A Global Approach to Absolute Parallelism Geometry

Size: px
Start display at page:

Download "A Global Approach to Absolute Parallelism Geometry"

Transcription

1 A Global Approac to Absolute Parallelsm Geometry Nabl L. Youssef 1,2 and Waleed A. Elsayed 1,2 arxv: v4 [gr-qc] 15 Jul Department of Matematcs, Faculty of Scence, Caro Unversty, Gza, Egypt 2 Center for Teoretcal Pyscs CTP), Brts Unversty n Egypt BUE) Emals: nlyoussef@sc.cu.edu.eg, nlyoussef2003@yaoo.fr waleedelsayed@sc.cu.edu.eg, waleed.a.elsayed@gmal.com Abstract. In ts paper we provde a global nvestgaton of te geometry of parallelzable manfolds or absolute parallelsm geometry) frequently used for applcaton. We dscuss te dfferent lnear connectons and curvature tensors from a global pont of vew. We gve an exstence and unqueness teorem for a remarable lnear connecton, called te canoncal connecton. Dfferent curvature tensors are expressed n a compact form n terms of te torson tensor of te canoncal connecton only. Usng te Banc denttes, some nterestng denttes are derved. An mportant specal fourt order tensor, wc we refer to as Wanas tensor, s globally defned and nvestgated. Fnally a double-vew for te fundamental geometrc obects of an absolute parallelsm space s establsed: Te expressons of tese geometrc obects are computed n te parallelzaton bass and are compared wt te correspondng local expressons n te natural bass. Pyscal aspects of some geometrc obects consdered are ponted out. Keywords: Absolute parallelsm geometry, Parallelzaton vector feld, Parallelzaton bass, Canoncal connecton, Dual connecton, Banc denttes, Wanas tensor. MSC 2010: 53C05, 53A40, 51P05. PACS 2010: Hw, Na, q, arxv: [gr-qc] 1

2 0 Introducton At te begnnng of te 20 t century, te mportance of geometry n pyscal applcatons as been llumnated by Albert Ensten. He as advocated a new plosopy nown as Te Geometerzaton Plosopy. Ts plosopy can be summarzed n te followng statement: To understand nature, one as to start wt geometry and end wt pyscs [15]. In 1915, Ensten used ts plosopy to understand te essence of Gravty, startng wt a 4-dmensonal Remannan geometry, endng wt a successful teory for gravty; te General teory of Relatvty GR) [3]. After te success of te teory, by testng ts predctons and applcatons, many autors ave drected ter attenton to te use of geometry to solve pyscal problems. Ensten n s contnuous attempts to understand more pyscal nteractons, as searced for a wder geometry to unfy gravty and electromagnetsm. Te problem wt Remannan geometry, owever, s tat t as only ten degrees of freedom te components of te metrc tensor n four dmensons) wc are ust suffcent to descrbe gravty. Tus to construct a successful geometrc teory tat would encompass bot gravty and electromagnetsm, one needs to enlarge te number of degrees of freedom. Ts canbedonentwo dfferent ways: eter byncreasng tedmenson of te underlyng spaceà la-kaluza-klen) or by replacng te Remannan structure by anoter geometrc structure avng more degrees of freedomwtout ncreasng te dmenson of te underlyng space). In taclng te problem of unfcaton, Ensten as cosen te second alternatve. Ts led m to consder Absolute Parallelsm geometry AP-geomety) [2] wc as sxteen degrees of freedom te number of components of te vector felds formng te parallelzaton); sx extra degrees of freedom are ganed. Many developments of AP-geometry ave been aceved e.g., [12, 14, 16]). Teores constructed n ts geometry e.g., [6, 7, 12]) togeter wt applcatons e.g., [8, 9, 13]) sow te advantages of usng AP-geometry n pyscs. Moreover, absolute parallelsm caracterzes te generalzed Berwald spaces among te Fnsler spaces [10, 11]. In ts paper, we establs a global approac to AP-geometry. Te global formulaton of te dfferent geometrc aspects of AP-geometry as many advantages. Some advantages of te global formalsm are: It could gve more nsgt nto te nfra-structure of pyscal teores constructed n te context of AP-geometry. Moreover, t may offer te opportunty to unfy feld teores n a more economc sceme. It elps better understand te meanng and te essence of te geometrc obects and formulae wtout beng trapped nto te complexty of ndces. As a consequence, t reduces te probablty of mstae It connects AP-geometry wt te modern language of te dfferental geometry. In local coordnates some mportant expressons, suc as te Le bracet [ x, x ], dsappear. Consequently, te contrbuton, geometrcal or pyscal, of all Le bracets are completely 2

3 dden. Suc expressons do not vans n global formalsm. Ts may produce new geometrc or pyscal nformaton. Te local formalsm represents rougly a mcro vewpont or a mcro approac wereas te global formalsm represents a macro vewpont. Te two vewponts are not alternatves but rater complementary and are ndspensable bot for geometry and pyscs. As global results old on te entre manfoldnot only on coordnate negboroods), tey also old locally. Te converse s not true; a result may old locally but not globally. Moreover, one can easly sft from global to local; t suffces to vew te global result n a coordnate negborood. Tese are te man motvatons of te present wor, were all results obtaned are formulated n a prospectve modern coordnate free form. Te paper s organzed n te followng manner. In secton 1, we defne globally te basc elements of te AP-geometry and prove an exstence and unqueness teorem for a remarable lnear connecton wc we call te canoncal connecton a flat) connecton for wc te parallelzaton vector felds are parallel ). We also study some propertes of ts connecton. In secton 2, we defne tree oter natural connectons te dual, symmetrc and Lev-Cvta connectons) and nvestgate ter propertes togeter wt te tensor felds assocated to tem. In secton 3, we express te curvature tensors of te above mentoned tree connectons n a smple and compact form n terms of te torson tensor of te canoncal connecton only. We ten use te Banc denttes to derve some furter nterestng denttes. In secton 4, we gve a global treatment of te W-tensor and nvestgate some of ts propertes. In secton 5, we present a double-vew for te fundamental geometrc obects of AP-geometry: On one and, we consder te local expressons of tese geometrc obects n te natural bass and, on te oter and, we compute ter expressons n te parallelzaton bass, and ten compare between te two sets of expressons. It sould fnally be noted tat ts wor s based manly on [16]. Trougout te present paper we use te followng notaton: M: an n-dmensonal smoot real manfold, FM): ter-algebra of C functons on M, XM): te FM)-module of vector felds on M, T x M: te tangent space to M at x M, T x M: te cotangent space to M at x M. We mae te assumpton tat all geometrc obects we consder are of class C. 1 Canoncal connecton In ts secton, we gve te defnton of an AP-space and prove an exstence and unqueness teorem for a remarable lnear connecton, wc we call te canoncal connecton. Also, we prove some propertes concernng ts connecton. 3

4 Defnton 1.1. [1] A parallelzable manfold s a par M, X), were M s an n-dmensonal smoot manfold and X = 1,..., n) are n ndependent vector felds defned globally on M. Te vector felds..., 1 n X are sad to form a parallelzaton on M. Suc a space s also nown n te lterature as an Absolute Parallelsm space or a Teleparallel space. For smplcty, we wll rater use te expressons AP-space and AP-geometry. Snce X are n ndependent vector felds on M, Xx) : = 1,..., n} s a bass of T x M for every x M. Any vector feld Y XM) can be wrtten globally as Y = Y were Y FM). Here we use te notaton Y to denote te components of Y wt respect to X. Ensten summaton conventon wll be appled on Latn ndces watever ter poston s even f te two repeated ndces are downword). Defnton 1.2. Te n dfferental 1-forms are called te parallelzaton forms. Clearly, f Y = Y ten ΩY) = Y, It follows drectly from 1.1) tat Ω x = Ω TxM : = 1,..., n} s te dual bass of te parallelza- Ω x : = 1,..., n} te dual parallelzaton ton bass Xx) : = 1,..., n} for every x M. We call Ω : XM) FM) defned by Ω X) = δ 1.1) ΩY) X = Y. 1.2) bass of T x M. Te parallelzaton forms Ω are ndependent n te FM)-module X M). Lemma 1.1. Let D be a lnear connecton on M. Te D-covarant dervatve of only f te D-covarant dervatve of X vanses. Proof. For every Y, Z XM), we ave, by 1.2) and 1.1), D Y Ω)Z) = D Y Ω) ΩZ) X ) = ΩZ) ΩD Y X). Ω vanses f and Consequently, by 1.2), from wc te result follows. DY Ω)Z) ) X = ΩZ)D Y Teorem 1.1. On an AP-space M, X), tere exsts a unque lnear connecton for wc te parallelzaton vector felds X are parallel. Proof. Frst we prove te unqueness. Assume tat s a lnear connecton satsfyng te condton X = 0. For all Y, Z XM), we ave Y Z = Y ΩZ) X ) = ΩZ) Y X + Y ) ΩZ) X = Y ) ΩZ) X. Hence, te connecton s unquely determned by te relaton Y Z = Y 4 ΩZ) ) X. 1.3)

