Multiferroicity due to Charge Ordering

Size: px
Start display at page:

Download "Multiferroicity due to Charge Ordering"

Transcription

1 Multiferroicity due to Charge Ordering Jeroen van den Brink ESRF 8/2/2011

2 Multiferroicity due to Charge Ordering Jeroen van den Brink Gianluca Giovannetti & Sanjeev Kumar Sylvia Picozzi & Daniel Khomskii ESRF 8/2/2011

3 Observed multiferroic couplings -- BiFeO 3 and BiMnO 3 T magnetic <<T ferroelectric orderparameters barely couple

4 Observed multiferroic couplings -- BiFeO 3 and BiMnO 3 T magnetic <<T ferroelectric orderparameters barely couple Multiferroics of Type I

5 Observed multiferroic couplings -- BiFeO 3 and BiMnO 3 T magnetic <<T ferroelectric orderparameters barely couple Multiferroics of Type I -- TbMnO 3, DyMnO 3, Ni 3 V 2 O 8 T ferroelectric =T magnetic magnetism induces FE

6 Observed multiferroic couplings -- BiFeO 3 and BiMnO 3 T magnetic <<T ferroelectric orderparameters barely couple Multiferroics of Type I -- TbMnO 3, DyMnO 3, Ni 3 V 2 O 8 T ferroelectric =T magnetic magnetism induces FE Multiferroics of Type II

7 Charge Ordered Multiferroics of Type II Generic idea: in CO material charge can easily be moved over relatively large distances

8 Charge Ordered Multiferroics of Type II Generic idea: in CO material charge can easily be moved over relatively large distances Coupling M to CO large ME effects Allows for large changes of FE polarization

9 Charge Ordered Multiferroics of Type II Generic idea: in CO material charge can easily be moved over relatively large distances Coupling M to CO large ME effects Allows for large changes of FE polarization -- TTF-CA; HoMn 2 O 5 ; RNiO 3 ; Y 2 NiMnO 6 ; LaCaMn 2 O 6 spin-charge order interplay

10 Charge Ordered Multiferroics of Type II Generic idea: in CO material charge can easily be moved over relatively large distances Coupling M to CO large ME effects Allows for large changes of FE polarization -- TTF-CA; HoMn 2 O 5 ; RNiO 3 ; Y 2 NiMnO 6 ; LaCaMn 2 O 6 spin-charge order interplay Generic problem: CO materials tend to have small gaps

11 How is Ferroelectricity induced by Charge Order? 1D cartoon JvdB and Khomskii, J. Phys. Cond. Matt. 20, (2008) FE by longitudinal charge displacements

12 How is Ferroelectricity induced by Charge Order? 1D cartoon JvdB and Khomskii, J. Phys. Cond. Matt. 20, (2008) FE by longitudinal charge displacements

13 How is Ferroelectricity induced by Charge Order? 1D cartoon JvdB and Khomskii, J. Phys. Cond. Matt. 20, (2008) FE by longitudinal charge displacements

14 How is Ferroelectricity induced by Charge Order? 1D cartoon JvdB and Khomskii, J. Phys. Cond. Matt. 20, (2008) FE by longitudinal charge displacements

15 How is Ferroelectricity induced by Charge Order? 1D cartoon JvdB and Khomskii, J. Phys. Cond. Matt. 20, (2008) FE by longitudinal charge displacements

16 How is Ferroelectricity induced by Charge Order? 1D cartoon TTF-CA JvdB and Khomskii, J. Phys. Cond. Matt. 20, (2008) FE by longitudinal charge displacements

17 How is Ferroelectricity induced by Charge Order? 1D cartoon TTF-CA FE by longitudinal charge displacements JvdB and Khomskii, J. Phys. Cond. Matt. 20, (2008) Giovannetti, Kumar, Stroppa, JvdB, Picozzi, PRL 103, (2009)

18 Ferroelectricity induced by Charge Order A. Longitudinal charge displacements TTF-CA HoMn 2 O 5 PrCaMn 2 O 6

19 Ferroelectricity induced by Charge Order A. Longitudinal charge displacements TTF-CA HoMn 2 O 5 PrCaMn 2 O 6 B. Transversal charge displacements HoMnO 3 Y 2 NiMnO 6

20 Ferroelectricity induced by Charge Order A. Longitudinal charge displacements TTF-CA HoMn 2 O 5 PrCaMn 2 O 6 B. Transversal charge displacements HoMnO 3 Y 2 NiMnO 6 A. & B. RNiO 3

21 multiferroic HoMn 2 O 5 ( Ho ) 3+ ( Mn 2 ) 7+ ( O 5 ) 10- (Mn) 3+ (Mn) 4+

22 charge order/magnetic structure HoMn2O5

23 charge order/magnetic structure HoMn 2 O 5 Mn 3+ Mn 4+ chains with ferro and antiferro bonds Cheong and Mostovoy, Nature Materials (2007)

24 ferroelectricity in HoMn 2 O 5 conceptual picture: ferro bonds win Mn 3+ Mn 4+ Betouras, Giovannetti, JvdB, PRL 98, (2007)

25 ferroelectricity in HoMn 2 O 5 conceptual picture: ferro bonds win Mn 3+ Mn Betouras, Giovannetti, JvdB, PRL 98, (2007)

26 ferroelectricity in HoMn 2 O 5 conceptual picture: ferro bonds win Mn 3+ Mn electronic and ionic displacements ferroelectric polarization Betouras, Giovannetti, JvdB, PRL 98, (2007)

