Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6 g(x) ḧ(ˆx) G(x) Ḧ(ˆx) ḡ(x) g(x)

7

8

9

10

11

12

13

14

15

16

17 max E [φ(ϱ(x θ))], θ {1,2} x x G(x) θ {1, 2} ϱ(x θ) φ(ϱ)

18 1 2

19 g(x), h(x^) x, x^ g( ) h( ) g( ) x h( ) ˆx x supp(g) E(g(x)) := g(x i ) log g(x i ), i=1

20 supp(g) g( ) 1 := log 2 e 1.44 g( ) h( ) log( ) log 2 ( ) ln( ) log e ( )

21 h(ˆx) {0.25, 0.5, 0.25} {00, 1, 01} ˆx g(x) {0.125, 0.125, 0.25, 0.25, 0.125, 0.125} {000, 001, 10, 11, 010, 011} g( ) h( )

22 g( ) h( ) h( ) g( ) g( ) h( )

23 i := i + 1 j := j + 1 codebooks ˆn d i, j := 1 S 0 := 0 x i I A (g; h) {ˆx j } j 1 1 ˆx j j? = ˆn d j := j + 1 {ˆx j }ˆn d 1 j := 1 ˆn d M A (h) j? = ˆn d S j := S j ˆn d ˆx j I A (h; h) ˆx j E h [x] := Sˆnd P

24 κ κ I(g(x); h(ˆx)) = E(g(x)) E(f(x ˆx)) = E(h(ˆx)) E(f(ˆx x)) = = E(g(x)) + E(h(ˆx)) E(f(x, ˆx)) h(ˆx) g(x) f(x, ˆx) x g(x) ˆx h(ˆx) x x ˆx x ˆx

25 ˆx x ˆx ˆx ˆx x x ˆx x ˆx h(ˆx) x ˆx g(x) g(x) h(ˆx) f(x, ˆx) ˆx x x g(x) ˆx h(ˆx) P I min f(x,ˆx) Ef [d(x, ˆx)] = d(x, ˆx) f(x, ˆx) dx dˆx P supp(h) supp(g) I

26 I(g(x); h(ˆx)) κ, λ f(x, ˆx) dˆx = g(x) supp(h) x supp(g), µ(x) f(x, ˆx) 0 x supp(g), ˆx supp(h). ν(x, ˆx) h(ˆx) g(x) κ > 0 d(x, ˆx) P I x G(x) g(x) d(x, ˆx) x ˆx ˆx : d(x, ˆx) g(x) dx <. supp(g) P I

27 Ç 1 f(x ˆx) = exp λ ν(x, ˆx) 1 λ µ(x) 1 å d(x, ˆx), ˆx supp(h). λ x ˆx x ˆx g(x) h(ˆx) f(x, ˆx) := f(x ˆx)h(ˆx) f(x ˆx) ˆx δ(x ˆx) x supp(g), ˆx supp(h) supp(h) := supp(g) ˆx = x, x supp(g) h(x) = g(x), x supp(g) P I E h [ˆx]+ ˇµ = E g [x] ˇµ G G domain(g)

28 x ˆx E h [ˆx] P I 1

29 K t P t q t D t+1 (t + 1) K D t+1 D t g D (D t+1 D t ) t P 0,t q 0,t D 0,t+1 (t + 1) D 0,t+1 t C t t u(c t ) β Ûq K

30 Ûq 0 = 0 P q max {u(c s) + βe g t [u(c t+1)]} = {u(c s ) + β u(c C t,{q 0,t,q t } R K t+1 ) g D (D t+1 D t ) dd t+1 } P q + C t + P 0,t q 0,t + P t q t = q 0,t 1 + (P t + D t ) q t 1, C t+1 = q 0,t + D t+1 q t, C t, {q 0,t, q t } R + R K+1 {q 0,t 1, q t 1 } D t u(c t ) = Ct 1 γ /(1 γ) g D (D t+1 D t ). P q E g t [ φ (x θ) ] := u(w t {P 0,t, P t } θ) + βe g t [u([1 x ]θ)],

31 W t {P 0,t, P t } x := D t+1 θ := {q 0,t, q t } t u( ) φ (θ, x) g(x) P q g( ) E h t [φ(ˆx θ)] := u(w t {P 0,t, P t } θ) + βe h t [u([1 ˆx ]θ)], h(ˆx) P I d(x, ˆx) κ. t h(ˆx) g(x) κ d(x, ˆx) φ (x θ) φ(ˆx θ)

32 P q P I h( ) P qi max {u(c s)+βe h t [u(c t+1 )]} = {u(c s )+β u(c C t,{q 0,t,q t } R K t+1 ) h D ( ˆD t+1 ˆD t ) d ˆD t+1 } P qi + C t + P 0,t q 0,t + P t q t = q 0,t 1 + (P t + ˆD t ) q t 1, C t+1 = q 0,t + ˆD t+1 q t, C t, {q 0,t, q t } R + R K+1 {q 0,t 1, q t 1 } ˆD t P I t P q

33 u(c t ) = Ct 1 γ /(1 γ) h D ( ˆD t+1 ˆD t ) P I d(d t+1, ˆD t+1 ) κ, g D (D t+1 D t ). t D t+1 (t + 1) K D s g D (D s+1 D s ) = g D (D t+1 D t ) s > t D 0,t+1 t P QI v({q 0,t 1, q t 1 }, ˆD t ) = { max u(ct ) + βe h t C t,{q 0,t,q t } î v({q0,t, q t }, ˆD t+1 ) ó } P QI

34 C t + P 0,t q 0,t + P t q t = q 0,t 1 + (P t + ˆD t ) q t 1, C t, {q 0,t, q t } R + R K+1 P I h D ( ˆD t+1 ˆD t ) := f(d t+1, ˆD t+1 D t, ˆD t ) dd t+1, supp(g D ) f D (D t+1, ˆD t+1 D t, ˆD [ t ) := arg min f(, ) Ef d(v ({q 0,t, q t }, D t+1 ), v({q 0,t, q t }, ˆD t+1 )) ] I(g D (D t+1 D t ); h D ( ˆD t+1 ˆD t )) κ, g D (D t+1 D t ). v ({q 0,t 1, q t 1 }, D t ) v({q 0,t 1, q t 1 }, ˆD t ) φ (x θ) := v (θ, x) φ(ˆx θ) := v(θ, ˆx) θ φ(ˆx θ) φ (x θ) v(θ, ˆx) v (θ, x) h D ( ) P I P I d(, ) x g( )

35 P QI W t+1 R 0,t+1 R t+1 y 0,t y t W t+1 := q 0,t + (P t+1 + D t+1 ) q t =: =: P 0,t R 0,t+1 q 0,t + (diag(p t ) R t+1 ) q t =: =: R 0,t+1 y 0,t + R t+1 y t; Ŵt+1 ˆR t+1 g R (R t+1 R t ) := g R (R t+1 ) g R (R t+1 ) log N (µ r, Σ r ) r t+1 := ln R t+1 r 0,t+1 := ln R 0,t+1 g r (r t+1 ) N (µ r, Σ r ) g D (D t+1 D t ) v ({q 0,t, q t }, D t+1 ) = A (W t+1 ) 1 γ, A := (1 β) γ /(1 γ) v({q 0,t, q t }, ˆD t+1 )

36 L 2 d(r t+1, ˆr t+1 ) := v ({q 0,t, q t }, D t+1 ) v({q 0,t, q t }, ˆD t+1 ) 2 2 d(r t+1, ˆr t+1 ) := 1 (1 γ) 2 ln v ({q 0,t, q t }, D t+1 ) ln v({q 0,t, q t }, ˆD t+1 ) 2 2 = = (ln W t+1 ln Ŵt+1) 2. L 2 P QI d(r t+1, ˆr t+1 ) = (ln W t+1 ln Ŵt+1) 2 Ä ω t (r t+1 ˆr t+1 + ˇµ r ) ä 2, ω t := diag(p t )q t / W t K ˆµ r ˆr t+1 ˆµ r := µ r + ˇµ r, v( ) v ( )

37 ˇµ r := 1 2 diag 1 (Σ r ˆΣ r ) 1 2 (Σ r ˆΣ r )ω t, ˆΣ r ˆr t+1 ω t Ä ω t (r t+1 ˆr t+1 + ˇµ r ) ä 2 (rt+1 ˆr t+1 + ˇµ r (Ûω t )) (r t+1 ˆr t+1 + ˇµ r (Ûω t )) =: =: d(r t+1, ˆr t+1 ), ˇµ r (Ûω t ) := 1 2 diag 1 (Σ r ˆΣ r )(1 Ûω t ) = = 1 2 diag(σ2 r,1 ˆσ2 r,1,, σ2 r,k ˆσ2 r,k )1(1 Ûω t) Ûω t Ûω t := 1 ω t. diag 1 ( ) diag( )

38 Σ r ˆΣ r ln Ŵt+1 ln W t+1 ˆµ r ˇµ r ˆr t+1 C t, {q 0,t, q t } ˆµ r C t, {q 0,t, q t } (K + 1) C t, {q 0,t, q t } {q 0,t 1, q t 1 }, ˆD t h D ( ˆD t+1 ˆD t ) h r (ˆr t+1 ) K

39 h r (ˆr t+1 ) ω t = 1 E h t [ ˆR t+1 ] = E g t [R t+1] ˆµ r = µ r E h t [Ŵt+1/W t ] = E h t [ ˆR t+1 ] = exp(ˆµ r + 0.5ˆΣ r ) < exp(µ r + 0.5Σ r ) = E g t [R t+1] = E g t [W t+1/w t ] Σ r ˆΣ r ω t ˇµ r

40 K > 1 d(r t+1, ˆr t+1 ) ω t ω t ω t P QI x := Ξ r t+1, (3.7) ˆx := Ξ ˆr t+1, (3.8) ˇµ(Ûω t ) := Ξ ˇµ r (Ûω t ), (3.9) Ξ Σ r P {Σ, Ξ} := eigendecompose(σ r ); P ˇµ r (Ûω t ) Ûω t ˇµ r (Ûω t ) Ûω t

41 σ Σ =, Σ r = ΞΣΞ 1, Ξ = Ξ 1. 0 σk 2 P QI {P 0 (D t ), P (D t )} : R K + v({q 0,t 1, q t 1 }, D t ) : R K+1 + R K + RK+1 + R F D (D t+1, ˆD t+1 D t, ˆD t ) : R K + RK + [0, 1] C t = Ûq D t, q t = Ûq, q 0,t = Ûq 0 ; f r (r t+1, ˆr t+1 ) P I g r (r t+1 ) κ f D (D t+1, ˆD t+1 D t, ˆD t ) g D (D t+1 D t ) h D ( ˆD t+1 ˆD t ) f r (r t+1, ˆr t+1 ) g r (r t+1 ) h r (ˆr t+1 ) f r (r t+1, ˆr t+1 )

42 g r (r t+1 ) h r (ˆr t+1 ) f(x, ˆx) g(x) h(ˆx) D t+1, ˆD t+1 R K + f D (D t+1, ˆD t+1 D t, ˆD t ) = f r (r t+1, ˆr t+1 ) f r (Ξx, Ξˆx) = f(x, ˆx), g D (D t+1 D t ) = g r (r t+1 ) g r (Ξx) = g(x), h D ( ˆD t+1 ˆD t ) = h r (ˆr t+1 ) h r (Ξˆx) = h(ˆx). q({q 0,t 1, q t 1 }, ˆD t ) Ûq P QI P I Ç 1 f(x ˆx) = exp λ ν(x, ˆx) 1 λ µ(x) 1 å λ (x ˆx + ˇµ(Ûω t)) (x ˆx + ˇµ(Ûω t )), ˆx supp(h). x x ˆx

43 f(x ˆx) x N (µ, Σ) µ Σ P κ λ κ λ f(x ˆx) = (2π) K 2 λ 2 I 1 ( 2 K exp 1 Ç 2 (x ˆx + ˇµ(Ûω t)) λ 1 ) Kå 2 I (x ˆx + ˇµ(Ûω t )), ˆx R K ; x = ˆx ˇµ(Ûω t ) + ϵ, ϵ N (0, Ψ), Ψ = λ 2 I K, ˆx N (ˆµ(Ûω t ), ˆΣ), ˆΣ = Σ Ψ; λ = 2 Ä e 2κ Σ ä 1 K. σk 2 > λ 2, k {1,..., K}.

