prom-Wormley and Michel Nivard

Introduction to Multivariate Genetic Analysis. Meike Bartels, Hermine Maes, Elizabeth Prom-Wormley and Michel Nivard Introduction to Multivariate Genetic nalysis Meike Bartels, Hermine Maes, Elizabeth Prom-Wormley and Michel Nivard im and Rationale im: to examine the source of factors that make traits correlate or co-vary

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Dirichlet process Bayesian clustering with the R package PReMiuM

Dirichlet process Bayesian clustering with the R package PReMiuM Dirichlet process Bayesian clustering with the R package PReMiuM Dr Silvia Liverani Brunel University London July 2015 Silvia Liverani (Brunel University London) Profile Regression 1 / 18 Outline Motivation

More information

Measurement Error and Linear Regression of Astronomical Data. Brandon Kelly Penn State Summer School in Astrostatistics, June 2007

Measurement Error and Linear Regression of Astronomical Data. Brandon Kelly Penn State Summer School in Astrostatistics, June 2007 Measurement Error and Linear Regression of Astronomical Data Brandon Kelly Penn State Summer School in Astrostatistics, June 2007 Classical Regression Model Collect n data points, denote i th pair as (η

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE Data Provided: None DEPARTMENT OF COMPUTER SCIENCE Autumn Semester 203 204 MACHINE LEARNING AND ADAPTIVE INTELLIGENCE 2 hours Answer THREE of the four questions. All questions carry equal weight. Figures

More information

Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals. John W. Mac McDonald & Alessandro Rosina

Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals. John W. Mac McDonald & Alessandro Rosina Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals John W. Mac McDonald & Alessandro Rosina Quantitative Methods in the Social Sciences Seminar -

More information

Lecture 2: Linear Models. Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011

Lecture 2: Linear Models. Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011 Lecture 2: Linear Models Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011 1 Quick Review of the Major Points The general linear model can be written as y = X! + e y = vector

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

The STS Surgeon Composite Technical Appendix

The STS Surgeon Composite Technical Appendix The STS Surgeon Composite Technical Appendix Overview Surgeon-specific risk-adjusted operative operative mortality and major complication rates were estimated using a bivariate random-effects logistic

More information

Low-Level Analysis of High- Density Oligonucleotide Microarray Data

Low-Level Analysis of High- Density Oligonucleotide Microarray Data Low-Level Analysis of High- Density Oligonucleotide Microarray Data Ben Bolstad http://www.stat.berkeley.edu/~bolstad Biostatistics, University of California, Berkeley UC Berkeley Feb 23, 2004 Outline

More information

Fractional Imputation in Survey Sampling: A Comparative Review

Fractional Imputation in Survey Sampling: A Comparative Review Fractional Imputation in Survey Sampling: A Comparative Review Shu Yang Jae-Kwang Kim Iowa State University Joint Statistical Meetings, August 2015 Outline Introduction Fractional imputation Features Numerical

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

Longitudinal Data Analysis Using Stata Paul D. Allison, Ph.D. Upcoming Seminar: May 18-19, 2017, Chicago, Illinois

Longitudinal Data Analysis Using Stata Paul D. Allison, Ph.D. Upcoming Seminar: May 18-19, 2017, Chicago, Illinois Longitudinal Data Analysis Using Stata Paul D. Allison, Ph.D. Upcoming Seminar: May 18-19, 217, Chicago, Illinois Outline 1. Opportunities and challenges of panel data. a. Data requirements b. Control

More information

Bayesian Modeling of Conditional Distributions

Bayesian Modeling of Conditional Distributions Bayesian Modeling of Conditional Distributions John Geweke University of Iowa Indiana University Department of Economics February 27, 2007 Outline Motivation Model description Methods of inference Earnings

More information

Gentle Introduction to Infinite Gaussian Mixture Modeling

Gentle Introduction to Infinite Gaussian Mixture Modeling Gentle Introduction to Infinite Gaussian Mixture Modeling with an application in neuroscience By Frank Wood Rasmussen, NIPS 1999 Neuroscience Application: Spike Sorting Important in neuroscience and for