27 ferroelectricity in YMn 2 O 5 ICM CM: commensurate ICM CM ICM: incommensurate magnetic ordering indeed commensurate magnetic phase is ferroelectric! Chapon, Radaelli, Blake, Park, Cheong Phys. Rev. Lett. 96, (2006)

28 Ab initio bandstructure computations: P ~1200 nc/cm 2 experimental polarization ~80 nc/cm 2 ferroelectric domains? Incorporating electron correlation effects with LDA+U fixes the problem Giovannetti and JvdB, PRL 100, (2008)

29 Ab initio bandstructure computations: P ~1200 nc/cm 2 Incorporating electron correlation effects with LDA+U fixes the problem Giovannetti and JvdB, PRL 100, (2008)

30 multiferroic La 1/2 Ca 1/2 MnO 3 ( LaCa ) 2.5+ ( Mn) 3.5+ ( O 3 ) 6- (Mn) 3+ (Mn) 4+

31 Perovskite crystal structure of La 1-x Ca x MnO 3 Oxygen 2- La 3+ /Ca 2+ Mn 4+ / Mn 3+ 12

32 Near x=0.5 : Site-centered charge/spin ordering E.O. Wollan and W.C. Koeler, Phys. Rev. 100, 545 (1955)

33 Near x=0.4 : Bond-centered charge/spin ordering e g t 2g Dimer A. Daoud-Aladine et al., PRL (2002)

34 Ferroelectric? x=0.4 Bond centered spin/co x=0.5 Site centered spin/co Θ=90 Θ=0 Efremov, JvdB, Khomskii, Nature Mat. (2004)

35 x=0.4 Bond centered spin/co Ferroelectric? x=0.5 Site centered spin/co 0 < Θ < 90 intermediate Θ=90 Θ=0 Efremov, JvdB, Khomskii, Nature Mat. (2004) Ferro-electric groundstate

36 x=0.4 Bond centered spin/co Ferroelectric? x=0.5 Site centered spin/co 0 < Θ < 90 intermediate Θ=90 Θ=0 Efremov, JvdB, Khomskii, Nature Mat. (2004) Ferro-electric groundstate It is allowed by symmetry: can happen

37 x=0.4 Bond centered spin/co Ferroelectric? x=0.5 Site centered spin/co 0 < Θ < 90 intermediate Θ=90 Θ=0 Efremov, JvdB, Khomskii, Nature Mat. (2004) Ferro-electric groundstate It is allowed by symmetry: can happen will happen

38 x=0.4 Bond centered spin/co Ferroelectric? x=0.5 Site centered spin/co 0 < Θ < 90 intermediate Θ=90 Θ=0 Efremov, JvdB, Khomskii, Nature Mat. (2004) Ferro-electric groundstate It is allowed by symmetry: can happen will happen observed to happen Jooss et al., PNAS 104, (2007)

39 What about intermediate phase in La 1/2 Ca 1/2 MnO 3?

40 What about intermediate phase in La 1/2 Ca 1/2 MnO 3? DDEX model spin dimer CE Giovannetti, Kumar, JvdB, Picozzi, PRL (2009)

41 What about intermediate phase in La 1/2 Ca 1/2 MnO 3? DDEX model spin dimer finite Hubbard U finite electronphonon coupling λ Θ ~45 o CE Giovannetti, Kumar, JvdB, Picozzi, PRL (2009)

42 What about intermediate phase in La 1/2 Ca 1/2 MnO 3? DDEX model spin dimer finite Hubbard U finite electronphonon coupling λ Θ ~45 o CE Giovannetti, Kumar, JvdB, Picozzi, PRL (2009)

43 B. Transversal charge displacements

44 Ferroelectricity induced by Charge Order 1D cartoon oxygens at inequivalent spin bonds JvdB and Khomskii, J. Phys. Cond. Matt. 20, (2008)

45 Ferroelectricity induced by Charge Order 1D cartoon oxygens at inequivalent spin bonds transversal charge displacements JvdB and Khomskii, J. Phys. Cond. Matt. 20, (2008)

46 Perovskite HoMnO 3 with GdFeO 3 distortion Magnetic E-phase S. Picozzi et al., Phys. Rev. Lett. 99, (2007)

47 Perovskite HoMnO 3 with GdFeO 3 distortion Magnetic E-phase S. Picozzi et al., Phys. Rev. Lett. 99, (2007)

48 Double Perovskite Y 2 NiMnO 6 Magnetic E-phase stabelized by longer range magnetic interactions Kumar, Giovannetti, JvdB, Picozzi, PRB 82, (2010)

49 Double Perovskite Y 2 NiMnO 6 Magnetic E-phase stabelized by longer range magnetic interactions P of few µc/cm 2 Kumar, Giovannetti, JvdB, Picozzi, PRB 82, (2010)

50 Double Perovskite Y 2 NiMnO 6 Magnetic E-phase stabelized by longer range magnetic interactions P of few µc/cm 2 B field of ~14 T transition from E-type to FM transition finite P to zero P Kumar, Giovannetti, JvdB, Picozzi, PRB 82, (2010)

51 A. & B. Longitudinal & Transversal charge displacement

52 Perovskite RNiO 3 (R = Ho, Lu, Nd, Pr..) Charge and Magnetic order JvdB and Khomskii, J. Phys. Cond. Matt. 20, (2008)

53 E-phase in RNiO3

54 E-phase in RNiO 3 Giovannetti, Kumar, Khomskii, Picozzi, JvdB, PRL 103, (2009)

55 Conclusions

56 Conclusions Interplay of charge and spin order gives rise to

57 Conclusions Interplay of charge and spin order gives rise to Type I & Type II multiferroics

58 Conclusions Interplay of charge and spin order gives rise to Type I & Type II multiferroics Potential large MF effects in charge ordered magnets

