ASYMPTOTIC HEAT CONDUCTION IN ARBITRARY BODIES

Size: px
Start display at page:

Download "ASYMPTOTIC HEAT CONDUCTION IN ARBITRARY BODIES"

Transcription

1 R 888 Philips Res. Repts 30, 31*-39*, 1975 Issue in honour of c. J. Bouwkamp Abstract ASYMPTOTIC HEAT CONDUCTION IN ARBITRARY BODIES by Murray S. KLAMKIN University of Waterloo Waterloo, Ontario, Canada (Received July 31, 1974) It is physically intuitive that the dominant term in the asymptotic temperature distribution of an arbitrary body with constant thermal properties and subject to a uniform heat flux at its surface can be gotten by assuming it will be the same for all points of the body. Whence, T...,at. This result is shown to hold even if the surface flux varies with position. In addition, the rest of the quasi-steady-state solution is shown to depend only on position and is given by the solution of a corresponding Neumann problem. The results are then extended to periodic heat-flux conditions and to composite bodies. 1. Introduetion There are not too many exact solutions known for heat-conduction problems in which the geometry and/or boundary conditions are not simple. However, if one is mainly interested in "large"-time solutions, one can still, exactly, obtain the dominant term in the asymptotic expansion. Here, we determine the asymptotic temperature distribution for larbitrary homogeneous bodies and then for homogeneous composite bodies with constant thermai properties and subject to two kinds of non-constant boundary conditions. To illustrate the method, we first start off with the simplest of this class of problems. 2. Here, we determine the asymptotic temperature distribution for an arbitrary smooth homogeneous body with constant thermal properties and which is subject to a space-varying heat flux over its surface (fig. I). Consequently, we wish to solve the B.V.P. (boundary-value problem) 'è)t -= ct \12 T 'è)t 'è)t -k-= Q(x,y,z) 'è)n (in V), (on 8), (1) (2) T(x, y, z, 0) - To(x, y, z), for "large" values of the time. As usual, k denotes the thermal conductivity and ct denotes the thermal diffusivity k/c(! (c is the heat capacity, (! the density). (3)

2 32* MURRAY S. KLAM KIN Fig. I. Since the total amount of heat which has flown into the body at time t is t f f Q ds, we expect intuitively that the leading term of the asymptotic temperature distribution will be proportional to t. This is indeed valid. To prove it, we let where T(x, y, z, t) = a IX t + 4>(x,y, z) + T(x, y, z, t), (4) (in V), "ö4> -k-=q "ön (6) (a is a constant to be determined). These conditions on 4> were set to insure that T also satisfies (1) subject to an insulated boundary condition and consequently T will approach a constant asymptotically. From (5) and (6), it follows by the divergence theorem that (5)!!QdS=k!! s v!\12cpdv=kav=qs, where Q denotes the average flux over the surface. Consequently, in order that (5) and (6) have a solution it is necessary that QS a=--. kv (7) Furthermore, that the solution of 4> is unique, up to an arbitrary constant, follows from the known uniqueness of the solution of \12 Ä = 0 (in V) subject to "öä/"ön = 0 aside from an arbitrary constant. To fix this arbitrary

3 ASYMPTOTIC HEAT CONDUCTION IN ARBITRARY BODIES 33* constant, we also impose the condition f f f [To(x, y, z) - cp(x, y, z)] d V = O. v This will insure that T(x, y, z, t) will approach zero as t co instead of some non-zero constant. Equations (5) and (6) can be easily transformed into a classical Neumann problem by letting where r 2 = x 2 + y2 + Z2. Whence, <:rx=o cp(x, y, z) = a r 2 /6 + x(x, y, z), ()X k a ()r~ -k-=q+-- ()n 6 ()n (in V), f f f [To - X - a r 2 /6] dv = O. v This Neumarm problem has a unique solution for smooth S since ff( ka ()r 2 ) Q+--,- ds=o s 6 (jn 1 by virtue of a = QS/kV. From the definition of cp, it follows that (as was planned) ()T - = C( \12 T (in V), ()t ()T -=0 ()n 'Ï' (x, y, z, 0) = To(x, y, z) - cp(x, y, z). Consequently, 'Ï' is the solution of the heat-flow problem of a body which is insulated and whose.average initial temperature is zero. Whence T 0 as t We have thus established that the quasi-steady-state temperature is exactly given by a «t + cp(x, y, z). For simple geometries (i.e., one-dimensional flow in slabs, cylinders and spheres), cp can be determined explicitly. For more complicated bodies, cp can be determined numerically.