5 To prove te exstence, let : XM) XM) XM) be defned by 1.3). We sow tat s a lnear connecton on M. In fact, let Y, Y 1, Y 2, Z, Z 1, Z 2 XM), f FM). It s clear tat Y1 +Y 2 Z = Y1 Z + Y2 Z and Y Z 1 +Z 2 ) = Y Z 1 + Y Z 2. Moreover, fy Z = fy) ) ΩZ) X = f Y ) ΩZ) X = f YZ, Y fz) = Y ΩfZ) ) X = Y f ΩZ) )) X = f Y ΩZ) ) X +Y f) ΩZ) X = f Y Z +Y f)z, by 1.2) and 1.3). It remans to sow tat satsfes te condton X = 0: Ts completes te proof. Y X = Y Ω X) ) X = Y δ ) X = 0. As a consequence of Lemma 1.1, we also ave Ω = 0. Hence X = 0, Ω = ) Ts property s nown locally) n te lterature as te AP-condton. Defnton 1.3. Let M, X) be an AP-space. Te unque lnear connecton on M defned by 1.3) wll be called te canoncal connecton of M, X). Te canoncal connecton s of crucal mportance because almost all geometrc obects n te AP-space wll be bult up of t, as wll be seen trougout te paper. Now we gve an ntrnsc formula of te torson tensor T of. Proposton 1.1. Te torson tensor T of te canoncal connecton s gven by TY, Z) = ΩY) ΩZ)[ X]. 1.5) Proof. Te torson tensor T of s defned, for all Y, Z XM), by Usng te AP-condton 1.4), we get TY, Z) TY, Z) = Y Z Z Y [Y, Z]. 1.2) = T ΩY) ΩZ) X ) = = ΩY) ΩZ) X X ΩY) ΩZ)T X) X X [ X]) = ΩY) ΩZ)[ X]. Teorem 1.2. Let M, X) be an AP-space. Te canoncal connecton of M, X) s flat. Proof. Te result follows from te defnton of te curvature tensor R of : and te AP-condton 1.4). RY, Z)V = Y Z V Z Y V [Y,Z] V 5

6 Remar 1.1. [16] It s for ts reason tat many autors tn tat te AP-space s a flat space. Ts s by no means true. In fact, t s meanngless to spea of curvature wtout reference to a connecton. All we can say s tat te AP-space s flat wt respect to ts canoncal connecton. However, tere are oter tree natural connectons on an AP-space wc are nonflat, as wll be sown later. 2 Oter lnear connectons on an AP-space In ts secton, we defne a metrc on an AP-space and nvestgate te propertes of tree oter natural connectons on te space. Moreover, we defne te contorton tensor and gve ts relaton to te torson tensor 1.5). Teorem 2.1. Let M, defnes a metrc tensor on M. X) be an AP-space and g := Ω te parallelzaton forms on M. Ten Ω Ω 2.1) Proof. Clearly g s a symmetrc tensor of type 0,2) on M. For all Y XM), we ave Moreover, gy,y) = 0 = gy, Y) = Ω Ω)Y,Y) = n ΩY) )2 0. =1 n ΩY) ) 2 = 0 = ΩY) = 0 = ΩY) X = 0 1.2) = Y = 0. =1 Hence, g s a metrc tensor on M. Remar 2.1. It s clear tat: a) g X) = δ. b) g Y) = ΩY). 2.2) 2.3) Property a) sows tat te parallelzaton vector felds X are g-ortonormal and b) provdes te dualty between Lemma 2.1. Let M, and only f X and Ω va g. X) be an AP-space. A lnear connecton D on M s a metrc connecton f ΩD V X)+ ΩD V X) = 0. Proof. By smple calculaton, usng 2.2) and 2.3), one can sow tat from wc te result follows. D V g) X) = ΩD V X) ΩD V X), 6

7 Te last lemma togeter wt te AP-condton 1.4) gve rse to te next result. Proposton 2.1. Te canoncal connecton s a metrc connecton. Proposton 2.2. On an AP-space tere are tree oter bult-n) lnear connectons: a) Te dual connecton gven by Y Z := Z Y +[Y,Z]. 2.4) b) Te symmetrc connecton gven by Y Z := 1 2 YZ + Z Y +[Y,Z]). 2.5) c) Te Lev-Cvta connecton s gven by [5] 2g Y Z, V) = Y gz, V)+Z gv, Y) V gy, Z) gy, [Z, V])+gZ, [V, Y])+gV, [Y, Z]). 2.6) Te proof s stragtforward and we omt t. Remar 2.2. One can easly sow tat: a) Y Z = Y Z TY, Z). b) Y Z = Y Z 1TY, Z) = YZ + Y Z). c) and are torsonless wereas and ave te same torson up to a sgn. Here T s te torson tensor of te canoncal connecton. Snce tere are no oter torson tensors n te space, we can say tat T s te torson of te space. In Remannan geometry te Lev-Cvta connecton as no explct expresson. However, n AP-geometry we can ave an explct expresson for te Lev-Cvta connecton as sown n te followng. Teorem 2.2. Let M, te form: X) be an AP-space. Ten te Lev-Cvta connecton can be wrtten n were L Y s te Le dervatve wt respect to Y XM). Y Z = Y Z 1 2 L X g)y, Z) 2.7) 7

8 Proof. By replacng V n 2.6) by 2Ω Y Z) = Y ΩZ)+Z X and usng 2.3), we get ΩY) Tang nto account 1.2) and 1.3), te above equaton reads X gy, Z)+gY, [ Z])+gZ, [ Y])+ Ω[Y, Z]). 2 Y Z = Y Z + Z Y X gy, Z)) X +gy, [ Z]) X +gz, [ Y]) X +[Y, Z] ) = 2 Y Z X gy, Z) gy, [ Z]) gz, [ Y]) by 2.5) = 2 Y Z LX g)y, Z) X. Corollary 2.1. In an AP-space, te Lev-Cvta connecton and te symmetrc connecton concde f, and only f, te parallelzaton vector felds are Kllng vector felds: = L X g = 0. Defnton 2.1. Te contorton tensor C s defned by te formula: Te contorton tensor may also be wrtten n te form: In fact, usng 1.2) and 1.3), we ave for all Y, Z XM), CY, Z) = Y Z Y Z. 2.8) CY, Z) = Y Ω)Z) X. 2.9) CY, Z) = Y Z Y Z = Y Ω Z) ) X Ω Y Z) X = Y Ω)Z) X. Te denttes 2.8) and 2.9) sow tat te geometry of an AP-space can be bult up from te Lev-Cvta connecton nstead of te canoncal connecton: Y Z = Y Z + Y Ω)Z) X. Te next proposton establses te mutual relatons between te torson and contorton tensors. Proposton 2.3. Te followng denttes old: a) TY, Z) = CY, Z) CZ, Y). ) b) CY, Z) = 1 TY, Z)+T Y, Z) X +T Z, Y) X. 2 From wc, a) TY, Z, V) = CY, Z, V) CZ, Y, V). ) b) CY, Z, V) = 1 TY, Z, V)+TV, Y, Z)+TV, Z, Y), 2 8