59 Conclusions Interplay of charge and spin order gives rise to Type I & Type II multiferroics Potential large MF effects in charge ordered magnets Longitudinal Transversal charge displacements

60 Conclusions Interplay of charge and spin order gives rise to Type I & Type II multiferroics Potential large MF effects in charge ordered magnets Longitudinal charge displacements TTF-FA, HoMn 2 O 5, RNiO 3, La 1/2 Ca 1/2 MnO 3, R 2 MnNiO 3... Transversal

61 E-phase in RNiO3

62 E-phase S and T in RNiO3

63 small polarization due to near cancellation of P ion and P elec

64 Interplay orbital, spin and charge e g t t 2g Bond center Ferro

65 Interplay orbital, spin and charge e g t e g t 2g t 2g J AF Bond center Ferro Site center Antiferro JvdB, Khomskii, PRL 82, 1016 (1999)

66 Interplay orbital, spin and charge e g t e g t 2g t 2g J AF Bond center Ferro Site center Antiferro Formally: DDEX model JvdB, Khomskii, PRL 82, 1016 (1999)

67 Orbital Order and Magnetic Order x=0.5 x= < x < 0.5 JvdB, Khaliullin, Khomskii, PRL 83, 5118 (1999)

68 Orbital Order and Magnetic Order x=0.5 x= < x < 0.5 CE-phase ZP-phase Θ-phase JvdB, Khaliullin, Khomskii, PRL 83, 5118 (1999) rotation of every second dimer with angle ±Θ

69 Computed phase diagram of Pr1-xCaxMnO3

70 Computed phase diagram of Pr 1-x Ca x MnO 3 Continous transition from Site centered CO to Bond centered CO in between order

71 Computed phase diagram of Pr 1-x Ca x MnO 3 Continous transition from Site centered CO to Bond centered CO in between order Breaking of inversion symmetry in the intermediate phase Ferro-electricity Magnetism Interplay of charge & orbital and spin ordering

Ferroelectricity, Magnetism, and Multiferroicity. Kishan K. Sinha Xu Lab Department of Physics and astronomy University of Nebraska-Lincoln

Ferroelectricity, Magnetism, and Multiferroicity. Kishan K. Sinha Xu Lab Department of Physics and astronomy University of Nebraska-Lincoln Ferroelectricity, Magnetism, and Multiferroicity Kishan K. Sinha Xu Lab Department of Physics and astronomy University of Nebraska-Lincoln Magnetism, Ferroelectricity, and Multiferroics Magnetism o Spontaneous

More information

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte What is RIXS? Resonant Inelastic X-ray Scattering Synchrotron

More information

arxiv: v3 [cond-mat.mtrl-sci] 25 Apr 2008

arxiv: v3 [cond-mat.mtrl-sci] 25 Apr 2008 REVIEW ARTICLE Multiferroicity due to charge ordering arxiv:0803.2964v3 [cond-mat.mtrl-sci] 25 Apr 2008 Jeroen van den Brink 1,2 and Daniel I. Khomskii 3 1 Institute Lorentz for Theoretical Physics, Leiden

More information

T C SUH. Tuning multiferroics under extreme conditions: Effects of high pressure, magnetic fields, and substitutions. Bernd Lorenz

T C SUH. Tuning multiferroics under extreme conditions: Effects of high pressure, magnetic fields, and substitutions. Bernd Lorenz Tuning multiferroics under extreme conditions: Effects of high pressure, magnetic fields, and substitutions Bernd Lorenz Texas Center for Superconductivity and Department of Physics, University of Houston

More information

Electronic structure calculations results from LDA+U method

Electronic structure calculations results from LDA+U method Electronic structure calculations results from LDA+U method Vladimir I. Anisimov Institute of Metal Physics Ekaterinburg, Russia LDA+U method applications Mott insulators Polarons and stripes in cuprates

More information

MagnetoElastic Interactions in Multiferroic Materials: An Experimental Point of View

MagnetoElastic Interactions in Multiferroic Materials: An Experimental Point of View MagnetoElastic Interactions in Multiferroic Materials: An Experimental Point of View Jan Musfeldt, University of Tennessee Several Short Examples to Check What the Lattice is Doing Microscopic vs. Bulk

More information

Supplementary Figure 1: Projected density of states (DOS) of the d states for the four titanium ions in the SmSr superlattice (Ti 1 -Ti 4 as defined

Supplementary Figure 1: Projected density of states (DOS) of the d states for the four titanium ions in the SmSr superlattice (Ti 1 -Ti 4 as defined Supplementary Figure 1: Projected density of states (DOS) of the d states for the four titanium ions in the SmSr superlattice (Ti 1 -Ti 4 as defined in the main text). Supplementary Table 1: Comparison

More information

Magnetoelectricity and multiferroics. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen.

Magnetoelectricity and multiferroics. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Magnetoelectricity and multiferroics Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Introduction : The possibility for a material to be both ferromagnetic and ferroelectric was predicted

More information

Verwey transition in magnetite (Fe3O4), unveiled?