4 34* MURRAY S. KLAM KIN 3. Here, we change the problem in the preceding section by considering a periodic (in time) heat-flux boundary condition. Consequently, (2) is changed to 'öt -k - = Ql(X, y, z) sin (wt) + Q2(X, y, z) cos (wt) (2') cm while (1) and (3) remain the same. Since we physically expect the temperature to asymptotically have a form similar to the r.h.s. of (2'), we let T(x, y, z, t) = 4>(x, y, z) sin (wt) + X(x, y, z) cos (wt) + T(x, y, z, t), (8) where T is to satisfy (1) and should approach a constant value. Whence, [4> cos (wt) - X sin (wt)] co]«= sin (wt) \12 4> + cos (wt) \12 X (in V), and ( 'ö4> 'öx) -k sin (wt) - + cos (wt) - = Ql sin (wt) + Q2 cos (wt) (on S). Consequently, a \12 4> = -w X, a \12 X = w 4> (in V), (9) subject to the B.C.'s (on S). (10) We first show that 4> and X are unique up to arbitrary constants. Then by a known theorem, the uniqueness implies the existence of 4> and X *). Assume that there exist two different solutions 4>1' Xl and 4>2' X2' and form their differences Whence, - - a \12 4> = -w X, - - a \12 X = t» 4> (in V), (11) 'ö'f 'öx -=-=0 (on S). (12) From (10) it follows that f f f (~\J2~+X\12X)dV=0. (13) v Since.) I am indebted to L. Nirenberg (Courant Institute) for this argument.

5 ASYMPTOTIC HEAT CONDUCTION IN ARBITRARY BODIES 35* (13) can be rewritten (using the divergence theorem) as By virtue of the B.C.'s (11), we must then have - - (\7 cp)2 + ('v X)2 = 0 - and thus cp and X must be constants. Explicit solutions for cp and X can be obtained for one-dimensional flow in slabs, cylinders and spheres 1). For more complicated geometry, we can again resort to numerical methods. It follows from (8), (11) and (12) that ()T - = a \12 T ()t ()T -k-=o ()n T(x, y, z, 0) = To(x, y, z) - (on V), x(x, y, z). Consequently, lirn T(x, y, z, t) = - f f f (To - 1 t-+co V y X) d V = To (constant) and the asymptotic temperature distribution is given by Incidentally, T(x, y, z, t) '" To + cp(x,y, z) sin (cot) + x(x, y, z) cos (cot). (15) f f f cp dv = - kacof f Q2 ds, Y S fffxdv= y 4. Here, we generalize the problem in sec. 2 to arbitrary composite bodies, fig. 2. However, for simplicity it suffices to just consider a composite of two different materials, see fig. 3. Our B.V.P. is now

6 36* MURRAY S.KLAMKIN Fig.3. bt -=a \J2T (in V), (16) bt bti -= al \J2 TI bt (in VI), (17) "öt -k-= Q(x,y,z) (18) "ön We Iet T=TI "öt "öti (on SI), (19) k-=klbn ) "ön T(x, y, z, 0) = To, TI(x, y, z, 0) = Tal' (20) T = a a t + cp (x, y, z) + l'(x, y, z, t), TI = al al t + cp I(x, y, z) + 1'1(X, y, z, t),

7 ASYMPTOTIC HEAT CONDUCTION IN ARBITRARY BODIES 37* where l' and T, satisfy (16) and (17), respectively. Consequently, \12 cp = a (in V), (21) In order to make l' and T, approach constants as t , we impose the B.C.'s: 'öcp -k-= Q(x,y,z) (22) (23) a a = a,a" (24) cp = cp" ) 'öcp 'öcpi (on S,), (25) k-=k,- In order for the latter Neumann type of problem to have a solution, the heat input per unit time via the flux Q must be exactly picked up by the distributed heat sinks corresponding to a and a, in the Poisson equations (21) and (22). Consequently, as in sec. 2, we must have by the divergence theorem that or Also, Whence, and 111 \12 1> dv = - 11 :~ ds + 11 :~ as, v s ~ Q S k, IJ 'öcpi av=-+- -ds,. k k s, - 11:~' ds, = J 11 \121>ldVI=a, v" s, v, Q S = k a V + k, a, V, a= a,k V+ aki V, It follows now that cp and CPIare determined uniquely up to the same arbitrary constant. As in sec. 2, we fix this constant by also requiring that 111(To - 1» dv+ J 11 (Tol- 1>,) dv,= O. V v,