9 were CY, Z, V) = g CY, Z), V ) and TY, Z, V) = g TY, Z), V ). Consequently, te torson tensor vanses f and only f te contorton tensor vanses. Proof. Let Y, Z, V XM). Ten, a) Te frst dentty gves te torson tensor n terms of te contorton tensor. TY, Z) = Y Z Z Y [Y, Z] = Y Z Z Y) Y Z Z Y), snce s torsonless = Y Z Y Z) Z Y Z Y) = CY, Z) CZ, Y). b) Te second dentty gves te contorton tensor n terms of te torson tensor. In te followng proof we mae use of 2.7), Remar 2.2, 1.2), Remar 2.1 and 1.5). 2CY, Z) = 2 Y Z 2 Y Z = 2 Y Z 2 Y Z +LX g)y, Z) X = 2 Y Z 2 Y Z +TY, Z)+ ΩY) ΩZ)L X g) X) X = TY, Z)+ ΩY) ΩZ) X g X) g[ X], X) g[ = TY, Z) g TY, X), Z ) +g TZ, X), Y )) X ) = TY, Z)+ T Y, Z)+T Z, Y) X. X], X) ) X Remar 2.3. TY, Z, V) s sew-symmetrc n te frst two arguments wereas CY, Z, V) s sew-symmetrc n te last two arguments. Defnton 2.2. Let M, for every Y XM) by X) be anap-space. Te contracted torson or te basc formb s defned, BY) := TrZ TZ, Y)}. Ts 1-form s nown locally) n te lterature as te basc vector. In terms of te metrc tensor 2.1), usng 2.2), te basc form can be wrtten as BY) = g T Y), X ) = T Y, X). 2.10) Usng Proposton 2.3b), BY) can also be expressed n te form Mang use of 2.10) and 1.5), we ave BY) = C Y, X). BY) = ΩY) Ω[ X]). It sould be noted tat n te above tree expressons and n smlar expressons summaton s carred out on repeated mes ndces, altoug tey are stuated n dfferent argument postons. 9

10 Proposton 2.4. Concernng te four connectons of te AP-space, te dfference tensors are gven by: a) Y Z Y Z = TY, Z). b) Y Z Y Z = 1 TY, Z). 2 c) Y Z Y Z = CY, Z). d) Y Z Y Z = 1 TY, Z). 2 e) Y Z Y Z = CZ, Y). f) Y Z Y Z = 1L 2 X g)y, Z) X. Proof. Propertes a), b), d) follow from Remar 2.2, c) s te defnton of te contorton tensor, e) follows from 2.8) and te fact tat s torsonless, and f) follows from 2.7). As a consequence of te above proposton, we ave te followng useful relatons. Corollary 2.2. For every Y, Z, V XM), we ave te followng relatons: a) V T)Y, Z) V T)Y, Z) = S T V, TY, Z) )}. b) V T)Y, Z) V T)Y, Z) = 1 2 S T V, TY, Z) )}. c) V T)Y, Z) V T)Y, Z) = T Y, CV, Z) ) +T Z, CV, Y) ) +C V, TY, Z) ), were S denotes te cyclc permutaton of Y, Z, V and summaton. 3 Curvature tensors and Banc denttes In an AP-space te curvature R of te canoncal connecton vanses dentcally. Ts secton s devoted to sow tat te oter tree curvature tensors R, R and R, assocated wt, and respectvely, do not vans. Also, we sow tat te vansng of R enables us to express tese tree curvature tensors n terms of te torson tensor only. Teorem 3.1. Te tree curvature tensors R, R and R of te connectons, and are gven respectvely by: a) RY, Z)V = V T)Y, Z). 3.1) 10

11 b) 1 RY, Z)V = Z T)Y, V) Y T)Z, V) ) T TY, Z), V ) + 1 T Y, TZ, V) ) T Z, TY, V) )). 3.2) 4 c) RY, Z)V = Z C)Y, V) Y C)Z, V) C TY, Z), V ) +C Y, CZ, V) ) C Z, CY, V) ). 3.3) Proof. We prove a) only. Te proof of te oter parts can be carred out n te same manner. Usng 2.4), we get Y Z V = Y V Z +[Z, V]) = Y V Z + Y [Z, V] = V ZY +[Y, V Z]+ [Z,V] Y +[Y, [Z, V]]. Smlarly, and Z Y V = V YZ +[Z, V Y]+ [Y,V] Z +[Z, [Y, V]]. [Y,Z] V = V [Y, Z]+[[Y, Z], V]. Usng te above tree denttes, togeter wt te Jacob dentty, we get RY, Z)V = Y Z V Z Y V [Y,Z] V = V ZY +[Y, V Z] V YZ [Z, V Y] V [Y, Z]+ [Z,V] Y [Y,V] Z. Usng te fact tat te curvature tensor of te canoncal connecton vanses Teorem 1.2), t follows tat [Y,Z] V = Y Z V Z Y V. Usng te above dentty, we get RY, Z)V = V ZY +[Y, V Z] V YZ [Z, V Y] V [Y, Z] + Z V Y V Z Y Y V Z + V Y Z = V Y Z V Z Y V [Y, Z]) V YZ Z V Y [ V Y, Z]) Y V Z V ZY [Y, V Z]) = V TY, Z) T V Y, Z) TY, V Z) = V T)Y, Z). Te above teorem sows tat te curvature tensors R, R and R are expressble n terms of te torson tensor of te space only. Ts proves tat te geometry of an AP-space depends crucally on te torson tensor. It s wort mentonng tat te vansng of tat tensor mples tat te 11

12 four connectons,, and concde and a trval flat Remannan space s aceved. Tus, a suffcent condton for te non-vansng of te torson tensor s te non-vansng of any one of te tree curvature tensors R, R or R. Te next result gves te expressons of te Rcc tensor Rc of and te Rcc-le tensors Rc and Rc of and togeter wt ter respectve contractons te scalar curvature Sc and te curvature-le scalars Sc and Ŝc). Te ortonormalty of te parallelzaton vector felds X plays an essental role n te proof. Teorem 3.2. In an AP-space M, a) RcY, Z) = Z B)Y). b) RcY, Z) = 1L 2 X T)Y, Z, X)+ 1T Y, TZ, 4 X) we ave, for every Y, Z XM), X), X ) 1 2 YB)Z) 1B TY, Z) ). 4 c) RcY, Z) = LX C)Y, Z, X)+CY, C Z, X), X ) Y B)Z) BCY, Z)). a) Sc = X B X). b) Ŝc = 1 X B X)+ 1T [ 2 4 X], X). c) Sc = 2 X B X)+B X)B X)+CT X), X)+C C X), Proof. We prove b) and c) only. Te oter denttes can be proved smlarly. b) Usng 2.2), 3.2), 1.4) and 2.10), we ave X ). RcY, Z) = g RY, X)Z, X ) = 1 2 X T)Y, Z, X) Y T) Z, X) T TY, X), Z, X )) + 1 T Y, T Z), X ) T TY, Z), X )) 4 = 1 2X TY, Z, X) 2T 4 X Y, Z, X) 2TY, X Z, X) 2 Y B)Z) 2T TY, X), Z, X ) +T Y, T Z), X ) B TY, Z) )) = 1 2X TY, Z, X) TY, 4 X Z, X) 2 Y B)Z) 2T[ Y], Z, X) TY, [ Z], X) B TY, Z) )) = 1 2L 4 X T)Y, Z, X) TY, X Z, X) TY, [Z, X], X) 2 Y B)Z) B TY, Z) )) = 1 2 L X T)Y, Z, X)+ 1 4 T Y, TZ, X), X ) 1 2 YB)Z) 1 4 B TY, Z) ). 12

13 c) Usng 2.2), c), 1.4), 2.8), Proposton 2.3b) and te torsonless property of, we get Sc = Rc X) X C) = L X)+C C X), X ) X B) X) B C = X C X) C[ X], X) C [ X], X) X B X) C X X)+B X)B X) = 2X B X)+B X)B X) C[ X], ) C X X)+C [ X], X) = 2X B X)+B X)B X)+C T X), X ) C X X ) = 2X B X)+B X)B X)+C T X ) +C C X), X) X), X) ) X ). Table1: Lnear connectons n AP-geometry Connecton Symbol Torson Curvature Metrcty Canoncal T 0 metrc Dual T R nonmetrc Symmetrc 0 R nonmetrc Lev-Cvta 0 R metrc Let D beanarbtrarylnear connecton onm wt torsontandcurvature R. Ten tebanc denttes are gven, for all Y, Z, V, U XM), by [4]: } Frst Banc dentty: S RY, Z)V = S D V T)Y, Z)+T TY, Z), V )}. Second Banc dentty: S D V R)Y, Z)U R V, TY, Z) ) U } = 0. In wat follows, we derve some denttes usng te above Banc denttes. Some of te derved denttes wll be used to smplfy oter formulae tus obtaned. Proposton 3.1. Te frst Banc dentty for te connectons,, and reads: a) S V T)Y, Z)+T TY, Z), V )} = 0. 13