Verwey transition in magnetite (Fe3O4), unveiled? Verwey transition in magnetite (Fe3O4), unveiled? J.E. Lorenzo Keywords: Charge, orbital orderings; lattice distortion; spin reorientation; resonant X ray scattering S. Grenier N. Jaouen Y. Joly D. Mannix

More information

Orbitals, reduced dimensionality and spin gaps and insulator-metal transitions

Orbitals, reduced dimensionality and spin gaps and insulator-metal transitions Orbitals, reduced dimensionality and spin gaps and insulator-metal transitions D.Khomskii Cologne University, Germany D.Kh. Physica Scripta (Comments Cond.Mat.Phys.) 72, CC8 (2005) D.Kh. Progr.Theor. Phys.

More information

Introduction on Multiferroic Materials. Abstract

Introduction on Multiferroic Materials. Abstract Introduction on Multiferroic Materials Xiaotian Zhang(xzhang25@utk.edu) Instructor: Elbio Dagotto Class: Solid State 2, 2010, Spring semester Department of Physics and Astronomy The University of Tennessee,

More information

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction Mott insulators Introduction Cluster-model description Chemical trend Band description Self-energy correction Introduction Mott insulators Lattice models for transition-metal compounds Hubbard model Anderson-lattice

More information

8 SCIENTIFIC HIGHLIGHT OF THE MONTH: First Principles Studies of Multiferroic Materials. First Principles Studies of Multiferroic Materials

8 SCIENTIFIC HIGHLIGHT OF THE MONTH: First Principles Studies of Multiferroic Materials. First Principles Studies of Multiferroic Materials 8 SCIENTIFIC HIGHLIGHT OF THE MONTH: First Principles Studies of Multiferroic Materials First Principles Studies of Multiferroic Materials Silvia Picozzi 1 and Claude Ederer 2 1 Consiglio Nazionale delle

More information

arxiv: v1 [cond-mat.str-el] 4 Apr 2007

arxiv: v1 [cond-mat.str-el] 4 Apr 2007 TbMn 2O 5 Non-resonant and Resonant X-ray Scattering Studies on Multiferroic TbMn 2 O 5 arxiv:0704.0533v1 [cond-mat.str-el] 4 Apr 2007 J. Koo 1, C. Song 1, S. Ji 1, J.-S. Lee 1, J. Park 1, T.-H. Jang 1,

More information

arxiv: v1 [cond-mat.mtrl-sci] 29 Sep 2010

arxiv: v1 [cond-mat.mtrl-sci] 29 Sep 2010 Spin-spiral inhomogeneity as origin of ferroelectricity in orthorhombic manganites I. V. Solovyev National Institute for Materials Science, -- Sengen, Tsukuba, Ibaraki 0-0047, Japan (Dated: December, 08)

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

Helicoidal magnetic structure and ferroelectric polarization in. Cu 3 Nb 2 O 8

Helicoidal magnetic structure and ferroelectric polarization in. Cu 3 Nb 2 O 8 Helicoidal magnetic structure and ferroelectric polarization in Cu 3 Nb 2 O 8 Zheng-Lu Li, 1 M.-H. Whangbo, 2 X. G. Gong, 1, * and H. J. Xiang 1, * 1 Key Laboratory of Computational Physical Sciences (Ministry

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

Dec. 16, 2008 Pohang APCTP

Dec. 16, 2008 Pohang APCTP Dec. 16, 28 Pohang APCTP Large electric polarization in high pressure synthesized orthorhombic manganites RMnO 3 (R=Ho,Tm,Yb and Lu) by using the double-wave PE loop measurements Yisheng Chai, Y. S. Yang,

More information

research papers High-temperature structural evolution of hexagonal multiferroic YMnO 3 and YbMnO 3

research papers High-temperature structural evolution of hexagonal multiferroic YMnO 3 and YbMnO 3 Journal of Applied Crystallography ISSN 0021-8898 Received 3 February 2007 Accepted 23 May 2007 High-temperature structural evolution of hexagonal multiferroic YMnO 3 and YbMnO 3 Il-Kyoung Jeong, a * N.

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 24 Nov 2003

arxiv:cond-mat/ v1 [cond-mat.str-el] 24 Nov 2003 Soft x-ray resonant diffraction study of magnetic and orbital correlations in a manganite near half-doping arxiv:cond-mat/0311553v1 [cond-mat.str-el] 4 Nov 003 K. J. Thomas 1, J. P. Hill 1, Y-J. Kim 1,

More information

arxiv: v1 [cond-mat.mtrl-sci] 2 Apr 2009

arxiv: v1 [cond-mat.mtrl-sci] 2 Apr 2009 Pis ma v ZhETF Magnetic ground state and multiferroicity in BiMnO 3 I. V. Solovyev + ), Z. V. Pchelkina 2) + Computational Materials Science Center, National Institute for Materials Science, -2- Sengen,

More information

Charge-order driven multiferroic and magneto-dielectric properties of rare earth manganates

Charge-order driven multiferroic and magneto-dielectric properties of rare earth manganates Bull. Mater. Sci., Vol. 33, No. 2, April 2010, pp. 169 178. Indian Academy of Sciences. Charge-order driven multiferroic and magneto-dielectric properties of rare earth manganates CLAUDY RAYAN SERRAO 1,2,

More information

NEW ROUTES TO MULTIFERROICS

NEW ROUTES TO MULTIFERROICS NEW ROUTES TO MULTIFERROICS C. N. R. RAO Jawaharlal Nehru Centre for Advanced Scientific Research & Indian Institute of Science Bangalore, India 1 MULTIFERROICS Ferromagnetic Ferroelectric Ferroelastic