44 κ λ Ç f(x ˆx) = (2π) K 2 Ψ 2 1 exp 1 å 2 (x ˆx + ˇµ(Ûω t)) Ψ 1 (x ˆx + ˇµ(Ûω t )), ˆx supp(h); x = ˆx ˇµ(Ûω t ) + ϵ, λ / λ/2 0 0 ϵ N (0, Ψ), Ψ = 0 0 σ 2, k σk 2 ˆx N (ˆµ(Ûω t ), ˆΣ), ˆΣ = Σ Ψ; {σ 2 k }K 1 := sortdescending({σ2 k }K 1 ), k := arg min k {1,...,K} {σ2 k σ2 k > λ 2 }, λ = 2 Ä e 2κ σk σ 2 K Σ ä k. (K k ) ˆx {ˆµ k +1(Ûω t ),, ˆµ K (Ûω t )} k {1,..., K} : σk 2 λ 2.

45 variance composition λ 2 σ σ^1 ψ 1 2 σ σ^2 ψ 2 2 σ σ^3 ψ 3 2 σ 4 2 ψ 4 2 σ 5 2 ψ random variables, k K 1 [0, σ2 k ] κ λ Ψ ψ 2 k = 0, k {1,..., K} ˆΣ Σ ˆσ k 2 = σ2 k, k {1,..., K} κ λ ψ 2 k k ˆσ 2 k σ2 k ψ2 k k κ λ ψ 2 k σ 2 k ˆσ2 k ψ2 l l k ψ 2 k ˆσ l 2 σk 2 ˆσ k 2 ψ2 k

46 σk 2 ˆx ˆσ 2 k = 0, k > k. x 1 x 2 ˆx 2 g( ) h( ) g( ) h( )

47 ˆx 1 r t+1 = ˆr t+1 ˇµ r (Ûω t ) + ϵ r,t+1, r t+1 R K, Σ r = ˆΣ r + Ψ r, Σ r K K,

48 ˆr t+1 N (ˆµ r (Ûω t ), ˆΣ r ), ϵ r,t+1 N (0, Ψ r ), ˆµ r (Ûω t ) ˇµ r (Ûω t ) ˆΣ r Ψ r ˆΣ r := Ξ ˆΣΞ 1, Ψ r := ΞΨΞ 1 ˇµ r (Ûω t ) ˆµ r (Ûω t ) ˇµ r ˆµ r ˆr t+1 ˆΣ r ˆr t+1 Σ r r t+1 ˆΣ r Σ r ˆµ r ˆr t+1 Ψ r = Ψ ˇµ r ˇµ r (Ûω t ) ˇµ r = 1 2 diag 1 (Σ r ˆΣ r ) (1 ω t )

49 µ r r t+1 ˆΣ r Σ r ˆr t+1 r t ˆρ r,kl ρ r,kl, k, l {1,..., K}; ˆρ r,kl = ρ r,kl Ä Km=1 ξkm 2 ä 1/2 Ä Km=1 σ2 m ξlm 2 1/2 mä σ2 Ä Km=1 ξkm 2 σ2 m ψ1 2 ä 1/2 Ä Km=1 ξlm 2 σ2 m ψ1ä 2 1/2, k, l {1,..., K}, ψ 2 1 := Ä e 2κ Σ ä 1 K < min m {1,...,K} σ2 m, K ξkm 2 = 1, m=1 k {1,..., K}. ˆr t+1 r t ˆρ r,kl ρ r,kl, k, l {1,..., K}.

50 ˆΣ r Σ r ˆr t+1 r t+1

51 κ h( ) g( ) P QI h( ) g( ) ˆΣ r ˆr t+1 Σ r r t+1

52 R t+1 log N (µ r, Σ r ) r t+1 N (µ r, Σ r ) µ r = [0.10; 0.20] Σ r = [0.10, 0.08; 0.08, 0.16] E g t [R t+1] = [1.16; 1.32] κ = ω t = [0.5; 0.5] ˆR t+1 log N (ˆµ r, ˆΣ r ) ˆr t+1 N (ˆµ r, ˆΣ r ) ˆµ r = [0.11; 0.21] ˆΣ r = [0.06, 0.08; 0.08, 0.12] E h t [ ˆR t+1 ] = [1.15; 1.31]

53 ˇµ r ω t (Σ r ˆΣ r ) ˆµ r ˆr t+1 E h t [ ˆR t+1 ] E g t [R t+1]

54 r t+1 ˆr t+1 ˆΣ ˆx Σ x ˆΣ r Σ Ξ ˆρ r,12 = 0.90 > 0.63 = ρ r,12

55 P0,t P t κ E f t [d(r t+1, ˆr t+1 )] = Ψ r 0 κ g( ) h( )

56 g( ) ħ( ) ħ( ) g( ) E ħ t [ ˆR t+1 ] = E g t [R t+1] E ħ t [ˆr t+1] = ˆµ r µ r = E g t [r t+1] ħ( ) h( )

57 ω t ω t = 0 h( ) := ħ( ) κ (i) i {0,..., m,..., n} ˆΣ (i) r κ Σ r h r (ˆr κ (i) ) g r (r κ ) κ (i) ˆΣ (i) r ˆΣ (m) r ˆΣ r ˆΣ (m) r Σ r m κ κ (m)

58 h r (ˆr κ (0) ) δ(ˆr ˆµ (0) N (ˆµ (1) r ) h r (ˆr κ (1) ) r, ˆΣ (1) r ) h r (ˆr κ (m) ) h r (ˆr κ (n) ) g r (r κ ) κ N (ˆµ (m) (m) r, ˆΣ N (ˆµ (n) (n) r, ˆΣ N (µ r, Σ r ) r ) r ) κ

59 ħ R ( ˆR t+1 ) ħ C (Ĉt+1) ħ D ( ˆD t+1 ) P QI K = 1 ˆΣ r < Σ r E ħ [ ˆR t+1 ] = E g [R t+1 ] h r (ˆr t+1 ) κ γ π( ) E π [R 0 ] := 1 E π [M t+1 ] E π [R R 0 ] := Covπ [R t+1, M t+1 ] E π ; [M t+1 ]

60 E ħ [R 0 ]» V ħ [R 0 ] E ħ [R R 0 ]» V ħ [R] E ħ [ c]» V ħ [ c] E ħ [ d]» V ħ [ d] ħ γ E [R0 ] E [R κ» R0 ] E [ d] E [R0 ] E [R»»» R0 ] E [ d] E [R0 ] E [R»»» R0 ] E [ d] E [R0 ] E [R»»» R0 ] E [ d] E [R0 ] E [R»»» R0 ] E [ d]»» V [R0 ] V [R] V [ d] V [R0 ] V [R] V [ d] V [R0 ] V [R] V [ d] V [R0 ] V [R] V [ d] V [R0 ] V [R] V [ d] ħ g g g g g β = 0.99 ħ g

61 M t+1 := β u (C t+1 ) u (C t ) = β u (D t+1 ) u (D t ) t t + 1 ħ r ( ) g r ( ) ħ ˆR log N (ˆµ r, ˆΣ r ) ˆµ r ˆΣ r β := 0.99 γ E ħ [R R 0 ] R 0 γ ˆΣ r Σ r ˆµ r E ħ [ ˆR t+1 ] Σ r κ κ Σ r ˆµ r

62 ˆµ r ħ r ( ) h r ( ) Σ r µ r E g [R t+1 ] = E ħ [ ˆR t+1 ] g r ( ) ħ g r (r) g ħ g κ κ := 3.4 κ = 0.2 γ = 3 ħ r (ˆr) g r (r) g r (r) r ˆr

63 Density of r^, r Density of r^, r (Kahneman-Tversky) ħ (r^), g(r) (r^), g KT (r) ħ r^, r r^, r ˆr N (ˆµ r, ˆΣ r ) ˆµ r := ˆΣ r := r N (µ r, Σ r ) µ r := Σ r := g κ = 0.2 γ = 3 ˆr r gr KT (µ r, Σ r ) µ r := Σ r g KT γ SR := E [R] R0» V [R]» V [M] E [M] =: HJ,

64 »»»» κ γ E [R0 ] V [R0 ] E [R R0 ] V [R] E [ c] V [ c] E [ d] V [ d] ρ (r, c) ħ g g g g g g g g g g β = 0.99 ħ g

65 ħ β γ κ ˆΣ r E ħ [ ˆR t+1 ] = E g [R t+1 ]

66 κ γ = 3 κ = κ κ K

67 ħ κ κ κ

68 κ

69 weighting function, W(Π) cumulative distribution function, Π W t = 0 C t = 0 W t

70 C t κ Σ r κ W (Π) := Π η (Π η + (1 Π) η ) 1 /η, Π( ) W ( ) η 1 η = 1 η µ r µ r E g [R t+1 ] = E ħ [ ˆR t+1 ] gr KT (r) ħ r (ˆr)

71 g r (r) gr KT (r) g κ = 0.2 γ = 3 gr KT (r) γ = 3 Σ r ˆΣ r g KT γ = 3 κ = ħ r (ˆr) κ gr KT (r) κ κ

72 »»»» κ γ E [R0 ] V [R0 ] E [R R0 ] V [R] E [ c] V [ c] E [ d] V [ d] ρ (r, c) ħ g g KT g KT g KT g KT g KT β = 0.99 ħ g g KT

73 Σ r = ˆΣ r + Ψ r. ˆΣ r Σ r

74 κ ω t

75 κ

76

77 Σ r ˆΣ r

78 ˆΣ r E h [ ˆR t+1 ] = E g [R t+1 ] ˆσ r ˆσ r,1 = ˆσ r,2 := ˆσ r ˆρ r,12 0.5ˆσ r (1 ˆρ r,12 ) ˆσ r ˆρ r,12

79

80

81

82 (c t+1 c t )

83 r t+1 t M t+1

84 P Q max {C s,{q 0,s,q s }} t E g t β s t u(c s ) = s=t R K + β s t u(c s ) g D (D s D s 1 ) dd s s=t P Q C s + P 0,s q 0,s + P sq s = q 0,s 1 + (P s + D s ) q s 1, s t, C s, {q 0,s, q s } R + R K+1, s t Ñ é Ñ é T T lim P T 0,s q 0,T diag(p s + D s ) 1 diag(p s ) q T 1 0 s=t s=t g D, lim s Eg t [βs t u (C s )(P 0,s q 0,s + P sq s )] = 0; u(c s ) = Cs 1 γ /(1 γ) g D (D s+1 D s ), s t.

85 {q 0,t 1, q t 1 } D t v ({q 0,t 1, q t 1 }, D t ) v ({q 0,t 1, q t 1 }, D t ) = { max u(ct ) + βe g [ t v ({q 0,t, q t }, D t+1 ) ]} C t,{q 0,t,q t } C t + P 0,t q 0,t + P t q t = q 0,t 1 + (P t + D t ) q t 1, C t, {q 0,t, q t } R + R K+1 g D (D t+1 D t ). P QI max {C s,{q 0,s,q s }} t E h t β s t u(c s ) = s=t R K + β s t u(c s ) h D ( ˆD s ˆD s 1 ) d ˆD s s=t P QI

86 C s + P 0,s q 0,s + P sq s = q 0,s 1 + (P s + ˆD s ) q s 1, s t, C s, {q 0,s, q s } R + R K+1, s t Ñ é Ñ é T T lim P T 0,s q 0,T diag(p s + ˆD s ) 1 diag(p s ) q T 1 0 s=t s=t h D, lim s Eh t [β s t u (C s )(P 0,s q 0,s + P sq s )] = 0; u(c s ) = Cs 1 γ /(1 γ) h D ( ˆD s+1 ˆD s ) P I d(d s, ˆD s ) κ, s t, g D (D s+1 D s ), s t. v({q 0,t 1, q t 1 }, ˆD t ) = { max u(ct ) + βe h t C t,{q 0,t,q t } î v({q0,t, q t }, ˆD t+1 ) ó } C t + P 0,t q 0,t + P t q t = q 0,t 1 + (P t + ˆD t ) q t 1, C t, {q 0,t, q t } R + R K+1

87 h D ( ˆD t+1 ˆD t ) := f(d t+1, ˆD t+1 D t, ˆD t ) dd t+1, supp(g D ) f D (D t+1, ˆD t+1 D t, ˆD [ t ) := arg min f(, ) Ef d(v ({q 0,t, q t }, D t+1 ), v({q 0,t, q t }, ˆD t+1 )) ] I(g D (D t+1 D t ); h D ( ˆD t+1 ˆD t )) κ, g D (D t+1 D t ). h D ( ) P I g D ( )

88 P I d(, ) I( ; )

89 P QI P QI h D ( ˆD t+1 ) P 0,t = E h t P t = E h t [ β u ] [ Ç å (C t+1 ) u = E h Ct+1 γ ] t β, (C t ) C t [ β u (C t+1 ) Ä P u (C t ) t+1 + ˆD ä ] [ Ç å t+1 = E h Ct+1 γ Ä t β P C t+1 + ˆD ä ] t+1. t E h ï t β Ä Ûq ä γ Ä ˆDt+1 P ( ˆDt+1 ) + ˆD ä ò t+1