14 } b) S RY, Z)V = S T TY, Z), V ) } V T)Y, Z). } c) S RY, Z)V = 0. RY, } d) S Z)V = 0. Te proof s stragtforward. We ave to use te relatons R = 0, T = T and T = T = 0. Corollary 3.1. Te followng denttes old: } a) S V T)Y, Z) = 2 S T TY, Z), V )}. b) S V T)Y, Z) } = 1 S T TY, Z), V )}. 2 } c) S RY, Z)V = S T TY, Z), V )}. Te proof follows from te above proposton togeter wt Corollary 2.2 and 3.1). Proposton 3.2. Te second Banc dentty for te connectons, and reads: } a) S V R)Y, Z)U = S U T) TY, Z), V )}. } b) S V R)Y, Z)U = 0. c) S } VR)Y, Z)U = 0. Te proof s stragtforward mang use of 3.1). Now, we wll gve anoter formula for te curvature tensor R of te symmetrc connecton wc s more compact tan 3.2). Teorem 3.3. Te curvature tensor R can be wrtten n te form: RY, Z)V = 1 2 VT)Y, Z) 1 4 Proof. Tang nto account 3.2) and Proposton 3.1a), one as RY, Z)V = = 1 4 S S S = 1 2 VT)Y, Z) 1 4 T Y, TZ, V) ) +T Z, TV, Y) )). } V T)Y, Z) VT)Y, Z) T V, TY, Z) )} T V, TY, Z) ) T V, TY, Z) )} T V, TY, Z) ) VT)Y, Z) T Y, TZ, V) ) +T Z, TV, Y) )). 14

15 Corollary 3.2. On an AP-space M, connecton can be wrtten as: X) te Rcc-le tensor Rc wt respect to te symmetrc RcY, Z) = 1 2 ZB)Y)+ 1 4 B TY, Z) ) 1 4 T Y, T Z), X ). It s to be noted tat te expresson S T TY, Z), V )} appears n many of te denttes obtaned above. We dscuss now te case n wc ts expresson vanses. Let us wrte [ X] =: C X. Te functons C FM) are global functons on M and wll be referred to as te global structure coeffcents of te AP-space. Tey can be wrtten explctly n te form C = structure coeffcents. S Ω[ X]). Te last expresson may be consdered as a defnton of te global Teorem 3.4. On an AP-space M, X) te expresson S T TY, Z), V )} vanses f and only } f, for all, te expresson S C,, X vanses. Consequently, f te global structure coeffcents of te AP-space are constant functons on M, ten T TY, Z), V )} = 0. Proof. Usng te parallelzaton vector felds nstead of Y, Z and V, we ave: S T T X), X )} } = 0 S T[ X], X) = 0, by 1.5),,,, S,, X [ X]+ [ [ X], X ]} = 0, by 1.4) } S,, X [ X] = 0, by Jacob dentty S X,, Ω[ X]) ) X S,, X Ω[ X]))} X = 0 S X Ω[,, } S C,, X } = 0, by 1.3) X]) )} = 0, by te ndependence of = 0, by 1.2). It sould be noted tat for te natural bass : α = 1,..., n}, te bracet [, ] = 0 and x α x α x β so te structure coeffcents assocated wt ) vans. For ts reason te local expresson n x α te natural bass) of te dentty S T TY, Z), V )} = 0 s vald as s establsed n [16]. Te last proposton gves rse to te followng nterestng formulae. Corollary 3.3. In an AP-space M, X), f te global structure coeffcent of te AP-space are constant functons on M, ten te next formulae old: a) V T)Y, Z) = V T)Y, Z) = V T)Y, Z). } b) S V T)Y, Z) = X

16 } c) S V T)Y, Z) = 0. d) S V T)Y, Z) } = 0. } e) S RY, Z)V = 0. f) RY, Z)V = 1 2 VT)Y, Z) 1T TY, Z), V ). 4 } } ) S V C)Y, Z) = S V C)Z, Y). 4 Wanas Tensor Te Wanas tensor was frst defned locally by M. I. Wanas n 1975 [12]. It as been used by F. Mal and M. Wanas [6] to construct a pure geometrc teory unfyng gravty and electromagnetsm. In ts secton, we ntroduce te global defnton of te Wanas tensor and nvestgate t. Defnton 4.1. Let M, te formula X) be an AP-space. Te tensor feld W of type 1,3) on M defned by WY, Z) X = 2 Y,ZX 2 Z,Y were 2 Y,Z = Y Z Y Z, s called te Wanas tensor, or smply te W-tensor, of M, X). Usng 1.2), for every Y, Z, V XM), we get WY, Z)V = 2 Y,Z X 2 Z,Y X ) ΩV). 4.1) Te next result gves a qute smple expresson for a suc tensor. Teorem 4.1. Te W-tensor satsfes te followng dentty WY, Z)V = RY, Z)V T TY, Z), V ). 4.2) Proof. Consder te commutaton formula for te parallelzaton vector feld Consequently, WY, Z)V 4.1) = 2 Y,ZX 2 Z,Y X = RY, Z) X TY,Z) X ΩV) RY, Z) X ΩV) TY,Z) X = RY, Z)V + ΩV) TY,Z) by 1.2) = RY, Z)V + TY,Z) ΩV) X TY, Z) ΩV) ) X = RY, Z)V + TY,Z) V TY,Z) V, by 1.2) and 1.3) = RY, Z)V T TY, Z), V ), by Proposton X wt respect to :

17 Corollary 4.1. Te W-tensor can be expressed n te form: WY, Z)V = V T)Y, Z) T TY, Z), V ). 4.3) In fact, ts expresson follows from 3.1). Ts sows tat te W-tensor s expressed n terms of te torson tensor of te AP-space only. Proposton 4.1. Te Wanas tensor as te followng propertes: a) WY, Z)V s sew symmetrc n te frst two arguments Y, Z. } b) S WY, Z)V = 2 S T TY, Z), V )}. c) S WY, Z)V } } = S V T)Y, Z). Proof. Property a) s trval, b) follows from Proposton 3.1a) and 4.3), c) follows from b) and Corollary 3.1a). Te dentty satsfed by te W-tensor n Proposton 4.1b) s te same as te frst Banc dentty Corollary3.1c) ) oftedualcurvaturetensoruptoaconstant. Tedenttycorrespondng to te second Banc dentty s gven by: Proposton 4.2. Te W-tensor satsfes te followng dentty: } S V W)Y, Z)U = S T T TY, Z), V ) ), U +T T TY, Z), U ), V )+T TU, V), TY, Z) )} + S U T) TY, Z), V ) V T) TY, Z), U )} 4.4) Proof. Tang nto account 4.2) togeter wt Proposton 3.2a), Corollary 3.1a) and Corollary 2.2a), we get S = S } V W)Y, Z)U V R)Y, Z)U V T) TY, Z), U ) T V T)Y, Z), U ))} = S U T) TY, Z), V ) V T) TY, Z), U ) 2T = S S 2T = S S T U T) TY, Z), V ) V T) TY, Z), U )} T TY, Z), V ) ), U T TY, Z), V ) )}, U + S T T TY, Z), U ) )}, V V,TY,Z),U U T) TY, Z), V ) V T) TY, Z), U )} T TY, Z), V ) ), U Corollary 4.2. In an AP-space M, constant, we ave +T T TY, Z), U ) ), V +T TU, V), TY, Z) )}. X), f te global structure coeffcent of te AP-space are 17

18 } a) S WY, Z)V = 0. b) S V W)Y, Z)U } = S U T) TY, Z), V ) V T) TY, Z), U )} Te proof s stragtforward from Teorem 3.4 and Corollary 3.3. We end ts secton by te followng comments and remars on Wanas tensor. Te W-tensor s defned by usng te commutaton formula wt respect to te dual connecton. Notng new arose from te same defnton f we use te tree oter connectons, and ). Usng te commutaton formula for te parallelzaton form vector feld X n te defnton of te W-tensor: WY, Z)V = 2 Z,Y Ω)V) 2 Y,Z Ω)V) Ω nstead of te parallelzaton ) X gves te same formula 4.2) for te W-tensor and consequently te same propertes. Beng defned by usng te parallelzaton vector felds te Wanas tensor s defned only n AP-geometry. It as no analogue n oter geometres. Altoug te W-tensor and te dual curvature tensor ave some common propertes for example, Proposton 4.1b)), tere are sgnfcantly dfferent propertes for example, 4.4)). In te case of constant global structure coeffcents, te W-tensor as some propertes common wt te Remannan curvature R. For a pyscal dscusson concernng te W-tensor we refer to [16]. 5 Parallelzaton bass versus natural bass Ts secton s devoted to a double-vew for te fundamental geometrc obects of AP-geometry. On one and, we consder te local expressons of tese geometrc obects n te natural bass [16] and, on te oter and, we compute ter expressons n te parallelzaton bass, gvng rse to a concse table expressng ts double-vew. Let U, x α ) ) bealocal coordnatesystem ofm. At eacpont x U, we avetwo dstngused bases of T x M, namely, te natural bass µ := : µ = 1,..., n} and te parallelzaton bass x µ Xx) : = 1,..., n}. Tese two bases are fundamentally dfferent. Te parallelzaton vector felds X are defned globally on te manfold M wereas te natural bass vector felds µ are defned only on te coordnate negborood U. Consequently, te natural bass vector felds depend crucally on coordnate systems wereas te parallelzaton vector felds do not. Gree world) ndces are related to te natural bass and Latn mes) ndces are related to te parallelzaton bass. Ensten summaton conventon wll be appled as usual on Gree ndces. 18