More information

Mott insulators. Mott-Hubbard type vs charge-transfer type

Mott insulators. Mott-Hubbard type vs charge-transfer type Mott insulators Mott-Hubbard type vs charge-transfer type Cluster-model description Chemical trend Band theory Self-energy correction Electron-phonon interaction Mott insulators Mott-Hubbard type vs charge-transfer

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

Recent Developments in Magnetoelectrics Vaijayanti Palkar

Recent Developments in Magnetoelectrics Vaijayanti Palkar Recent Developments in Magnetoelectrics Vaijayanti Palkar Department of Condensed Matter Physics & Materials Science Tata Institute of Fundamental Research Mumbai 400 005, India. Tata Institute of Fundamental

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Realizing Magnetoelectric Coupling with Hydroxide as a Knob J.Y. Ni 1,2, P.S. Wang 1,2, J. L. Lu 1,2, and H. J. Xiang 1,2*

Realizing Magnetoelectric Coupling with Hydroxide as a Knob J.Y. Ni 1,2, P.S. Wang 1,2, J. L. Lu 1,2, and H. J. Xiang 1,2* Realizing Magnetoelectric Coupling with Hydroxide as a Knob J.Y. Ni 1,2, P.S. Wang 1,2, J. L. Lu 1,2, and H. J. Xiang 1,2* 1 Key Laboratory of Computational Physical Sciences (Ministry of Education), State

More information

Multiferroic BiFeO 3. Sang-Wook Cheong. Seongsu Lee. Partially supported by NSF-MRSEC

Multiferroic BiFeO 3. Sang-Wook Cheong. Seongsu Lee. Partially supported by NSF-MRSEC Multiferroic BiFeO 3 Seongsu Lee Chenglin Zhang YoungJai Choi Seongsu Lee Soonyong Park Y. Horibe Valery Kiryukhin Y. J. Cho L. Balicas Florida SU. X. S. Xu J. Musfeldt U. of Tennessee J. G. Park SKKU

More information

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture

Electronic structure of correlated electron systems. G.A.Sawatzky UBC Lecture Electronic structure of correlated electron systems G.A.Sawatzky UBC Lecture 6 011 Influence of polarizability on the crystal structure Ionic compounds are often cubic to maximize the Madelung energy i.e.

More information

Elementary excitations in the coupled spin-orbital model

Elementary excitations in the coupled spin-orbital model PHYSICAL REVIEW B VOLUME 58, NUMBER 16 Elementary excitations in the coupled spin-orbital model 15 OCTOBER 1998-II J. van den Brink,* W. Stekelenburg, D. I. Khomskii, and G. A. Sawatzky Laboratory of Applied

More information

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln Charge ordering as alternative to Jahn-Teller distortion In collaboration with Michelle Johannes 1, Daniel Khomskii 2 (theory) and Mohsen Abd-Elmeguid et al 2, Radu Coldea et al 3 (experiment) 1 Naval

More information

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Prabuddha Sanyal University of Hyderabad with H. Das, T. Saha Dasgupta, P. Majumdar, S. Ray, D.D. Sarma H. Das, P. Sanyal, D.D.

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields Los Alamos branch of the Magnet Lab Pulsed magnetic fields 100 Tesla multishot 100 80 60 40 20 Magnetic field (T) 0 0 0.5 1 1.5 2 2.5 3 time (s) 60 Tesla long pulse 60 40 20 0 0 1 2 3 time (s) Magnetization,

More information

Introduction to Magnetoelectric Multiferroics. Kee Hoon Kim

Introduction to Magnetoelectric Multiferroics. Kee Hoon Kim Introduction to Magnetoelectric Multiferroics Kee oon Kim Center for Strongly Correlated Material Research & School of Physics, Seoul National University, South Korea Outline 1. What is magnetoelectrics

More information

ON THE ROTATING MAGNETOCALORIC EFFECT IN MULTIFERROIC RMn 2 O 5 COMPOUNDS

ON THE ROTATING MAGNETOCALORIC EFFECT IN MULTIFERROIC RMn 2 O 5 COMPOUNDS ON THE ROTATING MAGNETOCALORIC EFFECT IN MULTIFERROIC RMn 2 O 5 COMPOUNDS M. Balli *, S. Mansouri, B. Roberge, S. Jandl, P. Fournier (a,b), D. Z. Dimitrov (c,d) Département de Physique,Université de Sherbrooke,J1K

More information

Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and

Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and Advances in Physics ISSN: 0001-8732 (Print) 1460-6976 (Online) Journal homepage: http://www.tandfonline.com/loi/tadp20 Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation,

More information

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR X-Ray Magnetic Dichroism S. Turchini SM-CNR stefano.turchini@ism.cnr.it stefano.turchini@elettra.trieste.it Magnetism spin magnetic moment direct exchange: ferro antiferro superexchange 3d Ligand 2p 3d

More information

Frustrated Magnetic Materials from an ab initio prespective Roser Valentí Institute of Theoretical Physics University of Frankfurt Germany

Frustrated Magnetic Materials from an ab initio prespective Roser Valentí Institute of Theoretical Physics University of Frankfurt Germany Frustrated Magnetic Materials from an ab initio prespective Roser Valentí Institute of Theoretical Physics University of Frankfurt Germany Highly Frustrated Magnetism Tutorial, July 9 th 2018, UC Davis

More information

Heisenberg-Kitaev physics in magnetic fields

Heisenberg-Kitaev physics in magnetic fields Heisenberg-Kitaev physics in magnetic fields Lukas Janssen & Eric Andrade, Matthias Vojta L.J., E. Andrade, and M. Vojta, Phys. Rev. Lett. 117, 277202 (2016) L.J., E. Andrade, and M. Vojta, Phys. Rev.