8 38* MURRAY S. KLAMKIN Since the B.V.P. for T and T, is è:>t - = a \12 T, è:>t è:>t -k-=o è:>n è:>t, - = a, \12 T" è:>t T=T, k ot ~k:t, 1 è:>n <)n (on S,), f f f T d V + f f f T, d v, = 0 v V, (att=o); T and T, -+ 0 as t The last problem to be considered is the same as the one in sec. 4 with the exception that boundary condition (18) is replaced by We now let è:>t -k - = Ql(X, y, z) sin rot + Q2(X, y, z) cos rot. (18') bn T = cp (x, y, z) sin rot + X (x, y, z) cos rot + T(x, y, z, t), T, = cp,(x, y, z) sin rot + X,(x, y, z) cos rot + T,(x, y, z, t), where T and T, are to also satisfy (16) and (17), respectively, and approach constant values as t This requires (as in sec. 3) that a \12 cp = -ro X, a \12 X = to cp (in V), a, \12 CPI= -ro X" a, \12 XI = ro CPI (in V,), (26) (27) è:>cp è:>x -k-= Ql' -k-= Q2 bn è:>n cp = cp" X=XI bcp è:>cpi k-=k,-, k Ox ~ k~x, è:>n bn <)n bn I (on S,), (28) (29)

9 ASYMPTOTIC HEAT CONDUCTION IN ARBITRARY BODIES 39* By a similar argument to that used in sec. 3, we can establish uniqueness up to arbitrary constants for ~, X, ~" XI since we can obtain where ~ = ~1 - ~2, etc. Explici~ solutions for ~, X, ~I and XI can be obtained fairly simply in this manner for composite slabs, cylinders and spheres and will be given in a subsequent paper. REFERENCE 1) H. S. Carsla wand J. C. Jaeger, Conduction of heat in solids, Clarendon Press, Oxford, 1959.

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1

More information

EFFECTIVE CONDUCTIVITY, DIELECTRIC CONSTANT AND PERMEABILITY OF A DILUTE SUSPENSION*)

EFFECTIVE CONDUCTIVITY, DIELECTRIC CONSTANT AND PERMEABILITY OF A DILUTE SUSPENSION*) R893 I Philips Res. Repts 30, 83*-90*, 1~75 Issue in honour of C. J. Bouwkamp EFFECTIVE CONDUCTIVITY, DIELECTRIC CONSTANT AND PERMEABILITY OF A DILUTE SUSPENSION*) by Joseph B. KELLER Courant Institute

More information

Minimum Bias Events at ATLAS

Minimum Bias Events at ATLAS Camille Bélanger-Champagne Lehman McGill College University City University of New York Thermodynamics Charged Particle and Correlations Statistical Mechanics in Minimum Bias Events at ATLAS Statistical

More information

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs)

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) 13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) A prototypical problem we will discuss in detail is the 1D diffusion equation u t = Du xx < x < l, t > finite-length rod u(x,

More information

CHAPTER 4. Introduction to the. Heat Conduction Model

CHAPTER 4. Introduction to the. Heat Conduction Model A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS

More information

Homework for Math , Fall 2016

Homework for Math , Fall 2016 Homework for Math 5440 1, Fall 2016 A. Treibergs, Instructor November 22, 2016 Our text is by Walter A. Strauss, Introduction to Partial Differential Equations 2nd ed., Wiley, 2007. Please read the relevant

More information

GREEN S IDENTITIES AND GREEN S FUNCTIONS

GREEN S IDENTITIES AND GREEN S FUNCTIONS GREEN S IENTITIES AN GREEN S FUNCTIONS Green s first identity First, recall the following theorem. Theorem: (ivergence Theorem) Let be a bounded solid region with a piecewise C 1 boundary surface. Let

More information

The One-Dimensional Heat Equation

The One-Dimensional Heat Equation The One-Dimensional Heat Equation R. C. Trinity University Partial Differential Equations February 24, 2015 Introduction The heat equation Goal: Model heat (thermal energy) flow in a one-dimensional object

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx. Mathematics 14 Fall Term 26 Solutions to Final Exam 1. Evaluate sin(ln t) dt. Solution. We first make the substitution t = e x, for which dt = e x. This gives sin(ln t) dt = e x sin(x). To evaluate the

More information

3 Green s functions in 2 and 3D

3 Green s functions in 2 and 3D William J. Parnell: MT34032. Section 3: Green s functions in 2 and 3 57 3 Green s functions in 2 and 3 Unlike the one dimensional case where Green s functions can be found explicitly for a number of different

More information

Q ( q(m, t 0 ) n) S t.