90 P Q P 0,t q 0,t + (P t ) q t = βw t, C t = (1 β)w t = (q t 1 ) D t, {q0,t, q t } = {0, Ûq}, [ ] P0,t = P 0(D t ) = β(ûq D t ) γ E h 1 t (Ûq ˆDt+1 ) γ, P t = P (D t ) = β [ ] 1 β ( Ûq D t ) γ E h 1 t ˆD (Ûq ˆDt+1 ) γ t+1, v t = v({q 0,t 1, q t 1 }, D t ) = AW 1 γ t, W t = q 0,t 1 + (P t + D t ) q t 1, A = (1 β) γ. 1 γ P QI

91 ˆµ r (Ûω t ) = µ r + ˇµ r (Ûω t ) = µ r diag 1 (Σ r ˆΣ r )1(1 Ûω t ) µ r diag 1 (Σ r ˆΣ r ) 1 2 (Σ r ˆΣ r )ω t = µ r + ˇµ r = = ˆµ r ω t ˆµ r (Ûω t ) < ˆµ r Σ r ˆΣ r ˆµ r ˆµ r (Ûω t ) ˆµ r ι θ ι := {q 0,t,ι, q t,ι } ω t,ι {P 0,t, P t } W t {q 0,t,ι, q t,ι } φ(x θ ι ) ˇµ r,ι ˆµ r,ι ˇµ r,ι ˇµ r,ι ˆµ r,ι θ ι ˆµ r,ι θ ˆµ r

92 ˇµ r (Ûω t ) ˆµ r (Ûω t ) ˇµ r ˆµ r Ûω t R + f(x, ˆx) = f(x ˆx)h(ˆx) = = (2π) K 2 Ψ 1 2 e 1 2 (x ˆx+ˇµ) Ψ 1 (x ˆx+ˇµ) (2π) K 2 ˆΣ 12 e 1 2 (ˆx ˆµ) ˆΣ 1 (ˆx ˆµ) = = (2π) 2K 2 Σ ˆΣ 1 á 2 ˆΣ ˆΣ exp 1 x µ Σ ˆΣ 1 ë x µ 2 ˆx ˆµ ˆΣ ˆΣ, ˆx ˆµ Ξ r t+1 x Ξ ˆr t+1 ˆx Ξ µ r µ Ξ ˆµ r ˆµ Ξ Σ r Ξ Σ Ξ ˆΣr Ξ ˆΣ f r (r t+1, ˆr t+1 ) f(x, ˆx) = (2π) 2K 2 Σ r ˆΣ r ˆΣr ˆΣr 1 2 á exp 1 r t+1 µ r Σ r 2 ˆr t+1 ˆµ r ˆΣ r 1 ë ˆΣr r t+1 µ r = ˆΣr ˆr t+1 ˆµ r =: f r (r t+1, ˆr t+1 ).

93 f(, ) f r (, ) N Θ 1 Θ 2 f(χ, ˆχ Θ 1, Θ 2 ) = f r (χ, ˆχ Θ 1, Θ 2 ) N (Θ 1, Θ 2 ) χ, ˆχ R K. g( ) g r ( ) h( ) h r ( ) P t h r (ˆr t+1 ) = (2π) K 2 ˆΣ r 1 2 e 1 2 (ˆr( ˆD t+1 ˆD t ) ˆµ r ) ˆΣ 1 r (ˆr( ˆD t+1 ˆD t ) ˆµ r ) =: h D ( ˆD t+1 ˆD t ), ˆr( ˆD t+1 ˆD t ) = ln ˆR( ˆD t+1 ˆD t ) = ln ( diag (P (D t )) 1 Ä P ( ˆD t+1 ) + ˆD ä) t+1 := ( Ç å β 1 Ç å) := ln diag 1 β ( Ûq D t ) γ β E 1 β ( Ûq ˆDt+1 ) γ E + ˆD t+1. E := E h t [ ] 1 ˆD (Ûq ˆDt+1 ) γ t+1.

94 g r (r t+1 ) = (2π) K 2 Σ r 1 2 e 1 2 (r(d t+1 D t ) µ r ) Σ 1 r (r(d t+1 D t ) µ r ) =: g D (D t+1 D t ), r(d t+1 D t ) = ln R(D t+1 D t ) = ln ( diag (P (D t )) 1 (P (D t+1 ) + D t+1 ) ) := ( Ç å β 1 Ç å) := ln diag 1 β ( Ûq D t ) γ β E 1 β ( Ûq D t+1 ) γ E + D t+1. E r(d t+1 D t ) ˆr( ˆD t+1 ˆD t ) f r (r t+1, ˆr t+1 ) f D (D t+1, ˆD t+1 D t, ˆD t )

95

96

97

98

99

100 P I L := d(x, ˆx) f(x, ˆx) dx dˆx+ supp(h) supp(g) ñ + λ f(x, ˆx) ln f(x, ˆx) dx dˆx supp(h) supp(g) Ç å Ç f(x, ˆx) dx ln supp(h) supp(g) supp(g) }{{} h(ˆx) ô g(x) ln g(x) dx κ + supp(g) ñ ô + µ(x) f(x, ˆx) dˆx g(x) + supp(h) + ν(x, ˆx) [ f(x, ˆx)]. å f(x, ˆx) dx } {{ } h(ˆx) dˆx f(ˆx x) g(x) f(x, ˆx) 0 =: δl δf(x, ˆx) Ç å = d(x, ˆx) + λ ln f(x, ˆx) + 1 ln f(x, ˆx) dx 1 + supp(g) + µ(x) ν(x, ˆx).

101 f(x ˆx) = e 1 λ ν(x,ˆx) 1 λ µ(x) 1 λ d(x,ˆx). d(r t+1, ˆr t+1 ) = (ln W t+1 ln Ŵt+1) 2 P QI d(r t+1, ˆr t+1 ) Ä ω t (r t+1 ˆr t+1 + ˇµ r ) ä 2, ω t := diag(p t )q t / W t K ˆΣr ˆr t+1 ˆµ r ˆµ r := µ r + ˇµ r, ˇµ r ˇµ r := 1 2 diag 1 (Σ r ˆΣ r ) 1 2 (Σ r ˆΣ r )ω t.

102 t (t + 1) ln W t+1 ω t r t+1 ω t P I min f r (r,ˆr) Ef [d(r t+1, ˆr t+1 )] ï Äω min f r (r,ˆr) Ef t (r t+1 ˆr t+1 + ˇµ r ) ä 2 ò λ µ(x)

103 ν(x, ˆx) ω 1K,t max ω t E f [d(r t+1, ˆr t+1 )] max E f ï Äω ω t t (r t+1 ˆr t+1 + ˇµ r ) ä 2 ò ω t 1 ÛωN t Ûω N t R +, ω k,t 0 k {1,..., K}. ( Ûω A t, ÛωN t R + ) f r (r t+1, ˆr t+1 ) := arg min f r (r,ˆr) Ef k 1 ( Ûω t A K ) 2 ( rk,t+1 ˆr k,t+1 + ˇµ r,k (Ûω t A ) ) 2, ˇµ r,k (Ûω A t ) := 1 2 (σ2 r,k ˆσ2 r,k )(1 ÛωA t ) k {1,..., K}; ω k,t := Ûω N t, k = k, ω k,t := 0, k k, k U({1,..., K}).

104 Ûω A t Ûω N t Ûω A t ω k,t 0 k {1,..., K} Ûω t := 1 ω t = 1 diag(p t )q t / W t, d(r t+1, ˆr t+1 ) := (r t+1 ˆr t+1 + ˇµ r (Ûω t )) (r t+1 ˆr t+1 + ˇµ r (Ûω t )), ˇµ r (Ûω t ) := 1 2 diag 1 (Σ r ˆΣ r )(1 Ûω t ) = = 1 2 diag(σ2 r,1 ˆσ2 r,1,, σ2 r,k ˆσ2 r,k )1(1 Ûω t).

105 P Q P QI dd t := diag(d t )µ D dt + diag(d t )σ D db t, dp 0,t := r 0,t P 0,t dt, dp t := diag(p t )(µ P diag 1 (σ P σ P ))dt + diag(p t)σ P db t, D t µ D K σ D K K B t K P 0,t r 0,t P t P t := P (D t ) µ P = diag(p t ) 1 P D diag(d t)µ D diag(p t) 1 σ D diag(d 2 P t) D D diag(d t)σ D 1 2 diag 1 (σ P σ P ), σ P = diag(p t ) 1 P D diag(d t)σ D. d ln P t = µ P dt + σ P db t, Ç dw t = W t ω t (µ P diag 1 (σ P σ P ) + diag(p t) 1 D t r 0,t 1) + r 0,t C å t dt+ W t + W t ω t σ P db t, Ç d ln W t = ω t (µ P diag 1 (σ P σ P ) + diag(p t) 1 D t r 0,t 1) + r 0,t C t W t 1 å 2 ω t σ P σ P ω t dt + ω t σ P db t,

106 W t := P 0,t q 0,t + P t q t, ω 0,t := P 0,t q 0,t / W t, ω t := 1 W t diag(p t )q t. dt = 1 Σ r := σ P σ P, r t+1 := µ P + σ P (B t+1 B t ) =: µ r + N (0, Σ r ) ln W t+1 ln W t Ç ω t (diag(p t) 1 D t r 0,t 1) + r 0,t C t W t ω t diag 1 (Σ r ) 1 2 ω t Σ rω t å + ω t r t+1, ˆµ r ln Ŵt+1 ln W t Ç ω t (diag(p t) 1 D t r 0,t 1) + r 0,t C t W t ω t diag 1 ( ˆΣ r ) 1 2 ω t ˆΣ r ω t å + ω t ˆr t+1. d(r t+1, ˆr t+1 ) = (ln W t+1 ln Ŵt+1) 2 Ç ω t (r t+1 ˆr t+1 ) ω t diag 1 (Σ r ˆΣ r ) 1 å 2 2 ω t (Σ r ˆΣ r )ω t.

107 ln W t+1 ln Ŵt+1 Σ r ˆΣ r ˆµ r ˆµ r := µ r diag 1 (Σ r ˆΣ r ) 1 2 (Σ r ˆΣ r )ω t =: µ r + ˇµ r. E f [d(r t+1, ˆr t+1 )] E f [Ç ω t (r t+1 ˆr t+1 ) ω t diag 1 (Σ r ˆΣ r ) 1 2 ω t (Σ r ˆΣ r )ω t å 2 ], E f [d(r t+1, ˆr t+1 )] ω t Ψ rω t, ˆµr =µ r +ˇµ r Ψ r := E f [(r t+1 ˆr t+1 + ˇµ r )(r t+1 ˆr t+1 + ˇµ r ) ]. d(r t+1, ˆr t+1 ) Ç ω t (r t+1 ˆr t+1 ) ω t diag 1 (Σ r ˆΣ r ) 1 2 ω t (Σ r ˆΣ r )ω t å 2 = = Ä ω t (r t+1 ˆr t+1 + ˇµ r ) ä 2.

108 f r (r t+1, ˆr t+1 ) E f [d(r t+1, ˆr t+1 )] = E f ï Ä ω t (r t+1 ˆr t+1 + ˇµ r ) ä 2 ò = ω t Ψ rω t, Ψ r := E f [(r t+1 ˆr t+1 + ˇµ r )(r t+1 ˆr t+1 + ˇµ r ) ]. max ω t E f [d(r t+1, ˆr t+1 )] max ω ω t t Ψ rω t ω t 1 ÛωN t Ûω N t R +, ω k,t 0 k {1,..., K}. Ψ r V Ä ω t (r t+1 ˆr t+1 + ˇµ r ) ä = k ω 2 k,t ψ2 r,k + 2 k l ω k,t ω l,t ψ r,kl k ω 2 k,t ψ2 r,k + 2 k l ω k,t ω l,t ψ r,k ψ r,l ( Ûω N t ) 2 max k {1,...,K} ψ2 r,k.