More information

High-pressure cupric oxide: a room-temperature

High-pressure cupric oxide: a room-temperature 1 High-pressure cupric oxide: a room-temperature multiferroic Xavier Rocquefelte 1*, Karlheinz Schwarz 2, Peter Blaha 2 Sanjeev Kumar 3, Jeroen van den Brink 4 1. Institut des Matériaux Jean Rouxel, UMR

More information

Chemical bonding in solids from ab-initio Calculations

Chemical bonding in solids from ab-initio Calculations Chemical bonding in solids from ab-initio Calculations 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this

More information

Computational Materials Science. Krishnendu Biswas CY03D0031

Computational Materials Science. Krishnendu Biswas CY03D0031 Computational Materials Science Krishnendu Biswas CY03D0031 Outline Introduction Fundamentals How to start Application examples Softwares Sophisticated methods Summary References 2 Introduction Uses computers

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Holcomb Group Capabilities

Holcomb Group Capabilities Holcomb Group Capabilities Synchrotron Radiation & Ultrafast Optics West Virginia University mikel.holcomb@mail.wvu.edu The Physicists New Playground The interface is the device. - Herbert Kroemer, beginning

More information

Application of density functional theory to real materials problems. Nicola Spaldin Materials Department, UCSB

Application of density functional theory to real materials problems. Nicola Spaldin Materials Department, UCSB Application of density functional theory to real materials problems Nicola Spaldin Materials Department, UCSB From Harry Suhl s lecture notes: In theoretical physics, one obective is to explain what has

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions Bandwidth control versus fillig control Strongly correlated Fermi liquids Spectral weight transfer and mass renormalization Bandwidth control Filling control Chemical potential

More information

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Reviewers' comments: Reviewer #1 (Remarks to the Author): Reviewers' comments: Reviewer #1 (Remarks to the Author): The authors studied the origin of magnetically-driven ferroelectric order in ABO3 perovskite oxides with magnetic A and B cations that order in

More information

X-ray resonant magnetic scattering investigations of hexagonal multiferroics RMnO3 (R = Dy, Ho, Er)

X-ray resonant magnetic scattering investigations of hexagonal multiferroics RMnO3 (R = Dy, Ho, Er) Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 29 X-ray resonant magnetic scattering investigations of hexagonal multiferroics RMnO3 (R = Dy, Ho, Er) Shibabrata

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Earth Materials I Crystal Structures

Earth Materials I Crystal Structures Earth Materials I Crystal Structures Isotopes same atomic number, different numbers of neutrons, different atomic mass. Ta ble 1-1. Su mmar y of quantu m num bers Name Symbol Values Principal n 1, 2,

More information

Magnetoelectric effect

Magnetoelectric effect Department of Physics Seminar Magnetoelectric effect The challenge of coupling magnetism and ferroelectricity Luka Vidovič Mentor: prof. dr. Denis Arčon Ljubljana, december 2009 Abstract Magnetism and

More information

site are potential alternatives to these Pb 2+ -based functional The crystal structures of materials are traditionally investigated

site are potential alternatives to these Pb 2+ -based functional The crystal structures of materials are traditionally investigated pubs.acs.org/cm Terms of Use CC-BY Downloaded via 148.251.232.83 on August 19, 2018 at 04:52:35 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

More information

arxiv: v2 [cond-mat.str-el] 6 Dec 2011

arxiv: v2 [cond-mat.str-el] 6 Dec 2011 Polar Antiferromagnets Produced with Orbital-Order arxiv:1112.0882v2 [cond-mat.str-el] 6 Dec 2011 Naoki Ogawa, 1,2, Yasushi Ogimoto, 1,2,3 Yoshiaki Ida, 4 Yusuke Nomura, 4 Ryotaro Arita, 4,5 and Kenjiro

More information

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction Kazuo Hida (Saitama University) Ken ichi Takano (Toyota

More information

arxiv: v1 [cond-mat.mtrl-sci] 3 May 2007

arxiv: v1 [cond-mat.mtrl-sci] 3 May 2007 Ravindran et al Origin of magnetoelectric behavior in BiFeO 3 P. Ravindran, R. Vidya, A. Kjekshus, and H. Fjellvåg Department of Chemistry, University of Oslo, Box 1033, Blindern N-0315, Oslo, Norway O.

More information

Theory of carbon-based magnetism

Theory of carbon-based magnetism Theory of carbon-based magnetism Mikhail Katsnelson Theory of Condensed Matter Institute for Molecules and Materials RU Outline sp magnetism in general: why it is interesting? Defect-induced magnetism

More information

arxiv: v2 [cond-mat.mtrl-sci] 8 Jun 2018

arxiv: v2 [cond-mat.mtrl-sci] 8 Jun 2018 Relationship between crystal structure and multiferroic orders in orthorhombic perovskite manganites arxiv:1805.02172v2 [cond-mat.mtrl-sci] 8 Jun 2018 Natalya S. Fedorova, 1, Yoav William Windsor, 2 Christoph

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Ab-initio modeling of hyperfine parameters and its relation with local and macroscopic properties

Ab-initio modeling of hyperfine parameters and its relation with local and macroscopic properties João Nuno Gonçalves Postdoctoral fellow (FCT) Departamento de Física and CICECO Universidade de Aveiro, Portugal Ab-initio modeling of hyperfine parameters and its relation with local and macroscopic properties