Q ( q(m, t 0 ) n) S t. THE HEAT EQUATION The main equations that we will be dealing with are the heat equation, the wave equation, and the potential equation. We use simple physical principles to show how these equations are

More information

Finite Difference Methods for Boundary Value Problems

Finite Difference Methods for Boundary Value Problems Finite Difference Methods for Boundary Value Problems October 2, 2013 () Finite Differences October 2, 2013 1 / 52 Goals Learn steps to approximate BVPs using the Finite Difference Method Start with two-point

More information

17 Source Problems for Heat and Wave IB- VPs

17 Source Problems for Heat and Wave IB- VPs 17 Source Problems for Heat and Wave IB- VPs We have mostly dealt with homogeneous equations, homogeneous b.c.s in this course so far. Recall that if we have non-homogeneous b.c.s, then we want to first

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs AM 205: lecture 14 Last time: Boundary value problems Today: Numerical solution of PDEs ODE BVPs A more general approach is to formulate a coupled system of equations for the BVP based on a finite difference

More information

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates. LEGENDRE POLYNOMIALS AND APPLICATIONS We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.. Legendre equation: series solutions The Legendre equation is

More information

Topic 5: The Difference Equation

Topic 5: The Difference Equation Topic 5: The Difference Equation Yulei Luo Economics, HKU October 30, 2017 Luo, Y. (Economics, HKU) ME October 30, 2017 1 / 42 Discrete-time, Differences, and Difference Equations When time is taken to

More information

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1) EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily

More information

Modeling using conservation laws. Let u(x, t) = density (heat, momentum, probability,...) so that. u dx = amount in region R Ω. R

Modeling using conservation laws. Let u(x, t) = density (heat, momentum, probability,...) so that. u dx = amount in region R Ω. R Modeling using conservation laws Let u(x, t) = density (heat, momentum, probability,...) so that u dx = amount in region R Ω. R Modeling using conservation laws Let u(x, t) = density (heat, momentum, probability,...)

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

One dimensional steady state diffusion, with and without source. Effective transfer coefficients

One dimensional steady state diffusion, with and without source. Effective transfer coefficients One dimensional steady state diffusion, with and without source. Effective transfer coefficients 2 mars 207 For steady state situations t = 0) and if convection is not present or negligible the transport

More information

2326 Problem Sheet 1. Solutions 1. First Order Differential Equations. Question 1: Solve the following, given an explicit solution if possible:

2326 Problem Sheet 1. Solutions 1. First Order Differential Equations. Question 1: Solve the following, given an explicit solution if possible: 2326 Problem Sheet. Solutions First Order Differential Equations Question : Solve the following, given an explicit solution if possible:. 2 x = 4x3, () = 3, ( ) The given equation is a first order linear

More information

Boundary-value Problems in Rectangular Coordinates

Boundary-value Problems in Rectangular Coordinates Boundary-value Problems in Rectangular Coordinates 2009 Outline Separation of Variables: Heat Equation on a Slab Separation of Variables: Vibrating String Separation of Variables: Laplace Equation Review

More information

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx.

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx. Problem set 3: Solutions Math 27B, Winter 216 1. Suppose that u(x) is a non-zero solution of the eigenvalue problem u = λu < x < 1, u() =, u(1) =. Show that λ = (u ) 2 dx u2 dx. Deduce that every eigenvalue

More information

The Finite Difference Method

The Finite Difference Method Chapter 5. The Finite Difference Method This chapter derives the finite difference equations that are used in the conduction analyses in the next chapter and the techniques that are used to overcome computational

More information

Introduction to First Order Equations Sections

Introduction to First Order Equations Sections A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Introduction to First Order Equations Sections 2.1-2.3 Dr. John Ehrke Department of Mathematics Fall 2012 Course Goals The

More information

Explicit evaluation of the transmission factor T 1. Part I: For small dead-time ratios. by Jorg W. MUller

Explicit evaluation of the transmission factor T 1. Part I: For small dead-time ratios. by Jorg W. MUller Rapport BIPM-87/5 Explicit evaluation of the transmission factor T (8,E) Part I: For small dead-time ratios by Jorg W. MUller Bureau International des Poids et Mesures, F-930 Sevres Abstract By a detailed

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS Mr. Isaac Akpor Adjei (MSc. Mathematics, MSc. Biostats) isaac.adjei@gmail.com April 7, 2017 ORDINARY In many physical situation, equation arise which involve differential coefficients. For example: 1 The

More information

PDE and Boundary-Value Problems Winter Term 2014/2015

PDE and Boundary-Value Problems Winter Term 2014/2015 PDE and Boundary-Value Problems Winter Term 2014/2015 Lecture 6 Saarland University 17. November 2014 c Daria Apushkinskaya (UdS) PDE and BVP lecture 6 17. November 2014 1 / 40 Purpose of Lesson To show

More information

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π.