109 ω k,t := Ûω N t, k = k := arg max k {1,...,K} ψ2 r,k ω k,t := 0, k k., Ψ r k U({1,..., K}). ω k,t := Ûω N t, k = k U({1,..., K}), ω k,t := 0, k k. Ûω A t R + Ûω A t Ûω N t 1 min f r (r,ˆr) K Ef [d(r t+1, ˆr t+1 ) ω k,t = Ûω t A ; ω l,t = 0, l k] k min f r (r,ˆr) Ef 1 K d(r t+1, ˆr t+1 ) ω k,t = Ûω t A ; ω l,t = 0, l k k min f r (r,ˆr) Ef min f r (r,ˆr) Ef min f r (r,ˆr) Ef min f r (r,ˆr) Ef k k k k 1 K Ä ωt (r t+1 ˆr t+1 + ˇµ r ) ä 2 ω k,t = Ûω t A ; ω l,t = 0, l k Ç 1 ω K t (r t+1 ˆr t diag 1 (Σ r ˆΣ r ) (Σ r ˆΣ r )ω t )å 1 ( Ûω A ) Ç 2 t r K k,t+1 ˆr k,t (σ2 r,k ˆσ2 r,k ) 1 å 2 2 (σ2 r,k ˆσ2 r,k )ÛωA t 1 ( Ûω t A ) 2 (rk,t+1 ˆr K k,t+1 + ˇµ r,k (Ûω t A )) 2 ω k,t = Ûω t A ; ω l,t = 0, l k

110 Ûω A t, ÛωN t R + f r (r t+1, ˆr t+1 ) := arg min f r (r,ˆr) Ef k 1 ( Ûω t A K ) 2 (rk,t+1 ˆr k,t+1 + ˇµ r,k (Ûω A t )) 2 ; ω k,t := Ûω N t, k = k, ω k,t := 0, k k, k U({1,..., K}). Ûω A t := 1 ω t =: Ûω t k 1 K Ûω2 t (r k,t+1 ˆr k,t+1 +ˇµ r,k (Ûω t )) 2 (r t+1 ˆr t+1 +ˇµ r (Ûω t )) (r t+1 ˆr t+1 +ˇµ r (Ûω t )) =: d(r t+1, ˆr t+1 ),

111 d(r t+1, ˆr t+1 ) I(g r (r t+1 ); h r (ˆr t+1 )) d(r t+1, ˆr t+1 ) = (r t+1 ˆr t+1 + ˇµ r (Ûω t )) (r t+1 ˆr t+1 + ˇµ r (Ûω t )) = = (Ξx Ξˆx + Ξˇµ(Ûω t )) (Ξx Ξˆx + Ξˇµ(Ûω t )) = = (x ˆx + ˇµ(Ûω t )) Ξ Ξ(x ˆx + ˇµ(Ûω t )) = = (x ˆx + ˇµ(Ûω t )) (x ˆx + ˇµ(Ûω t )) =: d(x, ˆx), I(g r (r t+1 ); h r (ˆr t+1 )) = E(g r (r t+1 )) + E(h r (ˆr t+1 )) E(g r (r t+1 ), h r (ˆr t+1 )) = = E(g r (Ξx)) + E(h r (Ξˆx)) E(g r (Ξx), h r (Ξˆx)) = = E(g(x)) + ln(abs Ξ ) + E(h(ˆx)) + ln(abs Ξ ) E(g(x), h(ˆx)) ln(abs( Ξ Ξ )) = = E(g(x)) + E(h(ˆx)) E(g(x), h(ˆx)) =: I(g(x); h(ˆx)). κ λ

112 x R K ˆx R K ν(x, ˆx) = 0 x, ˆx R K. e 1 λ µ(x) = (πλ) K 2 RK 1 = f(x ˆx) dx = e 1 R K λ ν(x,ˆx) λ 1 µ(x) λ 1 (x ˆx+ˇµ(Ûω t)) (x ˆx+ˇµ(Ûω t )) =: =: R K b(x)(2π) K λ 2 2 I K e 2 (x ˆx+ˇµ(Ûω t)) Ä ä λ 2 I K 1(x ˆx+ˇµ(Ûωt )) dx = = b(x)ϕ(ˆx ˇµ(Ûω t) x λ R K 2 I K) dx =: (b ϕ) (ˆx ˇµ(Ûω t )). δ(ξ) = 1 = b(ξ) ϕ(ξ λ 2 I K), b(ξ) = δ(ξ) ϕ(ξ λ 2 I K) = δ(ξ)e2πi(ˆx ˇµ(Ûω t)) ξ+π 2 λξ ξ = δ(ξ) = 1 ξ = 0, 0 ξ 0. b(x) = dξ = R K dξ = 1; R K e 1 λ µ(x) = (2π) K 2 λ 2 I 2 1 K = (πλ) K 2.

113 µ(x) = λ K 2 ln(πλ). ϵ := x ˆx + ˇµ(Ûω t ) N (0, λ 2 I K), x (ˆx ˇµ(Ûω t )) ϵ x = ˆx ˇµ(Ûω t ) + ϵ. (ˆx ˇµ(Ûω t )) N ϵ N x N (ˆx ˇµ(Ûω t )) ˆx ˆx N (ˆµ(Ûω t ), ˆΣ). Ψ := E f [(x ˆx + ˇµ(Ûω t ))(x ˆx + ˇµ(Ûω t )) ] = E ϕ [ϵϵ ] = λ 2 I K, Σ = ˆΣ + Ψ Σ ˆΣ N f(x ˆx) h(ˆx) f(x, ˆx) supp(h) f(x, ˆx) dˆx = g(x) x supp(g) µ(x)

114 κ = 1 2 (ln Σ ln Ψ ) = 1 Ç λ ln Σ ln 2 2 I å K, λ = 2 Ä e 2κ Σ ä 1 K. κ λ σ 2 k > λ 2 k {1,..., K} k {1,..., K} : σ 2 k λ 2 supp(h) f(x, ˆx) dˆx = g(x) x supp(g) µ(x) x R K ˆx R k {ˆµ k +1(Ûω t ),, ˆµ K (Ûω t )} ϵ k +1,, ϵ K µ(x) ν(x, ˆx) = 0 x R K, ˆx R k {ˆµ k +1(Ûω t ),, ˆµ K (Ûω t )}. e 1 λ µ(x) = (2π) K 2 Å( λ2 ) k σ 2 k +1 σ2 K ã 1 2 RK 1 = f(x ˆx) dx = e 1 R K λ ν(x,ˆx) λ 1 µ(x) λ 1 (x ˆx+ˇµ(Ûω t)) (x ˆx+ˇµ(Ûω t )) dx =: =: R K b(x)(2π) K 2 Ψ 1 2 e 1 2 (x ˆx+ˇµ(Ûω t)) Ψ 1 (x ˆx+ˇµ(Ûω t )) dx = = b(x)ϕ(ˆx ˇµ(Ûω t) x Ψ) dx =: (b ϕ) (ˆx ˇµ(Ûω t )). R K

115 δ(ξ) = 1 = b(ξ) ϕ(ξ Ψ), b(ξ) = δ(ξ) ϕ(ξ Ψ) = δ(ξ)e2πi(ˆx ˇµ(Ûω t)) ξ+π 2 (λ k 1 ξ2 k +2 K k +1 σk 2ξ2 k ) = 1 ξ = 0, = δ(ξ) = 0 ξ 0. b(x) = dξ = R K dξ = 1, R K e 1 λ µ(x) = (2π) K 2 Ψ 1 2 = (2π) K 2 Ñ Çλ å k 1 2 σ 2 2 k +1 Ké σ2. Ñ Ñ Çλ K µ(x) = λ 2 ln(2π) + 1 å éé k 2 ln σ 2 2 k +1 σ2 K. ϵ := x ˆx + ˇµ(Ûω t ) N (0, Ψ), x (ˆx ˇµ(Ûω t )) ϵ x = ˆx ˇµ(Ûω t ) + ϵ. (ˆx ˇµ(Ûω t )) N

116 ϵ N x N (ˆx ˇµ(Ûω t )) ˆx ˆx N (ˆµ(Ûω t ), ˆΣ). {e 1,..., e K } R K Ψ := E f [(x ˆx + ˇµ(Ûω t ))(x ˆx + ˇµ(Ûω t )) ] = E ϕ [ϵϵ λ ] = 2 I k 0 0 K k k=1 e k Σ k +1Ke k, Σ = ˆΣ + Ψ Σ ˆΣ N f(x ˆx) h(ˆx) f(x, ˆx) supp(h) f(x, ˆx) dˆx = g(x) x supp(g) µ(x) Ñ κ = 1 2 (ln Σ ln Ψ ) = 1 λ ln Σ ln 2 2 I k ln K k é e k Σ k +1Ke k, k=1 λ = 2 Ä e 2κ σk σ 2 K Σ ä k.

117 Ξ x = ˆx ˇµ(Ûω t ) + ϵ r t+1 = ˆr t+1 ˇµ r (Ûω t ) + ϵ r,t+1, ϵ r,t+1 := Ξϵ. Ξ Ξ 1 Σ = ˆΣ + Ψ Σ r = ˆΣ r + Ψ r, P ˆΣ r := Ξ ˆΣΞ 1 Ψ r := ΞΨΞ 1. ˆx N (ˆµ(Ûω t ), ˆΣ) ˆr t+1 = Ξˆx N (Ξˆµ(Ûω t ), Ξ ˆΣΞ ) ˆr t+1 ˆµ r (Ûω t ) P ˆr t+1 N (ˆµ r (Ûω t ), ˆΣ r ) ϵ N (0, Ψ) ϵ r,t+1 = Ξϵ N (Ξ0, ΞΨΞ ) P ϵ r,t+1 N (0, Ψ r ) θ ι 1 := {q 0,t,ι 1, q t,ι 1 } (ι 1) θ θ ι 1 θ ι

118 ˇµ r,ι 1 ˇµ 2 r 2 = 1 2 diag 1 (Σ r ˆΣ r,ι 1 ) 1 2 (Σ r ˆΣ r,ι 1 )ω t,ι diag 1 (Σ r ˆΣ r ) (Σ r ˆΣ 2 r )ω t = 2 1 = 2 diag 1 (Ψ r,ι 1 ) 1 2 Ψ r,ι 1ω t,ι diag 1 (Ψ r ) Ψ 2 rω t = 2 1 = 2 diag 1 (Ψ r ) 1 2 Ψ rω t,ι diag 1 (Ψ r ) Ψ 2 rω t = 2 = 1 Ä ä Ψ r ωt,ι 1 ω 2 t 2 2 = = 1 Ç 1 2 Ψ r diag(p t )q W t,ι 1 1 å diag(p t )q 2 t = t W t 2 = 1 2 Ψ 1 r diag(p t ) Ä q W t,ι 1 q ä 2 t t Ψ 1 2 r diag(p t ) q W t t,ι 1 q t 2 2, 2 q t,ι 1 ˇµ r,ι 1 ι φ( θ) ˆµ r ˇµ r φ(ξ ˆr t+1 θ ι, ˆµ r (ˇµ r,ι 1 )) φ(ξ ˆr t+1 θ, ˆµ r (ˇµ r )) 2 2 < ε φ ε φ > 0 q t,ι q t 2 2 θ ι θ 2 2 < ε θ

119 ε θ > 0 ˇµ r,ι ˇµ r Ψ 1 2 r diag(p t ) q W t t,ι q t 2 2 < Mε θ =: ε µ 2 0 < M < M q t,ι = q t,ι 1, ˇµ r,ι = 1 2 diag 1 (Σ r ˆΣ r,ι ) 1 2 (Σ r ˆΣ r,ι )ω t,ι = = 1 2 diag 1 (Ψ r ) 1 2 Ψ 1 r diag(p t )q W t,ι = t = 1 2 diag 1 (Ψ r ) 1 2 Ψ 1 r diag(p t )q W t,ι 1 = t = 1 2 diag 1 (Σ r ˆΣ r,ι 1 ) 1 2 (Σ r ˆΣ r,ι 1 )ω t,ι 1 = ˇµ r,ι 1. φ(x θ ι 1 ) φ(x θ ) 2 2 = φ(ξ ˆr t+1 θ ι, ˆµ r (ˇµ r,ι )) φ(ξ ˆr t+1 θ, ˆµ r (ˇµ r )) 2 2 = = φ(ξ ˆr t+1 θ ι, ˆµ r (ˇµ r,ι 1 )) φ(ξ ˆr t+1 θ, ˆµ r (ˇµ r )) 2 2 < ε φ. ˇµ r,ι ˆµ r,ι ˇµ r,ι ˆµ r,ι ω t,ι ˇµ r ˆµ r ω t