More information

Resonant Inelastic X-ray Scattering on elementary excitations

Resonant Inelastic X-ray Scattering on elementary excitations Resonant Inelastic X-ray Scattering on elementary excitations Jeroen van den Brink Ament, van Veenendaal, Devereaux, Hill & JvdB Rev. Mod. Phys. 83, 705 (2011) Autumn School in Correlated Electrons Jülich

More information

Spiral Spin Structures and Origin of the Magnetoelectric Coupling in YMn 2 O 5

Spiral Spin Structures and Origin of the Magnetoelectric Coupling in YMn 2 O 5 University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 12-19-2008 Spiral Spin Structures and Origin of the Magnetoelectric Coupling in YMn 2 O 5 JungHwa Kim Seunghun

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University Quantum Monte Carlo Simulations in the Valence Bond Basis Anders Sandvik, Boston University Outline The valence bond basis for S=1/2 spins Projector QMC in the valence bond basis Heisenberg model with

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

Photoemission and the electronic structure of magnetic oxides. Dan Dessau University of Colorado, Boulder Duane F625

Photoemission and the electronic structure of magnetic oxides. Dan Dessau University of Colorado, Boulder Duane F625 Photoemission and the electronic structure of magnetic oxides Dan Dessau University of Colorado, Boulder Duane F625 Dessau@Colorado.edu Einstein s Photoelectric effect XPS, UPS, ARPES BE e- hn D.O.S. occupied

More information

Berry Phase Effects on Electronic Properties

Berry Phase Effects on Electronic Properties Berry Phase Effects on Electronic Properties Qian Niu University of Texas at Austin Collaborators: D. Xiao, W. Yao, C.P. Chuu, D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C. Chang, T. Jungwirth, A.H.MacDonald,

More information

New Perspectives in ab initio Calculations. Semiconducting Oxides

New Perspectives in ab initio Calculations. Semiconducting Oxides for Semiconducting Oxides Volker Eyert Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg October 28, 21 Outline LAOSTO 1 LAOSTO 2 Outline LAOSTO 1 LAOSTO 2 Calculated

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 13 Nov 2003

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 13 Nov 2003 1. 14 August 1996 (final accepted version arxiv:cond-mat/0311297v1 [cond-mat.mtrl-sci] 13 Nov 2003 2. Non-collinear magnetism in distorted perovskite compounds 3. I.V.Solovyev a,, N.Hamada b, K.Terakura

More information

arxiv: v2 [cond-mat.mtrl-sci] 7 Oct 2010

arxiv: v2 [cond-mat.mtrl-sci] 7 Oct 2010 Orbital degrees of freedom as origin of magnetoelectric coupling in magnetite Kunihiko Yamauchi and Silvia Picozzi Consiglio Nazionale delle Ricerche (CNR-SPIN), 671 L Aquila, Italy (Dated: July 14, 218)

More information

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface B. Keimer Max-Planck-Institute for Solid State Research outline new quantum states in bulk? yes, good evidence for electronic nematic phase new

More information

Funding provided by the Los Alamos National Laboratory Directed Research and Development Program

Funding provided by the Los Alamos National Laboratory Directed Research and Development Program Combining ferroelectricity and magnetism: the low energy electrodynamics Diyar Talbayev Center for Integrated Nanotechnologies Los Alamos National Laboratory Acknowledgements Los Alamos National Laboratory

More information

Multiple spin exchange model on the triangular lattice

Multiple spin exchange model on the triangular lattice Multiple spin exchange model on the triangular lattice Philippe Sindzingre, Condensed matter theory laboratory Univ. Pierre & Marie Curie Kenn Kubo Aoyama Gakuin Univ Tsutomu Momoi RIKEN T. Momoi, P. Sindzingre,

More information

Representation analysis vs. Magnetic Symmetry

Representation analysis vs. Magnetic Symmetry Representation analysis vs. Magnetic Symmetry J. Manuel Perez-Mato Facultad de Ciencia y Tecnología Universidad del País Vasco, UPV-EHU BILBAO, SPAIN WHAT IS SYMMETRY? A symmetry operation in a solid IS

More information

Neutron scattering a probe for multiferroics and magnetoelectrics

Neutron scattering a probe for multiferroics and magnetoelectrics 1 Neutron scattering a probe for multiferroics and magnetoelectrics V. Simonet Institut Néel, CNRS/UJF, Grenoble, France Outline of the lecture 2 The neutron as a probe of condensed matter Properties Sources

More information

Magnetoelectric Effects in Multiferroics

Magnetoelectric Effects in Multiferroics Magnetoelectric Effects in Multiferroics Th. Lottermoser, M. Fiebig, T. Arima, Y. Tokura PROMOX2, APRIL 2005 ERATO-SSS Magnetoelectric Effects in Multiferroics Introduction: Magnetoelectric Effect & Multiferroics

More information

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov 1. Introduction Excitations and broken symmetry 2. Spin waves in the Heisenberg model

More information

Competing between oxygen tilts and polar shifts in BiFeO 3 thin films

Competing between oxygen tilts and polar shifts in BiFeO 3 thin films Journées Electromagnons Institut Néel Competing between oxygen tilts and polar shifts in BiFeO 3 thin films B. Dkhil Laboratoire Structures, Propriétés et Modélisation des Solides, CNRS-UMR 8580, Ecole

More information

MOLECULAR MAGNETISM. Leigh Jones Room 133 School of Chemistry NUI Galway. Introduction to Molecular Magnetism

MOLECULAR MAGNETISM. Leigh Jones Room 133 School of Chemistry NUI Galway. Introduction to Molecular Magnetism 4 th year undergraduate course ecture 5 MOECUAR MAGNETISM eigh Jones Room 133 School of Chemistry NUI Galway ecture 6: 5: Outcomes Introduction to Molecular Magnetism To understand the difference between

More information

Phase transitions in Bi-layer quantum Hall systems

Phase transitions in Bi-layer quantum Hall systems Phase transitions in Bi-layer quantum Hall systems Ming-Che Chang Department of Physics Taiwan Normal University Min-Fong Yang Departmant of Physics Tung-Hai University Landau levels Ferromagnetism near

More information

X-ray absorption spectroscopy.