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π. Math 234 What you should know on day one August 28, 2001 1 You should be able to use general principles like Length = ds, Area = da, Volume = dv For example the length of the semi circle x = cos t, y =

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9 Spring 2015 Lecture 9 REVIEW Lecture 8: Direct Methods for solving (linear) algebraic equations Gauss Elimination LU decomposition/factorization Error Analysis for Linear Systems and Condition Numbers

More information

New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equations

New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equations ISSN 1749-3889 print), 1749-3897 online) International Journal of Nonlinear Science Vol.008) No.1,pp.4-5 New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Euations

More information

Diffusion equation, flux, diffusion coefficient scaling. Diffusion in fully ionized plasma vs. weakly ionized plasma. n => Coulomb collision frequency

Diffusion equation, flux, diffusion coefficient scaling. Diffusion in fully ionized plasma vs. weakly ionized plasma. n => Coulomb collision frequency Last Time Diffusion in plasma: the main reason why we need to control it (i.e. using magnetic field) Diffusion equation, flux, diffusion coefficient scaling o o t nx,t Dn D2 nx,t o D ~ L 2 T Diffusion

More information

On the convergence of solutions of the non-linear differential equation

On the convergence of solutions of the non-linear differential equation MEMOIRS O F T H E COLLEGE O F SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXVIII, Mathematics No. 2, 1953. On the convergence of solutions of the non-linear differential equation By Taro YOSHIZAWA (Received

More information

Section 12.6: Non-homogeneous Problems

Section 12.6: Non-homogeneous Problems Section 12.6: Non-homogeneous Problems 1 Introduction Up to this point all the problems we have considered are we what we call homogeneous problems. This means that for an interval < x < l the problems

More information

GROUPS OF ELLIPTIC LINEAR FRACTIONAL TRANSFORMATIONS

GROUPS OF ELLIPTIC LINEAR FRACTIONAL TRANSFORMATIONS GROUPS OF ELLIPTIC LINEAR FRACTIONAL TRANSFORMATIONS R. C LYNDON AND J. L. ULLMAN 1. Introduction. Our aim is to give a simple and self contained statement and proof of the following theorem: Every subgroup

More information

Applied Mathematics 205. Unit III: Numerical Calculus. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit III: Numerical Calculus. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit III: Numerical Calculus Lecturer: Dr. David Knezevic Unit III: Numerical Calculus Chapter III.3: Boundary Value Problems and PDEs 2 / 96 ODE Boundary Value Problems 3 / 96

More information

Solutions to Section 1.1

Solutions to Section 1.1 Solutions to Section True-False Review: FALSE A derivative must involve some derivative of the function y f(x), not necessarily the first derivative TRUE The initial conditions accompanying a differential

More information

Week 2 Notes, Math 865, Tanveer

Week 2 Notes, Math 865, Tanveer Week 2 Notes, Math 865, Tanveer 1. Incompressible constant density equations in different forms Recall we derived the Navier-Stokes equation for incompressible constant density, i.e. homogeneous flows:

More information

Partial differential equations

Partial differential equations Partial differential equations Many problems in science involve the evolution of quantities not only in time but also in space (this is the most common situation)! We will call partial differential equation

More information

EULER MARUYAMA APPROXIMATION FOR SDES WITH JUMPS AND NON-LIPSCHITZ COEFFICIENTS

EULER MARUYAMA APPROXIMATION FOR SDES WITH JUMPS AND NON-LIPSCHITZ COEFFICIENTS Qiao, H. Osaka J. Math. 51 (14), 47 66 EULER MARUYAMA APPROXIMATION FOR SDES WITH JUMPS AND NON-LIPSCHITZ COEFFICIENTS HUIJIE QIAO (Received May 6, 11, revised May 1, 1) Abstract In this paper we show

More information

WRT in 2D: Poisson Example

WRT in 2D: Poisson Example WRT in 2D: Poisson Example Consider 2 u f on [, L x [, L y with u. WRT: For all v X N, find u X N a(v, u) such that v u dv v f dv. Follows from strong form plus integration by parts: ( ) 2 u v + 2 u dx

More information

MathsGeeks. Everything You Need to Know A Level Edexcel C4. March 2014 MathsGeeks Copyright 2014 Elite Learning Limited

MathsGeeks. Everything You Need to Know A Level Edexcel C4. March 2014 MathsGeeks Copyright 2014 Elite Learning Limited Everything You Need to Know A Level Edexcel C4 March 4 Copyright 4 Elite Learning Limited Page of 4 Further Binomial Expansion: Make sure it starts with a e.g. for ( x) ( x ) then use ( + x) n + nx + n(n

More information

Diffusion on the half-line. The Dirichlet problem

Diffusion on the half-line. The Dirichlet problem Diffusion on the half-line The Dirichlet problem Consider the initial boundary value problem (IBVP) on the half line (, ): v t kv xx = v(x, ) = φ(x) v(, t) =. The solution will be obtained by the reflection