120 r t+1 N (µ r, Σ r ) Σ r = ΞΣΞ 1 Σ P ρ r,kl := Km=1 ξ km ξ lm σm 2 Ä Km=1 ξkm 2 ä 1/2 Ä Km=1 σ2 m ξlm 2 1/2. mä σ2 ˆr t+1 N (ˆµ r, ˆΣ r ) ˆΣ r = Ξ ˆΣΞ 1 ˆΣ Km=1 ξ ˆρ r,kl := km ξ lmˆσ m 2 Ä Km=1 ξ kmˆσ2 2 ä 1/2 Ä Km=1 m ξ lmˆσ2 2 1/2 = mä Km=1 ξ = km ξ lm (σm 2 ψm) 2 Ä Km=1 ξkm 2 (σ2 m ψm) 2 ä 1/2 Ä Km=1 ξlm 2 (σ2 m ψm) 2 ä 1/2. ψ 2 m = ψ 2 n, m, n {1,..., K} Km=1 ξ ˆρ r,kl = km ξ lm (σm 2 ψ1 2) Ä Km=1 ξkm 2 (σ2 m ψ1 2)ä 1/2 Ä Km=1 ξlm 2 (σ2 m ψ1 2)ä 1/2 = Km=1 ξ = km ξ lm σm 2 Ä Km=1 ξkm 2 σ2 m ψ1 2 ä 1/2 Ä Km=1 ξlm 2 σ2 m ψ1ä 2 1/2, Ξ K m=1 ξ km ξ lm = δ kl δ kl k = l ˆρ r,kl = ρ r,kl Ä Km=1 ξkm 2 ä 1/2 Ä Km=1 σ2 m ξlm 2 1/2 mä σ2 Ä Km=1 ξkm 2 σ2 m ψ1 2 ä 1/2 Ä Km=1 ξlm 2 σ2 m ψ1ä 2 1/2, k, l {1,..., K}, ˆρ r,kl ρ r,kl ψ1 2 ψm 2 ψn, 2 m, n {1,..., K}

121 {σ 2 k }K 1 k {1,..., K} ψk 2 := σk 2 k = K, σk 2 + ψ2 + k K, σk 2 σ2 K > ψ2 + 0 k {1,..., K 1} Km=1 ξ ˆρ r,kl = km ξ lm (σm 2 σk 2 ) K 1 m=1 ξ kmξ lm ψ+ 2 ( Km=1 ξkm 2 (σ2 m σk 2 ) ) K 1 1/2 ( Km=1 m=1 ξ2 km ψ2 + ξlm 2 (σ2 m σk 2 ) ) K 1 1/2 = m=1 ξ2 lm ψ2 + Km=1 ξ = km ξ lm σm 2 + ξ kk ξ lk ψ+ 2 Ä Km=1 ξkm 2 σ2 m σk 2 ψ2 + + ä 1/2 Ä Km=1 ξ2 kk ψ2 + ξlm 2 σ2 m σk 2 ψ /2, ξ2 lk +ä ψ2 Ξ ˆρ r,kl σ 2 K ˆρ r,kl, K := lim σ 2 K 0+ ˆρ r,kl = K 1 m=1 ξ kmξ lm σm 2 + ξ kk ξ lk ψ+ 2 ( K 1 m=1 ξ2 km σ2 m ψ+ 2 + ) 1/2 ( K 1 ξ2 kk ψ2 + m=1 ξ2 lm σ2 m ψ+ 2 + ) 1/2. ξ2 lk ψ2 + ψ+ 2 := 0 ˆρ r,kl ρ r,kl ξ kk ξ lk K 1 ˆρ r,kl, K = lim ˆρ r,kl ψ 2 σ + =0 K 2 0+ = m=1 ξ kmξ lm σm 2 ( K 1 ) 1/2 ( K 1 ) 1/2 = ψ 2 + =0 m=1 ξ2 km σ2 m m=1 ξ2 lm σ2 m = lim ρ r,kl σk 2 0+ = ρ r,kl, K. ψ 2 + =0 ψ 2 + =0 ρ r,kl, K > 0 ξ kk = ±1/ 2 ξ lk = 1/ 2 ˆρ r,kl, K = K 1 m=1 ξ kmξ lm σm 2 2 1ψ2 + ( K 1 m=1 ξ2 km σ2 m 2 1 ) 1/2 ( K 1 ψ2 + m=1 ξ2 lm σ2 m 2 1 ) 1/2. ψ2 + ˆρ r,kl, K

122 ψ 2 + ψ2 + = 0 Ñ é ˆρ r,kl, K 1 1 ψ+ 2 = ˆρ r,kl, K ψ 2 2 K 1 + =0 m=1 ξ2 km σ2 m ψ2 2 K 1 + m=1 ξ2 lm σ2 m 1 2 ψ2 + ψ 2 + =0 1 ( K 1 m=1 ξ2 km σ2 m 1 ) 1/2 ( K 1 2 ψ2 + m=1 ξ2 lm σ2 m 1 ) 1/2 = 2 ψ2 + ψ 2 + =0 Ñ é 1 1 = ρ r,kl, K 2 K m=1 ξ2 km σ2 m 2 K 1 m=1 ξ2 lm σ2 m 1 ( K 1 ) 1/2 ( K 1 ) 1/2. m=1 ξ2 km σ2 m m=1 ξ2 lm σ2 m K 1 m=1 ξ2 km σ2 m K 1 m=1 ξ2 lm σ2 m 1 ( K 1 ) 1/2 ( K 1 ) 1/2, m=1 ξ2 km σ2 m m=1 ξ2 lm σ2 m K 1 m=1 ξ2 km σ2 m = K 1 m=1 ξ2 lm σ2 m ρ r,kl, K (0, 1] ˆρ r,kl, K / ψ 2 + ψ 2 + =0 > 0 ˆρ r,kl ρ r,kl ρ r,kl, K (0, 1] ˆρ r,kl, K / ψ 2 + ψ 2 + =0 < 0 ˆρ r,kl ρ r,kl ρ r,kl, K = 0 ˆρ r,kl, K / ψ 2 ψ + 2 < 0 + =0 ˆρ r,kl ρ r,kl = 0 ρ r,kl, K < 0

123 x g(x) x g(x), g(x) g(x) = 1 /8 x = 7, 1/8 x = 9, 1 /4 x = 11, 1 /4 x = 13, 1 /8 x = 19, 1 /8 x = g (x) Probability masses of x x g(x) x n q E( g(x)) := g(x i ) log g(x i ), i=1 n q := supp( g).

124 {x i } n q 1 { g(x i )} n q 1 Ç E( g(x)) = log log 1 å = ˆx ḧ(ˆx) x Probability masses of x^ 1 /4 ˆx = 8, ḧ(ˆx) = 1/2 ˆx = 12, 1 /4 ˆx = h (x^) x^ ḧ(ˆx) ḧ( ) g( ) ḧ(ˆx) g(x) ˆn q E(ḧ(ˆx)) = ḧ(ˆx j ) log ḧ(ˆx j) = j=1 Ç = log log 1 å 2 = 1.5, ˆn q := supp(ḧ).

125 G(x) n d n d := 1 δ δ := gcd({ g(x i )} n q 1 ), gcd(a 1,..., a n ) a 1,..., a n R G(x i ) G(x i 1 ) + δ... G (x) Cumulative distribution of x x G(x) x G(x) g(x) 1/8 1/8 2/8 1/8 4 /8 1 /4 6 /8 1 /4 7 /8 1 /8 8 /8 1 /8 E[L(x)] G(x) G(x)

126 x x n q E[L(x)] = g(x i )L(x i ) E( g(x)), i=1 L(x i ) x i E( g(x)) E[L (x)] < E( g(x)) + 1 E[L (x)] = E( g(x)) = 2.5 log 1 / g(x) x A := {000000,..., } x {0,..., 63} Ḧ(ˆx) ˆn d ˆn d := 1ˆδ ˆδ := gcd({ḧ(ˆx j)}ˆn q 1 ), Ḧ(ˆx j ) Ḧ(ˆx j 1) + ˆδ. Ḧ(ˆx)

127 .. H (x^) Cumulative distribution of x^ x^ Ḧ(ˆx) ˆx Ḧ(ˆx) ḧ(ˆx) 1 /4 1 /4 3/4 1/2 4 /4 1 /4 E[L(ˆx)] Ḧ(ˆx) E[L (ˆx)] = E(ḧ(ˆx)) = 1.5 ḧ(ˆx) D overhead Ç å ˆn 1 q D overhead = ˆn d D ḧ(ˆx) = ˆn A d ḧ(ˆx j ) log ḧ(ˆx j) 1 / A j=1 = ˆn d Ä log A E(ḧ(ˆx))ä, = D overhead [0, ˆn d log A ] supp(ḧ(ˆx)) A D ( π 1 π 2 )

128 π 1 π 2 D ( π 1 (χ) π 2 (χ)) := supp( π 1 ) i=1 π 1 (χ i ) log π 1(χ i ) π 2 (χ i ). D overhead D overhead = ˆn d Ä log A E(ḧ(ˆx))ä = 4 (6 1.5) = 18. P overhead P overhead = }{{} }{{} 01 }{{} } {{} = = 3 (6 + 6) = 47, P overhead = supp(ḧ) supp(ḧ) (log A + log A ) + supp(ḧ) supp(ḧ) 2 log A j=1 j=1 L (ˆx j ) + log A log ḧ(ˆx j) + log A supp(ḧ) 2 log A + supp(ḧ) log supp(ḧ) + log A = = ˆn q Ä 2 log A + log ˆn q ä + log A, ḧ(ˆx) P overhead ˆn q L (ˆx j ) ˆx j ḧ(ˆx j) 0

129 D overhead ˆn d overhead := min{d overhead, P overhead} = = min{18, 47} = 18. A D overhead O(ˆn d ) P overhead O(ˆn q log ˆn q ) ˆn q ˆn d P overhead supp(ḧ) A max i L (ˆx i ) P overhead

130 i := i + 1 j := j + 1 codebooks ˆn d i, j := 1 S 0 := 0 x i I A (g; h) {ˆx j } j 1 1 ˆx j j? = ˆn d j := j + 1 {ˆx j }ˆn d 1 j := 1 ˆn d M A (h) j? = ˆn d S j := S j ˆn d ˆx j I A (h; h) ˆx j E h [x] := Sˆnd max I( g(x); ḧ(ˆx)). g(x) x ˆx f(x, ˆx) g(x)ḧ(ˆx) I( g(x); ḧ(ˆx)) := D Ä f(x, ˆx) g(x) ḧ(ˆx) ä n q ˆn q = i=1 j=1 f(x i, ˆx j ) log Ñ f(xi, ˆx j ) g(x i )ḧ(ˆx j) é. I( g(x); ḧ(ˆx)) = E( g(x)) + E(ḧ(ˆx)) E( g(x), ḧ(ˆx)) = = E( g(x)) E( f(x ˆx)) = E(ḧ(ˆx)) E( f(ˆx x)),

131 ḧ(ˆx) g(x) E( f(ˆx x)) = 0 ˆx χ π(χ) Π (χ) Π (χ) 1 E( π(χ)), δ

132 Å δ := gcd { π(χ i )} supp( π) ã 1. χ π(χ) Π (χ)

133 A x ˆx A I A ( g(x); ḧ(ˆx)) I( g(x); ḧ(ˆx)) = E(ḧ(ˆx)) E( f(ˆx x)) = = E(ḧ(ˆx)) 0 = 1.5 ; I A ( g(x); ḧ(ˆx)) = EA(ḧ(ˆx)) E A( f(ˆx x)) = = Çḧ(ˆx) E(ḧ(ˆx)) + D å 1 0 = = 6 A E A Çḧ(ˆx) (ḧ(ˆx)) = E(ḧ(ˆx)) + D å 1. A ˆn d

134 ˆn d ( ) ˆn d ( ) ˆn d I( g(x); ḧ(ˆx)) = = 6 ; ˆn d I A ( g(x); ḧ(ˆx)) = 4 6 = n d E( g(x)) = = 20, ˆn d E(ḧ(ˆx)) = = 6, ˆn d I( g(x); ḧ(ˆx)) + overhead = = = 24, ḧ(ˆx)

135 M(ḧ(ˆx)) = E[L (ˆx)] = E(ḧ(ˆx)) = 1.5 ; M A (ḧ(ˆx)) = L A(ˆx) = E A (ḧ(ˆx)) = 6. ˆn d M(ḧ(ˆx)) = = 6 ; ˆn d M A (ḧ(ˆx)) = 4 6 = 24. ˆx ˆx j 1/ˆn d j = 1, 2,..., ˆn d ˆn d ˆx j

136 I(ḧ(ˆx); ḧ(ˆx)) I A (ḧ(ˆx); ḧ(ˆx)) g(x) ḧ(ˆx) ˆn d I(ḧ(ˆx); ḧ(ˆx)) ˆn d I A (ḧ(ˆx); ḧ(ˆx)) x x ḡ(x) x ḡ(x),

137 Probability density of x Probability masses of x g (x).. g (x) x x ḡ(x) g(x) x E(ḡ(x)) := ḡ(x) log ḡ(x) dx, supp(ḡ) supp(ḡ) n q g(x) (i+1) g(x i ) := ḡ(x) dx = ḡ(x i ) i i = 1, 2,..., n q n q supp(ḡ(x)) n q := m(supp(ḡ)) m σ supp(ḡ) supp( g) := n q,

138 := 2 g(x) ḡ(x) 0 E( g(x)) E(ḡ(x)) + supp( g) := E(ḡ(x)) + n q, 2.5 E(ḡ(x)) + 6.