19 It wll also be appled on Latn ndces watever ter poston s even f te two repeated ndces are upward or downward). A tensor feld H of type r, s) on M s wrtten n te natural bass n te form: and n te parallelzaton bass n te form: were H α 1...α r µ 1...µ s FU) and H 1... r 1... s FM). H = H α 1...α r µ 1...µ s α1... αr dx µ 1... dx µs, on U H = H 1... r 1... s X 1... X r Ω 1... Ω s, on M, A vector feld Y XM) s wrtten n te natural bass n te form Y = Y α α and n te parallelzaton bass n te form Y = Y X. In partcular, X = X α α and α = Ω α ) X = Hence X α ) 1 α, n s te matrx of cange of bases and Ω α ) 1 α, n s te nverse matrx. We use te followng notatons wt smlar notatons wt respect to mes ndces): Γ α µν, Γ α µν, Γ α µν, Γ α µν : te coeffcents of te lnear connectons,,, respectvely, : te covarant dervatve wt respect to te dual connecton, g µν resp. g µν ): te covarant resp. contravarant) components of te metrc tensor g, Λ α µν : te components of te torson tensor T, B α : te components of te basc form B, γµν α : te components of te contorton tensor C, Wσµν: α te components of te Wanas tensor W. Ω α X. Let D be an arbtrary connecton on M wt torson tensor T and curvature tensor R. We use te followng conventons: D µ ν = D α νµ α, T µ, ν ) = T α νµ α, R µ, ν ) σ = R α σµν α, wt smlar conventons wt respect to Latn ndces. Te next table gves a comparson between te most mportant geometrc obects of AP-geometry expressed n te natural bass and n te parallelzaton bass. Geometrc obects, equatons or denttes avng te same form n te two bases are not ncluded n tat table. However, f a geometrc obect as te same form n te two bases, tat s, f ts expressons n world ndces and mes ndces are smlar, ts does not mean tat te geometrc meanng of tese two expressons s te same. 19

20 Table2: Parallelzaton bass versus natural bass Geometrc obect Local form In te natural bass world ndces) Global form In te parallelzaton bass mes ndces) Parallelzaton vector felds, parallelzaton forms X α Ω α = δ, X α Ω µ = δµ α X = δ, Ω = δ Metrc tensor g µν = Ω µ Ω ν g = δ Canoncal connecton Γ α νµ = X α Ω ν,µ were, µ denotes µ Γ = 0 Dual connecton Γα νµ = Γ α µν Γ = C Symmetrc connecton Γα νµ = 1 2 Γα νµ +Γα µν ) Γ = 1 2 C Lev-Cvta connecton Γ α νµ = 1 2 gασ g σν,µ +g µσ,ν g νµ,σ ) ) Γ = 1 C 2 +C +C Torson tensor Λ α νµ = Γ α νµ Γ α µν Λ = C Contorton tensor γ α νµ = Γ α νµ Γ α νµ γ = Γ Torson n terms of contorton Contorton n terms of torson Λ α νµ = γα νµ γα µν Λ σνµ = γ σνµ γ σµν were Λ µνσ = g ǫµ Λ ǫ νσ and γ µνσ = g ǫµ γνσ ǫ ) γνµ α = Λ 1 ανµ +Λ 2 µνǫ +Λ νµǫ )g αǫ γ µνσ = 1 Λ 2 σνµ +Λ µνσ +Λ νσµ ) Λ = γ γ γ = 1 2 C +C +C ) Basc form B µ = Λ α µα = γα µα B = Λ = γ = C Wanas tensor Wσµν α = X α νµ X α µν ) Ω σ W = X X W α σµν = Λ ǫ µνλ α σǫ Λ α µν σ W = Cl Cl X C 20

21 Te above table merts some comments. We conclude ts secton and te paper by te followng remars and comments. Te trd column of te above table s obtaned by computng te expresson of te geometrc obects n te parallelzaton bass. For example, to compute te coeffcents of te Lev-Cvta connecton Γ, set Y = Z = V = X n 2.6). Ten, we get 2g X X) = X g X)+ X g g [ X])+g [ X) X g X])+g X) [ X]). For te left-and sde LHS), As X g vans. Hence, X) = LHS = 2g Γ l l X g = X) = 2g lγ l = 2δ l Γ l = 2 Γ. X δ = 0, te frst tree terms of te rgt-and sde RHS) RHS = g C l X)+g C l l X)+g C l l X) l = g l C l +g l C l +g l C l = C +C +C. Accordngly, Γ = 1 2 C +C C ). It s clear from te trd column tat almost all geometrc obects of AP-geometry are expressed n terms of te global structure coeffcents C. Te global structure coeffcents tus play a domnant role n AP-geometry formulated n mes ndces. Its role s smlar to, and even more mportant tan, te role played by te torson tensor Λ n AP-geometry formulated n world ndces. Te structure coeffcents C α µν wt respect to an arbtrary bass e α ) are not te components of a 1,2)-tensor feld. In fact, let e α = A α α e α under a cange of local coordnates from x α ) to x α ) and let [e µ,e ν ] = Cµνe α α and [e µ, e ν ] = Cµ α ν e α. Ten, one can easly sow tat te transformaton formula for Cµν α as te form: C α µ ν = Aα α Aµ µ A ν ν Cα µν +Kα µ ν Kα ν µ, were Kµν α = Aµ µ Aα α e µ Aα ν ). Tus, Cα µν are not te components of a tensor feld of type 1,2) unless e µ A α ν = 0 tat s, te matrx of cange of bases A α α s a constant matrx) or Kµν α s symmetrc wt respect to µ and ν. Also, te global structure coeffcents C are not te components of a 1,2)-tensor feld tey are n 3 functons defned globally on M and avng certan propertes). Neverteless, for fxed and, C are te components of te 1,0)-tensor feld [ X]. 21

22 In te parallelzaton bass, altoug te coeffcents of te canoncal connecton vans: Γ = 0 X X = 0 because of te AP-condton), ts torson tensor T does not vans: Λ = C ; a penomenon tat never exst n natural local coordnates. Ts s due to te non-vansng of te bracet [ X] n te expresson of te torson tensor: T X) = X X X X [ X]. For te same reason te dual connecton as also non-vansng coeffcents: Γ = C. From te table we ave Γ = 2 Γ = C and Γ = γ = 1 2 C +C +C ). Ts means tat te dual connecton coeffcents and te symmetrc connecton coeffcents concde up to a constant) and are bot equal to te global structure coeffcents up to a constant). On te oter and, te Lev-Cvta connecton coeffcents concde wt te contorton coeffcents up to a sgn). Ts sows agan tat everytng n AP-geometry s expressble n terms of te global structure coeffcents. Also, all survvng connectons n te space may be represented by only one of tem, say te Lev-Cvta connecton. A quc loo at te trd column of te above table may deceve and lead to erroneous conclusons: te symmetrc connecton s sew-symmetrc and te Lev-Cvta connecton s non-symmetrc. Ts s by no means true. Te formulaton of te noton of symmetry of connectons usng ndces s not appled any more n ts context. In fact, a lnear connecton s symmetrc f and only f t concdes wt ts dual connecton, and ts s te case for bot te symmetrc and Lev-Cvta connectons. Anoter example: altoug te symmetrc and dual connectons concde up to a constant) n te parallelzaton bass, te symmetrc connecton as no torson wle te dual connecton as a survvng torson. Ts s, once more, due to te fact tat te torson expresson as a bracet term wc does not depend on te connecton. Te torson and contorton tensors of type 0,3) are present n te natural bass wle tey are not n te parallelzaton bass. Ts s because te metrc matrx s te dentty matrx δ ). Consequently, mes ndces can not be rased or lowered usng te metrc g. In local coordnates te structure coeffcents vans: [ µ, ν ] = 0 wle n te parallelzaton bass te global structure coeffcents are alve: [ X] = C X). Fortsreasontestructure coeffcents, n local coordnates, ave no effect and te second column of te above table gve tus te usual expressons we are accustomed to [16]. As an example, as te connecton coeffcents depend on coordnate systems, te canoncal connecton coeffcents do not vans n te natural bass wle tey vans n te parallelzaton bass). For pyscal applcatons, especally n general relatvty and gravtaton, one can assgn a sgnature to te postve defnte metrc g defned by 2.1). Ts can be aceved, for n = 4, by wrtng g = η Ω Ω, were η = 0 for, η = 1 for = = 0, η = +1 for = = 1,2,3. Te metrc g s tus nomore postve defnte but rater nondegenerate. 22