More information

Truncation error of a superposed gamma process in a decreasing order representation

Truncation error of a superposed gamma process in a decreasing order representation Truncation error of a superposed gamma process in a decreasing order representation Julyan Arbel Inria Grenoble, Université Grenoble Alpes julyan.arbel@inria.fr Igor Prünster Bocconi University, Milan

More information

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles

A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles A Bayesian Nonparametric Model for Predicting Disease Status Using Longitudinal Profiles Jeremy Gaskins Department of Bioinformatics & Biostatistics University of Louisville Joint work with Claudio Fuentes

More information

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models Thomas Kneib Department of Mathematics Carl von Ossietzky University Oldenburg Sonja Greven Department of

More information

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models Thomas Kneib Institute of Statistics and Econometrics Georg-August-University Göttingen Department of Statistics

More information

General Regression Model

General Regression Model Scott S. Emerson, M.D., Ph.D. Department of Biostatistics, University of Washington, Seattle, WA 98195, USA January 5, 2015 Abstract Regression analysis can be viewed as an extension of two sample statistical

More information

3 Joint Distributions 71

3 Joint Distributions 71 2.2.3 The Normal Distribution 54 2.2.4 The Beta Density 58 2.3 Functions of a Random Variable 58 2.4 Concluding Remarks 64 2.5 Problems 64 3 Joint Distributions 71 3.1 Introduction 71 3.2 Discrete Random

More information

Accounting for Complex Sample Designs via Mixture Models

Accounting for Complex Sample Designs via Mixture Models Accounting for Complex Sample Designs via Finite Normal Mixture Models 1 1 University of Michigan School of Public Health August 2009 Talk Outline 1 2 Accommodating Sampling Weights in Mixture Models 3

More information

Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units

Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units Sahar Z Zangeneh Robert W. Keener Roderick J.A. Little Abstract In Probability proportional

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

... x. Variance NORMAL DISTRIBUTIONS OF PHENOTYPES. Mice. Fruit Flies CHARACTERIZING A NORMAL DISTRIBUTION MEAN VARIANCE

... x. Variance NORMAL DISTRIBUTIONS OF PHENOTYPES. Mice. Fruit Flies CHARACTERIZING A NORMAL DISTRIBUTION MEAN VARIANCE NORMAL DISTRIBUTIONS OF PHENOTYPES Mice Fruit Flies In:Introduction to Quantitative Genetics Falconer & Mackay 1996 CHARACTERIZING A NORMAL DISTRIBUTION MEAN VARIANCE Mean and variance are two quantities

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA)

Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA) Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA) Willem van den Boom Department of Statistics and Applied Probability National University

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

What is a meta-analysis? How is a meta-analysis conducted? Model Selection Approaches to Inference. Meta-analysis. Combining Data

What is a meta-analysis? How is a meta-analysis conducted? Model Selection Approaches to Inference. Meta-analysis. Combining Data Combining Data IB/NRES 509 Statistical Modeling What is a? A quantitative synthesis of previous research Studies as individual observations, weighted by n, σ 2, quality, etc. Can combine heterogeneous

More information

(Where does Ch. 7 on comparing 2 means or 2 proportions fit into this?)

(Where does Ch. 7 on comparing 2 means or 2 proportions fit into this?) 12. Comparing Groups: Analysis of Variance (ANOVA) Methods Response y Explanatory x var s Method Categorical Categorical Contingency tables (Ch. 8) (chi-squared, etc.) Quantitative Quantitative Regression

More information

Nonparametric Bayes tensor factorizations for big data

Nonparametric Bayes tensor factorizations for big data Nonparametric Bayes tensor factorizations for big data David Dunson Department of Statistical Science, Duke University Funded from NIH R01-ES017240, R01-ES017436 & DARPA N66001-09-C-2082 Motivation Conditional

More information

Chapter 4 Multi-factor Treatment Designs with Multiple Error Terms 93

Chapter 4 Multi-factor Treatment Designs with Multiple Error Terms 93 Contents Preface ix Chapter 1 Introduction 1 1.1 Types of Models That Produce Data 1 1.2 Statistical Models 2 1.3 Fixed and Random Effects 4 1.4 Mixed Models 6 1.5 Typical Studies and the Modeling Issues