139 ˆn d I A ( g(x); ḧ(ˆx)) K D ˆn d I A ( g(x); ḧ(ˆx)) n ID Û I AD =: K D, n ID Û I AD ˆn d M A (ḧ(ˆx)) K S ˆn d M A (ḧ(ˆx)) n M ˆM A =: K S, n M ˆM A ˆn d I A (ḧ(ˆx); ḧ(ˆx)) K C ˆn d I A (ḧ(ˆx); ḧ(ˆx)) n IC Û I AC =: K C, n IC Û I AC

140 K K := min{k D, K S, K C }. K = 24 K {ˆx }ˆn d j 1 ˆx j ḧ(ˆx j) j = 1, 2,..., ˆn mc {ˆx j }ˆn nq 1 ˆn mc ˆn mc ˆn d ˆn nq ˆn nq ˆn d ˆn d P E h [x]

141 K 2K K K A E(π(Aχ)) A E( π( k χ k )) φ : R K R K E(π(φ(χ))) φ : R K R K, K > K E( ) I( ; ) K χ R K R K K K φ(χ) φ( θ) θ n ι = 2 n ι = n n θ

142 codebooks ˆn d, φ( ) i, j, ι := 1 S 0 := 0 E := := 0 θ 0 x i I A (g; h) i := i + 1 j := j + 1 {ˆx j } j 1 1 ˆx j j? = ˆn d j := j + 1 {ˆx j }ˆnd 1 j := 1 ˆn d M A (h) j? = ˆn d S j := S j ˆn d φ(ˆx j θ ι ) I A (h; h) ˆx j θ ι E := max( Sˆnd, E ) θ ι := θ ι 1 + (θ ι θ ι 1 ) 1 E ( Sˆnd ) E, ι n ι ι =? j := 1 n ι ι := ι + 1 E h [φ(x θ )] := E θ := θ nι

143 φ( ) P K K := min{k D, K S, K C / n ι }. n ι = 2 K D 24 K S 24 K C 48 K = K C / n ι, K C / n ι = K = = ˆn d I A (ḧ(ˆx); ḧ(ˆx)) = = ˆn d M A (ḧ(ˆx)) = = ˆn d I A ( g(x); ḧ(ˆx)) = = ˆn d I( g(x); ḧ(ˆx)) + overhead.

144 I( g(x); ḧ(ˆx)) = K C overhead =: κ, ˆn d n ι ˆn d κ κ K C K κ K κ κ I( g(x); ḧ(ˆx)) = E( g(x)) + E(ḧ(ˆx)) E( g(x), ḧ(ˆx)) =: E( g(x)) + E(ḧ(ˆx)) E( f(x, ˆx)) = n q ˆn q n q ˆn = g(x i ) log g(x i ) ḧ(ˆx j ) log ḧ(ˆx q j) + i=1 j=1 i=1 j=1 f(x i, ˆx j ) log f(x i, ˆx j ), κ I(ḡ(x); h(ˆx)) = E(ḡ(x)) + E( h(ˆx)) E(ḡ(x), h(ˆx)) =: E(ḡ(x)) + E( h(ˆx)) E( f(x, ˆx)) = = supp(ḡ) ḡ(x) log ḡ(x) dx h(ˆx) log h(ˆx) dˆx+ supp( h) + f(x, ˆx) log f(x, ˆx) dˆx dx. supp(ḡ) supp( h)

145 Π (χ) δ n d := 1/δ Π (χ) {χ i } n d 1 χ i = Π 1 (iδ) E( π(χ)) n i i n d n q min L(χ i ) = {L(χ i )} n i=1 i=1 i=1 n q n i L(χ i ) = n d i=1 n i n d L(χ i ) n q 2 L(χi) 1 i=1 L (χ i ) := log n i n d. n i n i := Π (χ i ) Π (χ i 1 ) δ =: π(χ i), δ n i n d = π(χ i ).

146 n d i=1 n L q (χ i ) = n d i=1 n i n d log n i n q = n n d π(χ) log π(χ) =: n d E( π(χ)), d i=1 χ i Π (χ i ) χ i < χ i χ i n d i=1 L(χ i) = n q i=1 n il(χ i ) E[L(χ)] = n q i=1 π(χ i)l(χ i ) L (χ i ) = log π(χ i ), n E[L q (χ i )] = π(χ i ) log π(χ i ) =: E( π(χ)). i=1 L(χ i ) := log π(χ i ) 1 (E( π(χ)) + 1). δ

147 1 /8 1 /4 1 /8 7 1 / / / /8 = / / /4 = 13

148 7 1 / / /4 = 12 max {u(c t) + βe h t [u(c t+1 )]} = {u(c t ) + β u(c t+1 ) h( ˆD t+1 ) d ˆD t+1 } {C t,q t } R + C t + P t q t = (P t + D t )q t 1 =: W t, C t+1 = ˆD t+1 q t =: Ŵ t+1 q t 1 D t h( ˆD t+1 ) := f(d t+1, ˆD t+1 ) dd t+1, supp(g) f(d t+1, ˆD t+1 ) := arg min î f(, ) Ef u(c(d t+1 )) u(c( ˆD t+1 )) 2ó I(g(D t+1 ); h( ˆD t+1 )) κ, g(d t+1 ) ; ˆD t+1 D t+1

149 1 /2 max f(, ) Ef t [u(c t+1) + βu(c t+2 )] = = [u(c t+1 ) + βu(c t+2 )] f({c t+1, q t+1 }, D t+1 ) d{c t+1, q t+1 } dd t+1 R 3 + C t+1 + P t+1 q t+1 = (P t+1 + D t+1 )q t =: W t+1, C t+2 = D t+2 q t+1 =: W t+2 q t D t+2 I(g(D t+1 ); h({c t+1, q t+1 })) κ, h({c t+1, q t+1 }) := f({c t+1, q t+1 }, D t+1 ) dd t+1, supp(g) g(d t+1 ) ;

150 D t+1 ˆD t+1

151

152

153

154

155

156

157

158

159 [ max θ Eg t φ (x θ) ] = supp(g) φ (x θ) g(x) dx, P θ g(x), max θ Eh [φ(ˆx θ)] = φ(ˆx θ) h(ˆx) dˆx, P supp(h) θi h(ˆx) := f(x, ˆx) dx, supp(g) { [ f(x, ˆx) := arg min f(x,ˆx) Ef d(φ (x θ), φ(ˆx θ)) ] } I(g(x); h(ˆx)) κ, g(x). θ φ ( ) φ( ) L p p d(φ (x θ), φ(ˆx θ)) = φ (x θ) φ(ˆx θ) p p = φ (x θ) φ(ˆx θ) p =: d(x, ˆx). supp(g(x)) supp(h(ˆx)) φ (x θ) = φ(ˆx θ)

160 p = 2 d(x, ˆx) = φ (x θ) φ(ˆx θ) 2 = = φ (x θ) + φ (x θ) x (ˆx x) + o( x ˆx ) φ 2 (x θ) = ( φ )2 (x θ) = x (ˆx x) + o( x ˆx ). φ (x θ)/ x ˆx x f(x, ˆx) E κ,p [ φ (x θ) ] := E h [φ(ˆx θ)] h(ˆx) := f(x, ˆx) dx, supp(g) [ f(x, ˆx) := arg min f(x,ˆx) Ef d(φ (x θ), φ(ˆx θ)) ] I(g(x); h(ˆx)) κ, g(x). [ max θ Eg φ (x θ) ], [ max θ Eκ,p φ (x θ) ]. g(x) E(g(x)) < κ < κ κ L p p P θi P θ max θ Eκ,p [ φ (x θ) ] [ max θ Eg φ (x θ) ].

161

162 P QI r t+1 N (µ r, Σ r ) f(ω t r t+1 ω t ˆr t+1) = (2π) 1 λ 1 Ñ Ä 2 ω 2 2 exp t (r t+1 ˆr t+1 + ˇµ r ) ä 2 é, ˆr 2( λ /2) t+1 R K ; ω t r t+1 = ω t ˆr t+1 ω t ˇµ r + ϵ r,t+1, ω t Σ rω t = ω t ˆΣ r ω t + Ψ r, ϵ r,t+1 N (0, Ψ r ), Ψ r = λ 2, ω t ˆr t+1 N (ω t ˆµ r, ω t ˆΣ r ω t ), ω t ˆΣ r ω t = ω t Σ rω t Ψ r ; λ = 2e 2κ ω t Σ rω t. +

163 f(r t+1 ˆr t+1 ) = (2π) K 2 2 Ψ r 1 Ç + exp 1 å 2 (r t+1 ˆr t+1 + ˇµ r ) Ψ + r (r t+1 ˆr t+1 + ˇµ r ), ˆr t+1 R K ; r t+1 = ˆr t+1 ˇµ r + ϵ r,t+1, Σ r = ˆΣ r + Ψ r, ϵ r,t+1 N (0, Ψ r ), Ψ r = λ 2 (ω t ω t) 2 ω t ω t, ˆr t+1 N (ˆµ r, ˆΣ r ), ˆΣr = Σ r Ψ r ; λ = 2e 2κ ω t ω t Σ r. ω t Σ rω t ω t ω t Σ r λ κ Ψ r ϵ r,t+1 ϵ r,t+1 Ψ r ω t

164 ˆr t+1 ˆρ r,kl k, l {1,..., K} λ ˆΣ r

165 Σ r ˆΣ r Ä (1 α) ˆΣ ä r + αηi K α [0, 1] η ηi K Ä ˆΣr + α 1 ä Ψ r Σr Ä ä ˆΣr + Υ r Υ r Υ r Ψ r Σ r ˆΣ Σ

166

167

168 κ κ ω t

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

M e t ir c S p a c es

M e t ir c S p a c es A G M A A q D q O I q 4 78 q q G q 3 q v- q A G q M A G M 3 5 4 A D O I A 4 78 / 3 v D OI A G M 3 4 78 / 3 54 D D v M q D M 3 v A G M 3 v M 3 5 A 4 M W q x - - - v Z M * A D q q q v W q q q q D q q W q

More information

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc * Note: Although every effort ws tken to get complete nd ccurte tble, the uhtor cn not be held responsible for ny errors. Vrious sources hd to be consulted nd MIF hd to be exmined to get s much informtion

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution Mixing Quantum and Classical Mechanics: A Partially Miscible Solution R. Kapral S. Nielsen A. Sergi D. Mac Kernan G. Ciccotti quantum dynamics in a classical condensed phase environment how to simulate

More information

ANSWERS TO PROBLEM SET 1

ANSWERS TO PROBLEM SET 1 CHM1485: Molecular Dynamics and Chemical Dynamics in Liquids ANSWERS TO PROBLEM SET 1 1 Properties of the Liouville Operator a. Give the equations of motion in terms of the Hamiltonian. Show that they

More information

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle Short-Ranged Central and Tensor Correlations in Nuclear Many-Body Systems Reaction Theory for Nuclei far from Stability @ INT Seattle September 6-, Hans Feldmeier, Thomas Neff, Robert Roth Contents Motivation

More information

( U t = jt c ln c t + j t ln h t ϕ ) 1 + η (n t + s t ) 1+η c t h t j c t j t n t s t c t c h t c f t c t = [ ( ) v 1 θ 1 ( θ c h θ t + (1 v) 1 θ c f t ) θ 1 ] θ θ 1 θ. θ v P t p h t P t h P t c t + p

More information

THEOREM OF OSELEDETS. We recall some basic facts and terminology relative to linear cocycles and the multiplicative ergodic theorem of Oseledets [1].