23 References [1] F. Brcell and R. S. Clar: Dfferentable manfolds, Van Nostrand Renold Co., [2] A. Ensten: Unfed feld teory based on Remannan metrcs and dstant parallelsm, Mat. Annal. 102, ). [3] A. Ensten: Te meanng of relatvty, 5t. Ed., Prnceton Unv. Press, [4] S. Kobayas and K. Nomzu: Foundatons of dfferental geometry, Vol. I., Interscence Publ., [5] W. Künel: Dfferental geometry, Curves-surfaces-manfolds, 2nd. Ed., Amer. Mat. Soc., [6] F. I. Mal and M. I. Wanas: A generalzed feld teory, I. Feld equatons, Proc. R. Soc. London 356, ). [7] C. Moller: Conservaton laws and absolute parallelsm n general relatvty, Mat. Fys. Sr. Dan. Vd. Sels. 39, ). [8] Gamal G. L. Nased: Vacuum non sngular blac ole solutons n tetrad teory of gravtaton, Gen. Rel. Grav. 34, ). [9] Gamal G. L. Nased: Carged axally symmetrc soluton, energy and angular momentum n tetrad teory of gravtaton, Int. J. Mod. Pys. A 21, ). [10] J. Szlas and L. Tamássy: Generalzed Berwald spaces as affne deformaton of Mnows spaces, Rev. Roumane Mat. Pures. Appl. 57, ). [11] L. Tamássy: Pont Fnsler spaces wt metrcal lnear connectons, Pupl. Mat. Debrecen 56, ). [12] M. I. Wanas: A generalzed feld teory and ts applcatons n cosmology, P. D. Tess, Caro Unv., [13] M. I. Wanas: A self-consstent world model, Astropys. Space Sc. 154, ). [14] M. I. Wanas: Absolute parallelsm geometry: developments, applcatons and problems, Stud. Cercet. Stn. Ser. Mat. Unv. Bacau 10, ). [15] M. I. Wanas: Te acceleratng expanson of te unverse and torson energy, Int. J. Mod. Pys. A 22, ). [16] Nabl L. Youssef and Amr M. Sd-Amed: Lnear connectons and curvature tensors n te geometry of parallelzabl manfolds, Rept. Mat. Pys. 60, ). 23

Affine and Riemannian Connections

Affine and Riemannian Connections Affne and Remannan Connectons Semnar Remannan Geometry Summer Term 2015 Prof Dr Anna Wenhard and Dr Gye-Seon Lee Jakob Ullmann Notaton: X(M) space of smooth vector felds on M D(M) space of smooth functons

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL TR/9 February 980 End Condtons for Interpolatory Quntc Splnes by G. H. BEHFOROOZ* & N. PAPAMICHAEL *Present address: Dept of Matematcs Unversty of Tabrz Tabrz Iran. W9609 A B S T R A C T Accurate end condtons

More information

2-π STRUCTURES ASSOCIATED TO THE LAGRANGIAN MECHANICAL SYSTEMS UDC 531.3: (045)=111. Victor Blãnuţã, Manuela Gîrţu

2-π STRUCTURES ASSOCIATED TO THE LAGRANGIAN MECHANICAL SYSTEMS UDC 531.3: (045)=111. Victor Blãnuţã, Manuela Gîrţu FACTA UNIVERSITATIS Seres: Mechancs Automatc Control and Robotcs Vol. 6 N o 1 007 pp. 89-95 -π STRUCTURES ASSOCIATED TO THE LAGRANGIAN MECHANICAL SYSTEMS UDC 531.3:53.511(045)=111 Vctor Blãnuţã Manuela

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

η-einstein Complex Finsler-Randers Spaces

η-einstein Complex Finsler-Randers Spaces Open Access Journal of Matematcal and Statstcal Analyss RESEARCH ARTICLE η-ensten Complex Fnsler-Randers Spaces Roopa MK * and Narasmamurty SK Department of PG Studes and Researc n Matematcs Kuvempu Unversty

More information

Projective change between two Special (α, β)- Finsler Metrics

Projective change between two Special (α, β)- Finsler Metrics Internatonal Journal of Trend n Research and Development, Volume 2(6), ISSN 2394-9333 www.jtrd.com Projectve change between two Specal (, β)- Fnsler Metrcs Gayathr.K 1 and Narasmhamurthy.S.K 2 1 Assstant

More information

On Four Dimensional Semi-C-reducible. Landsberg Space

On Four Dimensional Semi-C-reducible. Landsberg Space Internatonal Matematcal Forum Vol. 8 201 no. 191-200 On Four Dmensonal Sem--reducble Landsberg Space V. K. aubey and *Rakes Kumar Dwved Department of Matematcs & Statstcs D.D.U. Gorakpur Unversty Gorakpur

More information

5 The Laplace Equation in a convex polygon

5 The Laplace Equation in a convex polygon 5 Te Laplace Equaton n a convex polygon Te most mportant ellptc PDEs are te Laplace, te modfed Helmoltz and te Helmoltz equatons. Te Laplace equaton s u xx + u yy =. (5.) Te real and magnary parts of an

More information

The Finite Element Method: A Short Introduction

The Finite Element Method: A Short Introduction Te Fnte Element Metod: A Sort ntroducton Wat s FEM? Te Fnte Element Metod (FEM) ntroduced by engneers n late 50 s and 60 s s a numercal tecnque for solvng problems wc are descrbed by Ordnary Dfferental

More information

are called the contravariant components of the vector a and the a i are called the covariant components of the vector a.

are called the contravariant components of the vector a and the a i are called the covariant components of the vector a. Non-Cartesan Coordnates The poston of an arbtrary pont P n space may be expressed n terms of the three curvlnear coordnates u 1,u,u 3. If r(u 1,u,u 3 ) s the poston vector of the pont P, at every such

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Causal Diamonds. M. Aghili, L. Bombelli, B. Pilgrim

Causal Diamonds. M. Aghili, L. Bombelli, B. Pilgrim Causal Damonds M. Aghl, L. Bombell, B. Plgrm Introducton The correcton to volume of a causal nterval due to curvature of spacetme has been done by Myrhem [] and recently by Gbbons & Solodukhn [] and later

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

About Three Important Transformations Groups

About Three Important Transformations Groups About Tree Important Transformatons Groups MONICA A.P. PURCARU Translvana Unversty of Braşov Department of Matematcs Iulu Manu Street 5 591 Braşov ROMANIA m.purcaru@yaoo.com MIRELA TÂRNOVEANU Translvana

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

A Discrete Approach to Continuous Second-Order Boundary Value Problems via Monotone Iterative Techniques

A Discrete Approach to Continuous Second-Order Boundary Value Problems via Monotone Iterative Techniques Internatonal Journal of Dfference Equatons ISSN 0973-6069, Volume 12, Number 1, pp. 145 160 2017) ttp://campus.mst.edu/jde A Dscrete Approac to Contnuous Second-Order Boundary Value Problems va Monotone

More information

SOME RESULTS ON TRANSFORMATIONS GROUPS OF N-LINEAR CONNECTIONS IN THE 2-TANGENT BUNDLE

SOME RESULTS ON TRANSFORMATIONS GROUPS OF N-LINEAR CONNECTIONS IN THE 2-TANGENT BUNDLE STUDIA UNIV. BABEŞ BOLYAI MATHEMATICA Volume LIII Number March 008 SOME RESULTS ON TRANSFORMATIONS GROUPS OF N-LINEAR CONNECTIONS IN THE -TANGENT BUNDLE GHEORGHE ATANASIU AND MONICA PURCARU Abstract. In

More information

Finslerian Nonholonomic Frame For Matsumoto (α,β)-metric

Finslerian Nonholonomic Frame For Matsumoto (α,β)-metric Internatonal Journal of Mathematcs and Statstcs Inventon (IJMSI) E-ISSN: 2321 4767 P-ISSN: 2321-4759 ǁ Volume 2 ǁ Issue 3 ǁ March 2014 ǁ PP-73-77 Fnsleran Nonholonomc Frame For Matsumoto (α,)-metrc Mallkarjuna

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Iranian Journal of Mathematical Chemistry, Vol. 5, No.2, November 2014, pp

Iranian Journal of Mathematical Chemistry, Vol. 5, No.2, November 2014, pp Iranan Journal of Matematcal Cemstry, Vol. 5, No.2, November 204, pp. 85 90 IJMC Altan dervatves of a grap I. GUTMAN (COMMUNICATED BY ALI REZA ASHRAFI) Faculty of Scence, Unversty of Kragujevac, P. O.