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

Midterm Solution

Midterm Solution 18303 Midterm Solution Problem 1: SLP with mixed boundary conditions Consider the following regular) Sturm-Liouville eigenvalue problem consisting in finding scalars λ and functions v : [0, b] R b > 0),

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE 1. Linear Partial Differential Equations A partial differential equation (PDE) is an equation, for an unknown function u, that

More information

PDEs, part 1: Introduction and elliptic PDEs

PDEs, part 1: Introduction and elliptic PDEs PDEs, part 1: Introduction and elliptic PDEs Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 Partial di erential equations The solution depends on several variables,

More information

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III)

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III) Calculus Vector Calculus (III) Outline 1 The Divergence Theorem 2 Stokes Theorem 3 Applications of Vector Calculus The Divergence Theorem (I) Recall that at the end of section 12.5, we had rewritten Green

More information

Week 01 : Introduction. A usually formal statement of the equality or equivalence of mathematical or logical expressions

Week 01 : Introduction. A usually formal statement of the equality or equivalence of mathematical or logical expressions 1. What are partial differential equations. An equation: Week 01 : Introduction Marriam-Webster Online: A usually formal statement of the equality or equivalence of mathematical or logical expressions

More information

The 1-D Heat Equation

The 1-D Heat Equation The 1-D Heat Equation 18.303 Linear Partial Differential Equations Matthew J. Hancock Fall 004 1 The 1-D Heat Equation 1.1 Physical derivation Reference: Haberman 1.1-1.3 [Sept. 8, 004] In a metal rod

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Introduction to Hyperbolic Equations The Hyperbolic Equations n-d 1st Order Linear

More information

Math 220a - Fall 2002 Homework 6 Solutions

Math 220a - Fall 2002 Homework 6 Solutions Math a - Fall Homework 6 Solutions. Use the method of reflection to solve the initial-boundary value problem on the interval < x < l, u tt c u xx = < x < l u(x, = < x < l u t (x, = x < x < l u(, t = =

More information

Brownian Motion: Fokker-Planck Equation

Brownian Motion: Fokker-Planck Equation Chapter 7 Brownian Motion: Fokker-Planck Equation The Fokker-Planck equation is the equation governing the time evolution of the probability density of the Brownian particla. It is a second order differential

More information

2 ODEs Integrating Factors and Homogeneous Equations

2 ODEs Integrating Factors and Homogeneous Equations 2 ODEs Integrating Factors an Homogeneous Equations We begin with a slightly ifferent type of equation: 2.1 Exact Equations These are ODEs whose general solution can be obtaine by simply integrating both

More information

E & M Qualifier. August 16, To insure that the your work is graded correctly you MUST: 5. number every page starting with 1 for each problem,

E & M Qualifier. August 16, To insure that the your work is graded correctly you MUST: 5. number every page starting with 1 for each problem, E & M Qualifier August 16, 2012 To insure that the your work is graded correctly you MUST: 1. use only the blank answer paper provided, 2. write only on one side of the page, 3. put your alias on every

More information

2.3 Terminology for Systems of Linear Equations

2.3 Terminology for Systems of Linear Equations page 133 e 2t sin 2t 44 A(t) = t 2 5 te t, a = 0, b = 1 sec 2 t 3t sin t 45 The matrix function A(t) in Problem 39, with a = 0 and b = 1 Integration of matrix functions given in the text was done with

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

GROUP OF TRANSFORMATIONS*

GROUP OF TRANSFORMATIONS* A FUNDAMENTAL SYSTEM OF INVARIANTS OF A MODULAR GROUP OF TRANSFORMATIONS* BY JOHN SIDNEY TURNER 1. Introduction. Let G be any given group of g homogeneous linear transformations on the indeterminates xi,,

More information

Lecture notes: Introduction to Partial Differential Equations

Lecture notes: Introduction to Partial Differential Equations Lecture notes: Introduction to Partial Differential Equations Sergei V. Shabanov Department of Mathematics, University of Florida, Gainesville, FL 32611 USA CHAPTER 1 Classification of Partial Differential

More information

Electrical Power Cables Part 2 Cable Rating Calculations

Electrical Power Cables Part 2 Cable Rating Calculations ELEC971 High Voltage Systems Electrical Power Cables Part Cable Rating Calculations The calculation of cable ratings is a very complex determination because of the large number of interacting characteristics

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Chapter 1 Introduction and Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