More information

Lecture 16: Mixtures of Generalized Linear Models

Lecture 16: Mixtures of Generalized Linear Models Lecture 16: Mixtures of Generalized Linear Models October 26, 2006 Setting Outline Often, a single GLM may be insufficiently flexible to characterize the data Setting Often, a single GLM may be insufficiently

More information

Basic concepts in estimation

Basic concepts in estimation Basic concepts in estimation Random and nonrandom parameters Definitions of estimates ML Maimum Lielihood MAP Maimum A Posteriori LS Least Squares MMS Minimum Mean square rror Measures of quality of estimates

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction Estimation Tasks Short Course on Image Quality Matthew A. Kupinski Introduction Section 13.3 in B&M Keep in mind the similarities between estimation and classification Image-quality is a statistical concept

More information

On some distributional properties of Gibbs-type priors

On some distributional properties of Gibbs-type priors On some distributional properties of Gibbs-type priors Igor Prünster University of Torino & Collegio Carlo Alberto Bayesian Nonparametrics Workshop ICERM, 21st September 2012 Joint work with: P. De Blasi,

More information

Resemblance among relatives

Resemblance among relatives Resemblance among relatives Introduction Just as individuals may differ from one another in phenotype because they have different genotypes, because they developed in different environments, or both, relatives

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Bayesian construction of perceptrons to predict phenotypes from 584K SNP data.

Bayesian construction of perceptrons to predict phenotypes from 584K SNP data. Bayesian construction of perceptrons to predict phenotypes from 584K SNP data. Luc Janss, Bert Kappen Radboud University Nijmegen Medical Centre Donders Institute for Neuroscience Introduction Genetic

More information

A Bayesian multi-dimensional couple-based latent risk model for infertility

A Bayesian multi-dimensional couple-based latent risk model for infertility A Bayesian multi-dimensional couple-based latent risk model for infertility Zhen Chen, Ph.D. Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Nonparametric Bayes Uncertainty Quantification

Nonparametric Bayes Uncertainty Quantification Nonparametric Bayes Uncertainty Quantification David Dunson Department of Statistical Science, Duke University Funded from NIH R01-ES017240, R01-ES017436 & ONR Review of Bayes Intro to Nonparametric Bayes

More information

Bayesian Nonparametrics

Bayesian Nonparametrics Bayesian Nonparametrics Peter Orbanz Columbia University PARAMETERS AND PATTERNS Parameters P(X θ) = Probability[data pattern] 3 2 1 0 1 2 3 5 0 5 Inference idea data = underlying pattern + independent

More information

A Complete Spatial Downscaler

A Complete Spatial Downscaler A Complete Spatial Downscaler Yen-Ning Huang, Brian J Reich, Montserrat Fuentes 1 Sankar Arumugam 2 1 Department of Statistics, NC State University 2 Department of Civil, Construction, and Environmental

More information

Discussion of On simulation and properties of the stable law by L. Devroye and L. James

Discussion of On simulation and properties of the stable law by L. Devroye and L. James Stat Methods Appl (2014) 23:371 377 DOI 10.1007/s10260-014-0269-4 Discussion of On simulation and properties of the stable law by L. Devroye and L. James Antonio Lijoi Igor Prünster Accepted: 16 May 2014

More information

Spatial Bayesian Nonparametrics for Natural Image Segmentation

Spatial Bayesian Nonparametrics for Natural Image Segmentation Spatial Bayesian Nonparametrics for Natural Image Segmentation Erik Sudderth Brown University Joint work with Michael Jordan University of California Soumya Ghosh Brown University Parsing Visual Scenes

More information

Bayes methods for categorical data. April 25, 2017

Bayes methods for categorical data. April 25, 2017 Bayes methods for categorical data April 25, 2017 Motivation for joint probability models Increasing interest in high-dimensional data in broad applications Focus may be on prediction, variable selection,