THEOREM OF OSELEDETS. We recall some basic facts and terminology relative to linear cocycles and the multiplicative ergodic theorem of Oseledets [1]. THEOREM OF OSELEDETS We recall some basic facts and terminology relative to linear cocycles and the multiplicative ergodic theorem of Oseledets []. 0.. Cocycles over maps. Let µ be a probability measure

More information

l t 1 2 2 2 2 2 B B m t t m 0 ṁ t = e ref a t m t B e ref a t t t x t a t δ a t0 = 0 ȧ t = x t δa t c(x t ) c x t, c (x t ) 0 c (x t ) 0 c(x t ) 0 c (x t ) c c (x t ) x t t

More information

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics Jiti Gao Department of Statistics School of Mathematics and Statistics The University of Western Australia Crawley

More information

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Downloaded from orbit.dtu.dk on: Jan 22, 2019 Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Nystrup, Peter Publication date: 2018 Document Version

More information

Starting from Heat Equation

Starting from Heat Equation Department of Applied Mathematics National Chiao Tung University Hsin-Chu 30010, TAIWAN 20th August 2009 Analytical Theory of Heat The differential equations of the propagation of heat express the most

More information

R k. t + 1. n E t+1 = ( 1 χ E) W E t+1. c E t+1 = χ E Wt+1 E. Γ E t+1. ) R E t+1q t K t. W E t+1 = ( 1 Γ E t+1. Π t+1 = P t+1 /P t

R k. t + 1. n E t+1 = ( 1 χ E) W E t+1. c E t+1 = χ E Wt+1 E. Γ E t+1. ) R E t+1q t K t. W E t+1 = ( 1 Γ E t+1. Π t+1 = P t+1 /P t R k E 1 χ E Wt E n E t+1 t t + 1 n E t+1 = ( 1 χ E) W E t+1 c E t+1 = χ E Wt+1 E t + 1 q t K t Rt+1 E 1 Γ E t+1 Π t+1 = P t+1 /P t W E t+1 = ( 1 Γ E t+1 ) R E t+1q t K t Π t+1 Γ E t+1 K t q t q t K t j

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. NATURE PHYSICS www.nature.com/naturephysics 1 285 x 5 15 5 25 1 1 Ω/µ 3 x C c = 4 6.5 3 µ 2 ε r =7 1.4 9 11 2 1 54 12 1 2 4 12 2 12 µ 2 12 12 12 12 NATURE

More information

SUPPLEMENTARY MATERIAL FOR PUBLICATION ONLINE 1

SUPPLEMENTARY MATERIAL FOR PUBLICATION ONLINE 1 SUPPLEMENTARY MATERIAL FOR PUBLICATION ONLINE 1 B Technical details B.1 Variance of ˆf dec in the ersmooth case We derive the variance in the case where ϕ K (t) = ( 1 t 2) κ I( 1 t 1), i.e. we take K as

More information

Outline PGeneral Many body 2Pconsistent Conclusions Basics

Outline PGeneral Many body 2Pconsistent Conclusions Basics Ĥ = kσ ϵ(k)c kσ c kσ + iσ V i n iσ + U i n i n i { Ĥ ext = d1d2 η σ(1, 2)c σ(1)c σ (2)... σ ] + [η (1, 2)c (1)c (2) + η (1, 2)c (2)c (1)... + ] [ ξ σ(1, 2)c σ (1)c σ (2) + ξ σ(1, 2)c σ(1)c σ(2)... σ ]

More information

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4 Limits and Continuity t+ 1. lim t - t + 4. lim x x x x + - 9-18 x-. lim x 0 4-x- x 4. sinq lim - q q 5. Find the horizontal asymptote (s) of 7x-18 f ( x) = x+ 8 Summer Packet AP Calculus BC Page 4 6. x

More information

K(ζ) = 4ζ 2 x = 20 Θ = {θ i } Θ i=1 M = {m i} M i=1 A = {a i } A i=1 M A π = (π i ) n i=1 (Θ) n := Θ Θ (a, θ) u(a, θ) E γq [ E π m [u(a, θ)] ] C(π, Q) Q γ Q π m m Q m π m a Π = (π) U M A Θ

More information

Magnetic wells in dimension three

Magnetic wells in dimension three Magnetic wells in dimension three Yuri A. Kordyukov joint with Bernard Helffer & Nicolas Raymond & San Vũ Ngọc Magnetic Fields and Semiclassical Analysis Rennes, May 21, 2015 Yuri A. Kordyukov (Ufa) Magnetic

More information

K e sub x e sub n s i sub o o f K.. w ich i sub s.. u ra to the power of m i sub fi ed.. a sub t to the power of a

K e sub x e sub n s i sub o o f K.. w ich i sub s.. u ra to the power of m i sub fi ed.. a sub t to the power of a - ; ; ˆ ; q x ; j [ ; ; ˆ ˆ [ ˆ ˆ ˆ - x - - ; x j - - - - - ˆ x j ˆ ˆ ; x ; j κ ˆ - - - ; - - - ; ˆ σ x j ; ˆ [ ; ] q x σ; x - ˆ - ; J -- F - - ; x - -x - - x - - ; ; 9 S j P R S 3 q 47 q F x j x ; [ ]

More information

Random Variables. P(x) = P[X(e)] = P(e). (1)

Random Variables. P(x) = P[X(e)] = P(e). (1) Random Variables Random variable (discrete or continuous) is used to derive the output statistical properties of a system whose input is a random variable or random in nature. Definition Consider an experiment

More information

On Operator-Valued Bi-Free Distributions

On Operator-Valued Bi-Free Distributions On Operator-Valued Bi-Free Distributions Paul Skoufranis TAMU March 22, 2016 Paul Skoufranis On Operator-Valued Bi-Free Distributions March 22, 2016 1 / 30 Bi-Free with Amalgamation Let B be a unital algebra.

More information

Green s function, wavefunction and Wigner function of the MIC-Kepler problem

Green s function, wavefunction and Wigner function of the MIC-Kepler problem Green s function, wavefunction and Wigner function of the MIC-Kepler problem Tokyo University of Science Graduate School of Science, Department of Mathematics, The Akira Yoshioka Laboratory Tomoyo Kanazawa

More information

School of Mathematics & Statistics MT 4507/ Classical Mechanics - Solutions Sheet 1

School of Mathematics & Statistics MT 4507/ Classical Mechanics - Solutions Sheet 1 T. Neukirch Sem /3 School of Mathematics & Statistics MT 457/587 - Classical Mechanics - Solutions Sheet. (i) A = (,, ), B = (4,, 3) C = (,, ) (a) The magnitudes of A, B and C are A A = A = + + = 9 = A

More information

Milnor s Exotic 7-Spheres Jhan-Cyuan Syu ( June, 2017 Introduction

Milnor s Exotic 7-Spheres Jhan-Cyuan Syu ( June, 2017 Introduction 許展銓 1 2 3 R 4 R 4 R n n 4 R 4 ξ : E π M 2n J : E E R J J(v) = v v E ξ ξ ξ R ξ : E π M M ξ : Ē π M ξ ξ R = ξ R i : E Ē i(cv) = ci(v) c C v E ξ : E π M n M c(ξ) = c i (ξ) H 2n (M, Z) i 0 c 0 (ξ) = 1 c i

More information

David Burns and Matthias Flach. t y

David Burns and Matthias Flach. t y 4 Dv B F v 4 b Dv 4 B Dv B F v b F bk bk R F R q v q b R F L L - b q q - Eq: L T C O b q ˆ bk bk * T C O b TΩ bk + ψ T Ω bk T Ω T C T O bk bk + ˆ O w w ψ * R ˆ R T bk Ω bk T O ˆ w R k R bk bk R T C O bk

More information

CHAPTER 6. Projection Methods. Let A R n n. Solve Ax = f. Find an approximate solution ˆx K such that r = f Aˆx L.

CHAPTER 6. Projection Methods. Let A R n n. Solve Ax = f. Find an approximate solution ˆx K such that r = f Aˆx L. Projection Methods CHAPTER 6 Let A R n n. Solve Ax = f. Find an approximate solution ˆx K such that r = f Aˆx L. V (n m) = [v, v 2,..., v m ] basis of K W (n m) = [w, w 2,..., w m ] basis of L Let x 0

More information

a n+2 a n+1 M n a 2 a 1. (2)

a n+2 a n+1 M n a 2 a 1. (2) Rel Anlysis Fll 004 Tke Home Finl Key 1. Suppose tht f is uniformly continuous on set S R nd {x n } is Cuchy sequence in S. Prove tht {f(x n )} is Cuchy sequence. (f is not ssumed to be continuous outside

More information

Stochastic Differential Equations

Stochastic Differential Equations CHAPTER 1 Stochastic Differential Equations Consider a stochastic process X t satisfying dx t = bt, X t,w t dt + σt, X t,w t dw t. 1.1 Question. 1 Can we obtain the existence and uniqueness theorem for

More information

ISSN: [Engida* et al., 6(4): April, 2017] Impact Factor: 4.116

ISSN: [Engida* et al., 6(4): April, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY ELLIPTICITY, HYPOELLIPTICITY AND PARTIAL HYPOELLIPTICITY OF DIFFERENTIAL OPERATORS Temesgen Engida*, Dr.Vishwajeet S. Goswami

More information

and in each case give the range of values of x for which the expansion is valid.

and in each case give the range of values of x for which the expansion is valid. α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ ϕ χ ψ ω Mathematics is indeed dangerous in that it absorbs students to such a degree that it dulls their senses to everything else P Kraft Further Maths A (MFPD)

More information

Local null controllability of a fluid-solid interaction problem in dimension 3

Local null controllability of a fluid-solid interaction problem in dimension 3 Local null controllability of a fluid-solid interaction problem in dimension 3 M. Boulakia and S. Guerrero Abstract We are interested by the three-dimensional coupling between an incompressible fluid and

More information

! 94

! 94 ! 94 4 : - : : / : : : : ( :) : : : - : / : / : : - 4 : -4 : : : : : -5 () ( ) : -6 : - - : : : () : : : :4 : -7. : : -8. (. : ( : -9 : ( ( ( (5 (4 4 : -0! : ( : ( :. : (. (. (. (4. ( ( ( : ( 4 : - : :

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University A Framework for Interpolation Error Estimation of Affine Equivalent FEs 1 The

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction Carnegie Mellon University Center for Nonlinear Analysis Working Group, October 2016 Outline 1 Physical Framework 2 3 Free Energy

More information

High-Gain Observers in Nonlinear Feedback Control. Lecture # 2 Separation Principle

High-Gain Observers in Nonlinear Feedback Control. Lecture # 2 Separation Principle High-Gain Observers in Nonlinear Feedback Control Lecture # 2 Separation Principle High-Gain ObserversinNonlinear Feedback ControlLecture # 2Separation Principle p. 1/4 The Class of Systems ẋ = Ax + Bφ(x,

More information

Oblique derivative problems for elliptic and parabolic equations, Lecture II

Oblique derivative problems for elliptic and parabolic equations, Lecture II of the for elliptic and parabolic equations, Lecture II Iowa State University July 22, 2011 of the 1 2 of the of the As a preliminary step in our further we now look at a special situation for elliptic.

More information

Finite Element Methods for Maxwell Equations

Finite Element Methods for Maxwell Equations CHAPTER 8 Finite Element Methods for Maxwell Equations The Maxwell equations comprise four first-order partial differential equations linking the fundamental electromagnetic quantities, the electric field

More information

Well-balanced DG scheme for Euler equations with gravity

Well-balanced DG scheme for Euler equations with gravity Well-balanced DG scheme for Euler equations with gravity Praveen Chandrashekar praveen@tifrbng.res.in Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore 560065 Dept. of

More information

The Kubo formula of the electric conductivity

The Kubo formula of the electric conductivity The Kubo formula of the electric conductivity We consider an electron under the influence of an electric field E(t). This system may be described by a Hamiltonian of the form Ĥ(t) = Ĥ0 e i E i (t)x i,

More information

Decay profiles of a linear artificial viscosity system

Decay profiles of a linear artificial viscosity system Decay profiles of a linear artificial viscosity system Gene Wayne, Ryan Goh and Roland Welter Boston University rwelter@bu.edu July 2, 2018 This research was supported by funding from the NSF. Roland Welter

More information

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements 1 Historical introduction The Schrödinger equation for one-particle problems 3 Mathematical tools for quantum chemistry 4 The postulates of quantum mechanics 5 Atoms and the periodic table of chemical

More information

Small Open Economy RBC Model Uribe, Chapter 4

Small Open Economy RBC Model Uribe, Chapter 4 Small Open Economy RBC Model Uribe, Chapter 4 1 Basic Model 1.1 Uzawa Utility E 0 t=0 θ t U (c t, h t ) θ 0 = 1 θ t+1 = β (c t, h t ) θ t ; β c < 0; β h > 0. Time-varying discount factor With a constant

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

Translation Invariant Experiments with Independent Increments

Translation Invariant Experiments with Independent Increments Translation Invariant Statistical Experiments with Independent Increments (joint work with Nino Kordzakhia and Alex Novikov Steklov Mathematical Institute St.Petersburg, June 10, 2013 Outline 1 Introduction

More information

Dominant feature extraction

Dominant feature extraction Dominant feature extraction Francqui Lecture 7-5-200 Paul Van Dooren Université catholique de Louvain CESAME, Louvain-la-Neuve, Belgium Goal of this lecture Develop basic ideas for large scale dense matrices

More information

5 n N := {1, 2,...} N 0 := {0} N R ++ := (0, ) R + := [0, ) a, b R a b := max{a, b} f g (f g)(x) := f(x) g(x) (Z, Z ) bz Z Z R f := sup z Z f(z) κ: Z R ++ κ f : Z R f(z) f κ := sup z Z κ(z). f κ < f κ

More information

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015 MFM Practitioner Module: Quantitiative Risk Management October 14, 2015 The n-block maxima 1 is a random variable defined as M n max (X 1,..., X n ) for i.i.d. random variables X i with distribution function