S(x) Section 1.5 infinite Limits. lim f(x)=-m x --," -3 + Jkx) - x ~

S(x) Section 1.5 infinite Limits. lim f(x)=-m x --, -3 + Jkx) - x ~ 8 Chapter Limits and Their Properties Section.5 infinite Limits -. f(x)- (x-) As x approaches from the left, x - is a small negative number. So, lim f(x) : -m As x approaches from the right, x - is a small

More information

SOLUTIONS TO SELECTED PROBLEMS FROM ASSIGNMENTS 3, 4

SOLUTIONS TO SELECTED PROBLEMS FROM ASSIGNMENTS 3, 4 SOLUTIONS TO SELECTED POBLEMS FOM ASSIGNMENTS 3, 4 Problem 5 from Assignment 3 Statement. Let be an n-dimensional bounded domain with smooth boundary. Show that the eigenvalues of the Laplacian on with

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. V9. Surface Integrals Surface

More information

Chapter III. Stability of Linear Systems

Chapter III. Stability of Linear Systems 1 Chapter III Stability of Linear Systems 1. Stability and state transition matrix 2. Time-varying (non-autonomous) systems 3. Time-invariant systems 1 STABILITY AND STATE TRANSITION MATRIX 2 In this chapter,

More information

1.1 A Scattering Experiment

1.1 A Scattering Experiment 1 Transfer Matrix In this chapter we introduce and discuss a mathematical method for the analysis of the wave propagation in one-dimensional systems. The method uses the transfer matrix and is commonly

More information

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) A.J.Hobson

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) A.J.Hobson JUST THE MATHS UNIT NUMBER 15.3 ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) by A.J.Hobson 15.3.1 Linear equations 15.3.2 Bernouilli s equation 15.3.3 Exercises 15.3.4 Answers to exercises

More information

A proof for the full Fourier series on [ π, π] is given here.

A proof for the full Fourier series on [ π, π] is given here. niform convergence of Fourier series A smooth function on an interval [a, b] may be represented by a full, sine, or cosine Fourier series, and pointwise convergence can be achieved, except possibly at

More information

Chapter 3 Three Dimensional Finite Difference Modeling

Chapter 3 Three Dimensional Finite Difference Modeling Chapter 3 Three Dimensional Finite Difference Modeling As has been shown in previous chapters, the thermal impedance of microbolometers is an important property affecting device performance. In chapter

More information

Ch 4 Differentiation

Ch 4 Differentiation Ch 1 Partial fractions Ch 6 Integration Ch 2 Coordinate geometry C4 Ch 5 Vectors Ch 3 The binomial expansion Ch 4 Differentiation Chapter 1 Partial fractions We can add (or take away) two fractions only

More information

Final: Solutions Math 118A, Fall 2013

Final: Solutions Math 118A, Fall 2013 Final: Solutions Math 118A, Fall 2013 1. [20 pts] For each of the following PDEs for u(x, y), give their order and say if they are nonlinear or linear. If they are linear, say if they are homogeneous or

More information

McGill University April 20, Advanced Calculus for Engineers

McGill University April 20, Advanced Calculus for Engineers McGill University April 0, 016 Faculty of Science Final examination Advanced Calculus for Engineers Math 64 April 0, 016 Time: PM-5PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer Student

More information

Chapter 5 Time-Dependent Conduction

Chapter 5 Time-Dependent Conduction Chapter 5 Time-Dependent Conduction 5.1 The Lumped Capacitance Method This method assumes spatially uniform solid temperature at any instant during the transient process. It is valid if the temperature

More information

64 P. ERDOS AND E. G. STRAUS It is possible that (1.1) has only a finite number of solutions for fixed t and variable k > 2, but we cannot prove this

64 P. ERDOS AND E. G. STRAUS It is possible that (1.1) has only a finite number of solutions for fixed t and variable k > 2, but we cannot prove this On Products of Consecutive Integers P. ERDŐS HUNGARIAN ACADEMY OF SCIENCE BUDAPEST, HUNGARY E. G. STRAUSt UNIVERSITY OF CALIFORNIA LOS ANGELES, CALIFORNIA 1. Introduction We define A(n, k) = (n + k)!/n!