More information

NATURAL 2-π STRUCTURES IN LAGRANGE SPACES

NATURAL 2-π STRUCTURES IN LAGRANGE SPACES AALELE ŞTIIŢIFICE ALE UIVERSITĂŢII AL.I. CUZA DI IAŞI (S.. MATEMATICĂ, Tomul LIII, 2007, Suplment ATURAL 2-π STRUCTURES I LAGRAGE SPACES Y VICTOR LĂUŢA AD VALER IMIEŢ Dedcated to Academcan Radu Mron at

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

CHAPTER 5: Lie Differentiation and Angular Momentum

CHAPTER 5: Lie Differentiation and Angular Momentum CHAPTER 5: Le Dfferentaton and Angular Momentum Jose G. Vargas 1 Le dfferentaton Kähler s theory of angular momentum s a specalzaton of hs approach to Le dfferentaton. We could deal wth the former drectly,

More information

THE CARTIER ISOMORPHISM. These are the detailed notes for a talk I gave at the Kleine AG 1 in April Frobenius

THE CARTIER ISOMORPHISM. These are the detailed notes for a talk I gave at the Kleine AG 1 in April Frobenius THE CARTIER ISOMORPHISM LARS KINDLER Tese are te detaled notes for a talk I gave at te Klene AG 1 n Aprl 2010. 1. Frobenus Defnton 1.1. Let f : S be a morpsm of scemes and p a prme. We say tat S s of caracterstc

More information

Vanishing S-curvature of Randers spaces

Vanishing S-curvature of Randers spaces Vanshng S-curvature of Randers spaces Shn-ch OHTA Department of Mathematcs, Faculty of Scence, Kyoto Unversty, Kyoto 606-850, JAPAN (e-mal: sohta@math.kyoto-u.ac.jp) December 31, 010 Abstract We gve a

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Solution for singularly perturbed problems via cubic spline in tension

Solution for singularly perturbed problems via cubic spline in tension ISSN 76-769 England UK Journal of Informaton and Computng Scence Vol. No. 06 pp.6-69 Soluton for sngularly perturbed problems va cubc splne n tenson K. Aruna A. S. V. Rav Kant Flud Dynamcs Dvson Scool

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

Bernoulli Numbers and Polynomials

Bernoulli Numbers and Polynomials Bernoull Numbers and Polynomals T. Muthukumar tmk@tk.ac.n 17 Jun 2014 The sum of frst n natural numbers 1, 2, 3,..., n s n n(n + 1 S 1 (n := m = = n2 2 2 + n 2. Ths formula can be derved by notng that

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

Smarandache-Zero Divisors in Group Rings

Smarandache-Zero Divisors in Group Rings Smarandache-Zero Dvsors n Group Rngs W.B. Vasantha and Moon K. Chetry Department of Mathematcs I.I.T Madras, Chenna The study of zero-dvsors n group rngs had become nterestng problem snce 1940 wth the

More information

The finite element method explicit scheme for a solution of one problem of surface and ground water combined movement

The finite element method explicit scheme for a solution of one problem of surface and ground water combined movement IOP Conference Seres: Materals Scence and Engneerng PAPER OPEN ACCESS e fnte element metod explct sceme for a soluton of one problem of surface and ground water combned movement o cte ts artcle: L L Glazyrna

More information

DIFFERENTIAL FORMS BRIAN OSSERMAN

DIFFERENTIAL FORMS BRIAN OSSERMAN DIFFERENTIAL FORMS BRIAN OSSERMAN Dfferentals are an mportant topc n algebrac geometry, allowng the use of some classcal geometrc arguments n the context of varetes over any feld. We wll use them to defne

More information

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product 12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA Here s an outlne of what I dd: (1) categorcal defnton (2) constructon (3) lst of basc propertes (4) dstrbutve property (5) rght exactness (6) localzaton

More information

Screen transversal conformal half-lightlike submanifolds

Screen transversal conformal half-lightlike submanifolds Annals of the Unversty of Craova, Mathematcs and Computer Scence Seres Volume 40(2), 2013, Pages 140 147 ISSN: 1223-6934 Screen transversal conformal half-lghtlke submanfolds Wenje Wang, Yanng Wang, and

More information

Lagrangian Field Theory

Lagrangian Field Theory Lagrangan Feld Theory Adam Lott PHY 391 Aprl 6, 017 1 Introducton Ths paper s a summary of Chapter of Mandl and Shaw s Quantum Feld Theory [1]. The frst thng to do s to fx the notaton. For the most part,

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

ABOUT THE GROUP OF TRANSFORMATIONS OF METRICAL SEMISYMMETRIC N LINEAR CONNECTIONS ON A GENERALIZED HAMILTON SPACE OF ORDER TWO

ABOUT THE GROUP OF TRANSFORMATIONS OF METRICAL SEMISYMMETRIC N LINEAR CONNECTIONS ON A GENERALIZED HAMILTON SPACE OF ORDER TWO Bulletn of the Translvana Unversty of Braşov Vol 554 No. 2-202 Seres III: Mathematcs Informatcs Physcs 75-88 ABOUT THE GROUP OF TRANSFORMATIONS OF METRICAL SEMISYMMETRIC N LINEAR CONNECTIONS ON A GENERALIZED

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

The lower and upper bounds on Perron root of nonnegative irreducible matrices

The lower and upper bounds on Perron root of nonnegative irreducible matrices Journal of Computatonal Appled Mathematcs 217 (2008) 259 267 wwwelsevercom/locate/cam The lower upper bounds on Perron root of nonnegatve rreducble matrces Guang-Xn Huang a,, Feng Yn b,keguo a a College

More information

Determinants Containing Powers of Generalized Fibonacci Numbers

Determinants Containing Powers of Generalized Fibonacci Numbers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol 19 (2016), Artcle 1671 Determnants Contanng Powers of Generalzed Fbonacc Numbers Aram Tangboonduangjt and Thotsaporn Thanatpanonda Mahdol Unversty Internatonal

More information

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS Journal of Mathematcal Scences: Advances and Applcatons Volume 25, 2014, Pages 1-12 A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS JIA JI, WEN ZHANG and XIAOFEI QI Department of Mathematcs

More information

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY CIPRIAN ACATRINEI Natonal Insttute of Nuclear Physcs and Engneerng P.O. Box MG-6, 07725-Bucharest, Romana E-mal: acatrne@theory.npne.ro. Receved March 6, 2008

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques CS 468 Lecture 16: Isometry Invarance and Spectral Technques Justn Solomon Scrbe: Evan Gawlk Introducton. In geometry processng, t s often desrable to characterze the shape of an object n a manner that

More information

M-LINEAR CONNECTION ON THE SECOND ORDER REONOM BUNDLE

M-LINEAR CONNECTION ON THE SECOND ORDER REONOM BUNDLE STUDIA UNIV. AEŞ OLYAI, MATHEMATICA, Volume XLVI, Number 3, September 001 M-LINEAR CONNECTION ON THE SECOND ORDER REONOM UNDLE VASILE LAZAR Abstract. The T M R bundle represents the total space of a tme

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Fedosov s approach to deformation quantization

Fedosov s approach to deformation quantization Fedosov s approac to deformaton quantzaton Sean Poorence Introducton In classcal mecancs te order of measurements does not affect te results of te measurements. However, trougout te 19t and early 20t centures,