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes MAD-Bayes: MAP-based Asymptotic Derivations from Bayes Tamara Broderick Brian Kulis Michael I. Jordan Cat Clusters Mouse clusters Dog 1 Cat Clusters Dog Mouse Lizard Sheep Picture 1 Picture 2 Picture 3

More information

Truncation error of a superposed gamma process in a decreasing order representation

Truncation error of a superposed gamma process in a decreasing order representation Truncation error of a superposed gamma process in a decreasing order representation B julyan.arbel@inria.fr Í www.julyanarbel.com Inria, Mistis, Grenoble, France Joint work with Igor Pru nster (Bocconi

More information

STAT Advanced Bayesian Inference

STAT Advanced Bayesian Inference 1 / 32 STAT 625 - Advanced Bayesian Inference Meng Li Department of Statistics Jan 23, 218 The Dirichlet distribution 2 / 32 θ Dirichlet(a 1,...,a k ) with density p(θ 1,θ 2,...,θ k ) = k j=1 Γ(a j) Γ(

More information

Biost 518 Applied Biostatistics II. Purpose of Statistics. First Stage of Scientific Investigation. Further Stages of Scientific Investigation

Biost 518 Applied Biostatistics II. Purpose of Statistics. First Stage of Scientific Investigation. Further Stages of Scientific Investigation Biost 58 Applied Biostatistics II Scott S. Emerson, M.D., Ph.D. Professor of Biostatistics University of Washington Lecture 5: Review Purpose of Statistics Statistics is about science (Science in the broadest

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

Bayesian nonparametric models for bipartite graphs

Bayesian nonparametric models for bipartite graphs Bayesian nonparametric models for bipartite graphs François Caron Department of Statistics, Oxford Statistics Colloquium, Harvard University November 11, 2013 F. Caron 1 / 27 Bipartite networks Readers/Customers

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

The concept of breeding value. Gene251/351 Lecture 5

The concept of breeding value. Gene251/351 Lecture 5 The concept of breeding value Gene251/351 Lecture 5 Key terms Estimated breeding value (EB) Heritability Contemporary groups Reading: No prescribed reading from Simm s book. Revision: Quantitative traits

More information

Bayesian semiparametric inference for the accelerated failure time model using hierarchical mixture modeling with N-IG priors

Bayesian semiparametric inference for the accelerated failure time model using hierarchical mixture modeling with N-IG priors Bayesian semiparametric inference for the accelerated failure time model using hierarchical mixture modeling with N-IG priors Raffaele Argiento 1, Alessandra Guglielmi 2, Antonio Pievatolo 1, Fabrizio

More information

Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis

Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis Jeffrey S. Morris University of Texas, MD Anderson Cancer Center Joint wor with Marina Vannucci, Philip J. Brown,

More information

Probe-Level Analysis of Affymetrix GeneChip Microarray Data

Probe-Level Analysis of Affymetrix GeneChip Microarray Data Probe-Level Analysis of Affymetrix GeneChip Microarray Data Ben Bolstad http://www.stat.berkeley.edu/~bolstad Biostatistics, University of California, Berkeley University of Minnesota Mar 30, 2004 Outline

More information

Meta-analysis of case-control studies

Meta-analysis of case-control studies Meta-analysis of case-control studies Georgina Bermann Novartis Pharma AG November 21, 216 Several meta-analyses have identified Lp(a) as a risk factor for cardiovascular diseases, among them 2 different

More information

Slice sampling σ stable Poisson Kingman mixture models

Slice sampling σ stable Poisson Kingman mixture models ISSN 2279-9362 Slice sampling σ stable Poisson Kingman mixture models Stefano Favaro S.G. Walker No. 324 December 2013 www.carloalberto.org/research/working-papers 2013 by Stefano Favaro and S.G. Walker.