X-ray absorption spectroscopy. X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ Frank de Groot PhD: solid state chemistry U Nijmegen

More information

Магнетизм в железосодержащих сверхпроводниках: взаимодействие магнитных, орбитальных и решеточных степеней свободы

Магнетизм в железосодержащих сверхпроводниках: взаимодействие магнитных, орбитальных и решеточных степеней свободы Магнетизм в железосодержащих сверхпроводниках: взаимодействие магнитных, орбитальных и решеточных степеней свободы Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with:

More information

Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni

Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni XAS, XMCD, XES, RIXS, ResXPS: introduzione alle spettroscopie risonanti * Dipartimento di Fisica - Politecnico

More information

Unidirectional light propagation in multiferroics and multi-antiferroics

Unidirectional light propagation in multiferroics and multi-antiferroics Unidirectional light propagation in multiferroics and multi-antiferroics István Kézsmárki Department of Physics, Budapest University of Technology and Economics Experimental Physics V, Center for Electronic

More information

Spin crossover phenomena in transition metal oxides under high magnetic field

Spin crossover phenomena in transition metal oxides under high magnetic field Spin crossover phenomena in transition metal oxides under high magnetic field Andrey Podlesnyak Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory app@ornl.gov

More information

Transition Elements. pranjoto utomo

Transition Elements. pranjoto utomo Transition Elements pranjoto utomo Definition What is transition metal? One of which forms one or more stable ions which have incompletely filled d orbitals. 30Zn? Definition Zink is not transition elements

More information

Spin density wave as a superposition of two magnetic states of opposite chirality and its implications

Spin density wave as a superposition of two magnetic states of opposite chirality and its implications Spin density wave as a superposition of two magnetic states of opposite chirality and its implications Elijah E. Gordon a, Shahab Derakhshan b, Corey M. Thompson c, and Myung-Hwan Whangbo a,d,e, * a Department

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic phase and the superconducting gap

ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic phase and the superconducting gap Novel Superconductors and Synchrotron Radiation: state of the art and perspective Adriatico Guest House, Trieste, December 10-11, 2014 ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic

More information

arxiv: v1 [cond-mat.mtrl-sci] 23 Jun 2010

arxiv: v1 [cond-mat.mtrl-sci] 23 Jun 2010 Multiferroic BiFeO 3 -BiMnO 3 Nanocheckerboard From First Principles L. Pálová, P. Chandra, and K. M. Rabe Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway,

More information

Structural Study of [Nd 0.5 (Ca 0.25 Ba 0.25 ) MnO 3 ] and [Nd 0.5 (Ca 0.25 Sr 0.25 )MnO 3 ] Perovskites at Room Temperature

Structural Study of [Nd 0.5 (Ca 0.25 Ba 0.25 ) MnO 3 ] and [Nd 0.5 (Ca 0.25 Sr 0.25 )MnO 3 ] Perovskites at Room Temperature Egypt. J. Sol., Vol. (24), No. (1), (2001) 33 Structural Study of [Nd 0.5 (Ca 0.25 Ba 0.25 ) MnO 3 ] and [Nd 0.5 (Ca 0.25 Sr 0.25 )MnO 3 ] Perovskites at Room Temperature F. F. Hanna Faculty of Petroleum

More information

Berry Phase Effects on Charge and Spin Transport

Berry Phase Effects on Charge and Spin Transport Berry Phase Effects on Charge and Spin Transport Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Shengyuan Yang, C.P. Chuu, D. Xiao, W. Yao, D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C.

More information

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544 Overview

More information

Magnetic Moment Collapse drives Mott transition in MnO

Magnetic Moment Collapse drives Mott transition in MnO Magnetic Moment Collapse drives Mott transition in MnO J. Kuneš Institute of Physics, Uni. Augsburg in collaboration with: V. I. Anisimov, A. V. Lukoyanov, W. E. Pickett, R. T. Scalettar, D. Vollhardt,

More information

Orbital orders and orbital order driven quantum criticality. Zohar Nussinov

Orbital orders and orbital order driven quantum criticality. Zohar Nussinov Orbital orders and orbital order driven quantum criticality Zohar Nussinov C. D. Batista, LANL arxiv:cond-mat/0410599 (PRB) M. Biskup, L. Chayes, UCLA; J. van den Brink, Dresden arxiv:cond-mat/0309691(comm

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Introduction to Heisenberg model. Javier Junquera

Introduction to Heisenberg model. Javier Junquera Introduction to Heisenberg model Javier Junquera Most important reference followed in this lecture Magnetism in Condensed Matter Physics Stephen Blundell Oxford Master Series in Condensed Matter Physics

More information

Magnetism in transition metal oxides by post-dft methods

Magnetism in transition metal oxides by post-dft methods Magnetism in transition metal oxides by post-dft methods Cesare Franchini Faculty of Physics & Center for Computational Materials Science University of Vienna, Austria Workshop on Magnetism in Complex

More information