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Lnear Algebra and ts Applcatons 4 (00) 5 56 Contents lsts avalable at ScenceDrect Lnear Algebra and ts Applcatons journal homepage: wwwelsevercom/locate/laa Notes on Hlbert and Cauchy matrces Mroslav Fedler

More information

Ballot Paths Avoiding Depth Zero Patterns

Ballot Paths Avoiding Depth Zero Patterns Ballot Paths Avodng Depth Zero Patterns Henrch Nederhausen and Shaun Sullvan Florda Atlantc Unversty, Boca Raton, Florda nederha@fauedu, ssull21@fauedu 1 Introducton In a paper by Sapounaks, Tasoulas,

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Hamilton s principle and the Generalized Field Theory : A comparative study

Hamilton s principle and the Generalized Field Theory : A comparative study Hamlton s prncple and the Generalzed Feld Theory : A comparatve study arxv:gr-qc/9812086v1 27 Dec 1998 F. I. Mkhal Department of mathematcs, faculty of scence, An shames unversty, Egypt M. I. Wanas Astronomy

More information

Some results on a cross-section in the tensor bundle

Some results on a cross-section in the tensor bundle Hacettepe Journa of Matematcs and Statstcs Voume 43 3 214, 391 397 Some resuts on a cross-secton n te tensor bunde ydın Gezer and Murat tunbas bstract Te present paper s devoted to some resuts concernng

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold Prespacetme Journal December 06 Volume 7 Issue 6 pp. 095-099 Pund, A. M. & Avachar, G.., Perfect Flud Cosmologcal Model n the Frame Work Lyra s Manfold Perfect Flud Cosmologcal Model n the Frame Work Lyra

More information

COMP4630: λ-calculus

COMP4630: λ-calculus COMP4630: λ-calculus 4. Standardsaton Mcael Norrs Mcael.Norrs@ncta.com.au Canberra Researc Lab., NICTA Semester 2, 2015 Last Tme Confluence Te property tat dvergent evaluatons can rejon one anoter Proof

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

An efficient algorithm for multivariate Maclaurin Newton transformation

An efficient algorithm for multivariate Maclaurin Newton transformation Annales UMCS Informatca AI VIII, 2 2008) 5 14 DOI: 10.2478/v10065-008-0020-6 An effcent algorthm for multvarate Maclaurn Newton transformaton Joanna Kapusta Insttute of Mathematcs and Computer Scence,

More information

2. Differentiable Manifolds and Tensors

2. Differentiable Manifolds and Tensors . Dfferentable Manfolds and Tensors.1. Defnton of a Manfold.. The Sphere as a Manfold.3. Other Examples of Manfolds.4. Global Consderatons.5. Curves.6. Functons on M.7. Vectors and Vector Felds.8. Bass

More information

CONDITIONS FOR INVARIANT SUBMANIFOLD OF A MANIFOLD WITH THE (ϕ, ξ, η, G)-STRUCTURE. Jovanka Nikić

CONDITIONS FOR INVARIANT SUBMANIFOLD OF A MANIFOLD WITH THE (ϕ, ξ, η, G)-STRUCTURE. Jovanka Nikić 147 Kragujevac J. Math. 25 (2003) 147 154. CONDITIONS FOR INVARIANT SUBMANIFOLD OF A MANIFOLD WITH THE (ϕ, ξ, η, G)-STRUCTURE Jovanka Nkć Faculty of Techncal Scences, Unversty of Nov Sad, Trg Dosteja Obradovća

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up Not-for-Publcaton Aendx to Otmal Asymtotc Least Aquares Estmaton n a Sngular Set-u Antono Dez de los Ros Bank of Canada dezbankofcanada.ca December 214 A Proof of Proostons A.1 Proof of Prooston 1 Ts roof

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling Open Journal of Statstcs, 0,, 300-304 ttp://dx.do.org/0.436/ojs.0.3036 Publsed Onlne July 0 (ttp://www.scrp.org/journal/ojs) Multvarate Rato Estmator of te Populaton Total under Stratfed Random Samplng

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

NOTES FOR QUANTUM GROUPS, CRYSTAL BASES AND REALIZATION OF ŝl(n)-modules

NOTES FOR QUANTUM GROUPS, CRYSTAL BASES AND REALIZATION OF ŝl(n)-modules NOTES FOR QUANTUM GROUPS, CRYSTAL BASES AND REALIZATION OF ŝl(n)-modules EVAN WILSON Quantum groups Consder the Le algebra sl(n), whch s the Le algebra over C of n n trace matrces together wth the commutator

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

ON THE JACOBIAN CONJECTURE

ON THE JACOBIAN CONJECTURE v v v Far East Journal of Mathematcal Scences (FJMS) 17 Pushpa Publshng House, Allahabad, Inda http://www.pphm.com http://dx.do.org/1.17654/ms1111565 Volume 11, Number 11, 17, Pages 565-574 ISSN: 97-871

More information

Applied Mathematics Letters. On equitorsion geodesic mappings of general affine connection spaces onto generalized Riemannian spaces

Applied Mathematics Letters. On equitorsion geodesic mappings of general affine connection spaces onto generalized Riemannian spaces Appled Mathematcs Letters (0) 665 67 Contents lsts avalable at ScenceDrect Appled Mathematcs Letters journal homepage: www.elsever.com/locate/aml On equtorson geodesc mappngs of general affne connecton

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

ENERGY-DEPENDENT MINKOWSKI METRIC IN SPACE-TIME

ENERGY-DEPENDENT MINKOWSKI METRIC IN SPACE-TIME ENERGY-DEPENDENT MINKOWSKI METRIC IN SPACE-TIME R. Mron, A. Jannusss and G. Zet Abstract The geometrcal propertes of the space-tme endowed wth a metrc dependng on the energy E of the consdered process

More information

On the symmetric character of the thermal conductivity tensor

On the symmetric character of the thermal conductivity tensor On the symmetrc character of the thermal conductvty tensor Al R. Hadjesfandar Department of Mechancal and Aerospace Engneerng Unversty at Buffalo, State Unversty of New York Buffalo, NY 146 USA ah@buffalo.edu

More information

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION

SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION talan journal of pure appled mathematcs n. 33 2014 (63 70) 63 SUPER PRINCIPAL FIBER BUNDLE WITH SUPER ACTION M.R. Farhangdoost Department of Mathematcs College of Scences Shraz Unversty Shraz, 71457-44776

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Perfect Competition and the Nash Bargaining Solution

Perfect Competition and the Nash Bargaining Solution Perfect Competton and the Nash Barganng Soluton Renhard John Department of Economcs Unversty of Bonn Adenauerallee 24-42 53113 Bonn, Germany emal: rohn@un-bonn.de May 2005 Abstract For a lnear exchange

More information

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter J. Basc. Appl. Sc. Res., (3541-546, 01 01, TextRoad Publcaton ISSN 090-4304 Journal of Basc and Appled Scentfc Research www.textroad.com The Quadratc Trgonometrc Bézer Curve wth Sngle Shape Parameter Uzma

More information

The Symmetries of Kibble s Gauge Theory of Gravitational Field, Conservation Laws of Energy-Momentum Tensor Density and the

The Symmetries of Kibble s Gauge Theory of Gravitational Field, Conservation Laws of Energy-Momentum Tensor Density and the The Symmetres of Kbble s Gauge Theory of Gravtatonal Feld, Conservaton aws of Energy-Momentum Tensor Densty and the Problems about Orgn of Matter Feld Fangpe Chen School of Physcs and Opto-electronc Technology,Dalan

More information

arxiv: v1 [gr-qc] 31 Oct 2007

arxiv: v1 [gr-qc] 31 Oct 2007 Covarant Theory of Gravtaton n the Spacetme wth nsler Structure Xn-Bng Huang Shangha Unted Center for Astrophyscs (SUCA), arxv:0710.5803v1 [gr-qc] 31 Oct 2007 Shangha Normal Unversty, No.100 Guln Road,

More information

Graph Reconstruction by Permutations

Graph Reconstruction by Permutations Graph Reconstructon by Permutatons Perre Ille and Wllam Kocay* Insttut de Mathémathques de Lumny CNRS UMR 6206 163 avenue de Lumny, Case 907 13288 Marselle Cedex 9, France e-mal: lle@ml.unv-mrs.fr Computer

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN FINITELY-GENERTED MODULES OVER PRINCIPL IDEL DOMIN EMMNUEL KOWLSKI Throughout ths note, s a prncpal deal doman. We recall the classfcaton theorem: Theorem 1. Let M be a fntely-generated -module. (1) There

More information