More information

Slice Sampling Mixture Models

Slice Sampling Mixture Models Slice Sampling Mixture Models Maria Kalli, Jim E. Griffin & Stephen G. Walker Centre for Health Services Studies, University of Kent Institute of Mathematics, Statistics & Actuarial Science, University

More information

Passing-Bablok Regression for Method Comparison

Passing-Bablok Regression for Method Comparison Chapter 313 Passing-Bablok Regression for Method Comparison Introduction Passing-Bablok regression for method comparison is a robust, nonparametric method for fitting a straight line to two-dimensional

More information

Advanced Statistical Modelling

Advanced Statistical Modelling Markov chain Monte Carlo (MCMC) Methods and Their Applications in Bayesian Statistics School of Technology and Business Studies/Statistics Dalarna University Borlänge, Sweden. Feb. 05, 2014. Outlines 1

More information

Recent advances in statistical methods for DNA-based prediction of complex traits

Recent advances in statistical methods for DNA-based prediction of complex traits Recent advances in statistical methods for DNA-based prediction of complex traits Mintu Nath Biomathematics & Statistics Scotland, Edinburgh 1 Outline Background Population genetics Animal model Methodology

More information

Bayesian Mixture Modeling of Significant P Values: A Meta-Analytic Method to Estimate the Degree of Contamination from H 0 : Supplemental Material

Bayesian Mixture Modeling of Significant P Values: A Meta-Analytic Method to Estimate the Degree of Contamination from H 0 : Supplemental Material Bayesian Mixture Modeling of Significant P Values: A Meta-Analytic Method to Estimate the Degree of Contamination from H 0 : Supplemental Material Quentin Frederik Gronau 1, Monique Duizer 1, Marjan Bakker

More information

Bayesian Nonparametric Inference Methods for Mean Residual Life Functions

Bayesian Nonparametric Inference Methods for Mean Residual Life Functions Bayesian Nonparametric Inference Methods for Mean Residual Life Functions Valerie Poynor Department of Applied Mathematics and Statistics, University of California, Santa Cruz April 28, 212 1/3 Outline

More information

On the Truncation Error of a Superposed Gamma Process

On the Truncation Error of a Superposed Gamma Process On the Truncation Error of a Superposed Gamma Process Julyan Arbel and Igor Prünster Abstract Completely random measures (CRMs) form a key ingredient of a wealth of stochastic models, in particular in

More information

Latent Variable Models Probabilistic Models in the Study of Language Day 4

Latent Variable Models Probabilistic Models in the Study of Language Day 4 Latent Variable Models Probabilistic Models in the Study of Language Day 4 Roger Levy UC San Diego Department of Linguistics Preamble: plate notation for graphical models Here is the kind of hierarchical

More information

Department of Statistical Science FIRST YEAR EXAM - SPRING 2017

Department of Statistical Science FIRST YEAR EXAM - SPRING 2017 Department of Statistical Science Duke University FIRST YEAR EXAM - SPRING 017 Monday May 8th 017, 9:00 AM 1:00 PM NOTES: PLEASE READ CAREFULLY BEFORE BEGINNING EXAM! 1. Do not write solutions on the exam;

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

An Alternative Prior Process for Nonparametric Bayesian Clustering

An Alternative Prior Process for Nonparametric Bayesian Clustering An Alternative Prior Process for Nonparametric Bayesian Clustering Hanna Wallach (UMass Amherst) Shane Jensen (UPenn) Lee Dicker (Harvard) Katherine Heller (Cambridge) Nonparametric Bayesian Clustering

More information

Basic Statistical Analysis

Basic Statistical Analysis indexerrt.qxd 8/21/2002 9:47 AM Page 1 Corrected index pages for Sprinthall Basic Statistical Analysis Seventh Edition indexerrt.qxd 8/21/2002 9:47 AM Page 656 Index Abscissa, 24 AB-STAT, vii ADD-OR rule,

More information

Multiple Linear Regression for the Supervisor Data

Multiple Linear Regression for the Supervisor Data for the Supervisor Data Rating 40 50 60 70 80 90 40 50 60 70 50 60 70 80 90 40 60 80 40 60 80 Complaints Privileges 30 50 70 40 60 Learn Raises 50 70 50 70 90 Critical 40 50 60 70 80 30 40 50 60 70 80

More information