More information

Math 311, Partial Differential Equations, Winter 2015, Midterm

Math 311, Partial Differential Equations, Winter 2015, Midterm Score: Name: Math 3, Partial Differential Equations, Winter 205, Midterm Instructions. Write all solutions in the space provided, and use the back pages if you have to. 2. The test is out of 60. There

More information

Process Modelling. Table of Contents

Process Modelling. Table of Contents Process Modelling 1 Process Modelling prepared by Wm. J. Garland, Professor, Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada More about this document Summary: The general

More information

Coupled differential equations

Coupled differential equations Coupled differential equations Example: dy 1 dy 11 1 1 1 1 1 a y a y b x a y a y b x Consider the case with b1 b d y1 a11 a1 y1 y a1 ay dy y y e y 4/1/18 One way to address this sort of problem, is to

More information

LS.5 Theory of Linear Systems

LS.5 Theory of Linear Systems LS.5 Theory of Linear Systems 1. General linear ODE systems and independent solutions. We have studied the homogeneous system of ODE s with constant coefficients, (1) x = Ax, where A is an n n matrix of

More information

ANALYTIC TRANSFORMATIONS OF EVERYWHERE DENSE POINT SETS*

ANALYTIC TRANSFORMATIONS OF EVERYWHERE DENSE POINT SETS* ANALYTIC TRANSFORMATIONS OF EVERYWHERE DENSE POINT SETS* BY PHILIP FRANKLIN I. Transformations of point sets There is a well known theorem in the theory of point sets, due to Cantor,t to the effect that

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

Observer design for a general class of triangular systems

Observer design for a general class of triangular systems 1st International Symposium on Mathematical Theory of Networks and Systems July 7-11, 014. Observer design for a general class of triangular systems Dimitris Boskos 1 John Tsinias Abstract The paper deals

More information

12.7 Heat Equation: Modeling Very Long Bars.

12.7 Heat Equation: Modeling Very Long Bars. 568 CHAP. Partial Differential Equations (PDEs).7 Heat Equation: Modeling Very Long Bars. Solution by Fourier Integrals and Transforms Our discussion of the heat equation () u t c u x in the last section

More information

Module 7: The Laplace Equation

Module 7: The Laplace Equation Module 7: The Laplace Equation In this module, we shall study one of the most important partial differential equations in physics known as the Laplace equation 2 u = 0 in Ω R n, (1) where 2 u := n i=1

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Steady and unsteady diffusion

Steady and unsteady diffusion Chapter 5 Steady and unsteady diffusion In this chapter, we solve the diffusion and forced convection equations, in which it is necessary to evaluate the temperature or concentration fields when the velocity

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

Exact V

Exact V Problems 301 6 7 8 9 10 Exact V 1 2.4975 2.4993 2.4998 2.4999 2.5000 2.5000 V 2 1.9982 1.9995 1.9999 2.0000 2.0000 1.9771 V 3 2.4987 2.4996 2.4999 2.5000 2.5000 2.5000 V 4 2.9991 2.9997 2.9999 3.0000 3.0000

More information

Mathematics Qualifying Exam Study Material

Mathematics Qualifying Exam Study Material Mathematics Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering mathematics topics. These topics are listed below for clarification. Not all instructors

More information

Ä is a basis for V Ä W. Say xi

Ä is a basis for V Ä W. Say xi Groups Fields Vector paces Homework #3 (2014-2015 Answers Q1: Tensor products: concrete examples Let V W be two-dimensional vector spaces with bases { 1 2} v v { } w w o { vi wj} 1 2 Ä is a basis for V

More information

Department of Mathematics, K.T.H.M. College, Nashik F.Y.B.Sc. Calculus Practical (Academic Year )

Department of Mathematics, K.T.H.M. College, Nashik F.Y.B.Sc. Calculus Practical (Academic Year ) F.Y.B.Sc. Calculus Practical (Academic Year 06-7) Practical : Graps of Elementary Functions. a) Grap of y = f(x) mirror image of Grap of y = f(x) about X axis b) Grap of y = f( x) mirror image of Grap

More information

MATH-UA 263 Partial Differential Equations Recitation Summary

MATH-UA 263 Partial Differential Equations Recitation Summary MATH-UA 263 Partial Differential Equations Recitation Summary Yuanxun (Bill) Bao Office Hour: Wednesday 2-4pm, WWH 1003 Email: yxb201@nyu.edu 1 February 2, 2018 Topics: verifying solution to a PDE, dispersion

More information

PDEs, ODEs, Analytic Continuation, Special Functions, Sturm-Liouville Problems and All That 1

PDEs, ODEs, Analytic Continuation, Special Functions, Sturm-Liouville Problems and All That 1 Prepared for submission to JHEP PDEs, ODEs, Analytic Continuation, Special Functions, Sturm-Liouville Problems and All That 1 C.P. Burgess Department of Physics, McGill University These notes present an

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 15 Heat with a source So far we considered homogeneous wave and heat equations and the associated initial value problems on the whole line, as

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Angular momentum and Killing potentials

Angular momentum and Killing potentials Angular momentum and Killing potentials E. N. Glass a) Physics Department, University of Michigan, Ann Arbor, Michigan 4809 Received 6 April 995; accepted for publication September 995 When the Penrose

More information