More information

Finite Elements for Elastic Shell Models in

Finite Elements for Elastic Shell Models in Elastic s in Advisor: Matthias Heinkenschloss Computational and Applied Mathematics Rice University 13 April 2007 Outline Elasticity in Differential Geometry of Shell Geometry and Equations The Plate Model

More information

REAL ANALYSIS I HOMEWORK 4

REAL ANALYSIS I HOMEWORK 4 REAL ANALYSIS I HOMEWORK 4 CİHAN BAHRAN The questions are from Stein and Shakarchi s text, Chapter 2.. Given a collection of sets E, E 2,..., E n, construct another collection E, E 2,..., E N, with N =

More information

A2 Assignment lambda Cover Sheet. Ready. Done BP. Question. Aa C4 Integration 1 1. C4 Integration 3

A2 Assignment lambda Cover Sheet. Ready. Done BP. Question. Aa C4 Integration 1 1. C4 Integration 3 A Assignment lambda Cover Sheet Name: Question Done BP Ready Topic Comment Drill Mock Exam Aa C4 Integration sin x+ x+ c 4 Ab C4 Integration e x + c Ac C4 Integration ln x 5 + c Ba C Show root change of

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Storm Open Library 3.0

Storm Open Library 3.0 S 50% off! 3 O L Storm Open Library 3.0 Amor Sans, Amor Serif, Andulka, Baskerville, John Sans, Metron, Ozdoby,, Regent, Sebastian, Serapion, Splendid Quartett, Vida & Walbaum. d 50% f summer j sale n

More information

Higher-Order Confidence Intervals for Stochastic Programming using Bootstrapping

Higher-Order Confidence Intervals for Stochastic Programming using Bootstrapping Preprint ANL/MCS-P1964-1011 Noname manuscript No. (will be inserted by the editor) Higher-Order Confidence Intervals for Stochastic Programming using Bootstrapping Mihai Anitescu Cosmin G. Petra Received:

More information

b e i ga set s oane f dast heco mm on n va ns ing lo c u soft w section

b e i ga set s oane f dast heco mm on n va ns ing lo c u soft w section 66 M M Eq: 66 - -I M - - - -- -- - - - - -- - S I T - I S W q - I S T q ] q T G S W q I ] T G ˆ Gα ˆ ˆ ] H Z ˆ T α 6H ; Z - S G W [6 S q W F G S W F S W S W T - I ] T ˆ T κ G Gα ±G κ α G ˆ + G > H O T

More information

CHAPTER 3: LARGE SAMPLE THEORY

CHAPTER 3: LARGE SAMPLE THEORY CHAPTER 3 LARGE SAMPLE THEORY 1 CHAPTER 3: LARGE SAMPLE THEORY CHAPTER 3 LARGE SAMPLE THEORY 2 Introduction CHAPTER 3 LARGE SAMPLE THEORY 3 Why large sample theory studying small sample property is usually

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

I. Relationship with previous work

I. Relationship with previous work x x i t j J t = {0, 1,...J t } j t (p jt, x jt, ξ jt ) p jt R + x jt R k k ξ jt R ξ t T j = 0 t (z i, ζ i, G i ), ζ i z i R m G i G i (p j, x j ) i j U(z i, ζ i, x j, p j, ξ j ; G i ) = u(ζ i, x j,

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

Effective dynamics for the (overdamped) Langevin equation

Effective dynamics for the (overdamped) Langevin equation Effective dynamics for the (overdamped) Langevin equation Frédéric Legoll ENPC and INRIA joint work with T. Lelièvre (ENPC and INRIA) Enumath conference, MS Numerical methods for molecular dynamics EnuMath

More information

Well-balanced DG scheme for Euler equations with gravity

Well-balanced DG scheme for Euler equations with gravity Well-balanced DG scheme for Euler equations with gravity Praveen Chandrashekar praveen@tifrbng.res.in Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore 560065 Higher Order

More information

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan Monte-Carlo MMD-MA, Université Paris-Dauphine Xiaolu Tan tan@ceremade.dauphine.fr Septembre 2015 Contents 1 Introduction 1 1.1 The principle.................................. 1 1.2 The error analysis

More information

A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices

A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices Natalia Bailey 1 M. Hashem Pesaran 2 L. Vanessa Smith 3 1 Department of Econometrics & Business Statistics, Monash

More information

Simultaneous equation models with spatially autocorrelated error components

Simultaneous equation models with spatially autocorrelated error components MPRA Munich Personal RePEc Archive Simultaneous equation models with spatially autocorrelated error components Claude Marius AMBA OYON and Taoufiki Mbratana University of Yaounde II, University of Yaounde

More information

Vibrating-string problem

Vibrating-string problem EE-2020, Spring 2009 p. 1/30 Vibrating-string problem Newton s equation of motion, m u tt = applied forces to the segment (x, x, + x), Net force due to the tension of the string, T Sinθ 2 T Sinθ 1 T[u

More information

Local Strong Convexity of Maximum-Likelihood TDOA-Based Source Localization and Its Algorithmic Implications

Local Strong Convexity of Maximum-Likelihood TDOA-Based Source Localization and Its Algorithmic Implications Local Strong Convexity of Maximum-Likelihood TDOA-Based Source Localization and Its Algorithmic Implications Huikang Liu, Yuen-Man Pun, and Anthony Man-Cho So Dept of Syst Eng & Eng Manag, The Chinese

More information

Stochastic Differential Equations

Stochastic Differential Equations Chapter 5 Stochastic Differential Equations We would like to introduce stochastic ODE s without going first through the machinery of stochastic integrals. 5.1 Itô Integrals and Itô Differential Equations

More information

Strong Markov property of determinatal processes

Strong Markov property of determinatal processes Strong Markov property of determinatal processes Hideki Tanemura Chiba university (Chiba, Japan) (August 2, 2013) Hideki Tanemura (Chiba univ.) () Markov process (August 2, 2013) 1 / 27 Introduction The

More information

Explicit Formulas for Hilbert Pairings on Formal Groups

Explicit Formulas for Hilbert Pairings on Formal Groups CHAPTER 8 Explicit Formulas for Hilbert Pairings on Formal Groups The method of the previous chapter possesses a valuable property: it can be relatively easily applied to derive explicit formulas for various

More information

Hopping transport in disordered solids

Hopping transport in disordered solids Hopping transport in disordered solids Dominique Spehner Institut Fourier, Grenoble, France Workshop on Quantum Transport, Lexington, March 17, 2006 p. 1 Outline of the talk Hopping transport Models for

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

State Predictive Model Following Control System for the Linear System with Input Time-Delay

State Predictive Model Following Control System for the Linear System with Input Time-Delay 245 (28..24) 245-9 State Predictive Model Following Control System for the Linear System with Input Time-Delay Dazhong Wang, Shigenori Okubo Faculty of Engineering, Yamagata University : (time-delay) (state

More information

Introduction to Quantum Mechanics Physics Thursday February 21, Problem # 1 (10pts) We are given the operator U(m, n) defined by

Introduction to Quantum Mechanics Physics Thursday February 21, Problem # 1 (10pts) We are given the operator U(m, n) defined by Department of Physics Introduction to Quantum Mechanics Physics 5701 Temple University Z.-E. Meziani Thursday February 1, 017 Problem # 1 10pts We are given the operator Um, n defined by Ûm, n φ m >< φ

More information

Physics 443, Solutions to PS 1 1

Physics 443, Solutions to PS 1 1 Physics 443, Solutions to PS. Griffiths.9 For Φ(x, t A exp[ a( mx + it], we need that + h Φ(x, t dx. Using the known result of a Gaussian intergral + exp[ ax ]dx /a, we find that: am A h. ( The Schrödinger

More information

. ffflffluary 7, 1855.

. ffflffluary 7, 1855. x B B - Y 8 B > ) - ( vv B ( v v v (B/ x< / Y 8 8 > [ x v 6 ) > ( - ) - x ( < v x { > v v q < 8 - - - 4 B ( v - / v x [ - - B v B --------- v v ( v < v v v q B v B B v?8 Y X $ v x B ( B B B B ) ( - v -

More information

Reminder Notes for the Course on Distribution Theory

Reminder Notes for the Course on Distribution Theory Reminder Notes for the Course on Distribution Theory T. C. Dorlas Dublin Institute for Advanced Studies School of Theoretical Physics 10 Burlington Road, Dublin 4, Ireland. Email: dorlas@stp.dias.ie March

More information

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian... Vector analysis Abstract These notes present some background material on vector analysis. Except for the material related to proving vector identities (including Einstein s summation convention and the

More information

Reconstruction Scheme for Active Thermography

Reconstruction Scheme for Active Thermography Reconstruction Scheme for Active Thermography Gen Nakamura gnaka@math.sci.hokudai.ac.jp Department of Mathematics, Hokkaido University, Japan Newton Institute, Cambridge, Sept. 20, 2011 Contents.1.. Important

More information

A Two-Phase Continuum Theory for Windblown Sand

A Two-Phase Continuum Theory for Windblown Sand A Two-Phase Continuum Theory for Windblown Sand Jim Jenkins Civil and Environmental Engineering Cornell University Alexandre Valance Institut de Physique de Rennes Université de Rennes 1 Suspension and

More information

2 Symmetric Markov processes on finite spaces

2 Symmetric Markov processes on finite spaces Introduction The purpose of these notes is to present the discrete time analogs of the results in Markov Loops and Renormalization by Le Jan []. A number of the results appear in Chapter 9 of Lawler and

More information

y y i LB k+1 f(x, y k+1 ) Ax + By k+1 b,

y y i LB k+1 f(x, y k+1 ) Ax + By k+1 b, a b b a b min x,y f(x, y) g j (x, y) 0 j = 1,... l, Ax + By b, x R n, y Z m. f, g 1,..., g l : R n R m R y x { (x i, y i ) } k i=0 k y k+1 min x,y,µ µ [ ] f(x i, y i ) + f(x i, y i ) T x x i y y i g j

More information

Dynamic Stochastic General Equilibrium Models

Dynamic Stochastic General Equilibrium Models Dynamic Stochastic General Equilibrium Models Dr. Andrea Beccarini M.Sc. Willi Mutschler Summer 2014 A. Beccarini () Advanced Macroeconomics DSGE Summer 2014 1 / 33 The log-linearization procedure: One

More information

Supplementary Appendix to A Bayesian DSGE Model of Stock Market Bubbles and Business Cycles

Supplementary Appendix to A Bayesian DSGE Model of Stock Market Bubbles and Business Cycles Supplementary Appendix to A Bayesian DSGE Model of Stock Market Bubbles and Business Cycles Jianjun Miao, Pengfei Wang, and Zhiwei Xu May 9, 205 Department of Economics, Boston University, 270 Bay State

More information

PHY 396 K. Problem set #5. Due October 9, 2008.

PHY 396 K. Problem set #5. Due October 9, 2008. PHY 396 K. Problem set #5. Due October 9, 2008.. First, an exercise in bosonic commutation relations [â α, â β = 0, [â α, â β = 0, [â α, â β = δ αβ. ( (a Calculate the commutators [â αâ β, â γ, [â αâ β,

More information

Supplement 2 to the paper Floating bundles and their applications

Supplement 2 to the paper Floating bundles and their applications ariv:math/0104052v1 [math.at] 4 Apr 2001 Supplement 2 to the paper Floating bundles and their applications A.V. Ershov This paper is the supplement to the section 2 of the paper Floating bundles and their

More information

Salient features of dynamic optimization problems Basics of dynamic programming The principle of optimality

Salient features of dynamic optimization problems Basics of dynamic programming The principle of optimality A Z D I A 4 2 B C 5 6 7 2 E F 3 4 3 5 G H 8 6 2 4 J K 3 2 Z D I A 4 2 B C 5 6 7 2 E F 3 4 3 5 G H 8 6 2 4 J K 3 2 Z s x {, 2,..., n} r(x, s) x s r(, A) = 2 r(, D) = 2 r(2, A) = 4 r(2, D) = 8 g(x, s) s

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

DSGE Models in a Liquidity Trap and Japan s Lost Decade

DSGE Models in a Liquidity Trap and Japan s Lost Decade DSGE Models in a Liquidity Trap and Japan s Lost Decade Koiti Yano Economic and Social Research Institute ESRI International Conference 2009 June 29, 2009 1 / 27 Definition of a Liquidity Trap Terminology

More information

Fundamental Solution

Fundamental Solution Fundamental Solution onsider the following generic equation: Lu(X) = f(x). (1) Here X = (r, t) is the space-time coordinate (if either space or time coordinate is absent, then X t, or X r, respectively);

More information

qfu fiqrqrot sqr*lrq \rq rrrq frmrs rrwtrq, *Ea qqft-{ f,er ofrq qyfl-{ wtrd u'unflq * *,rqrrd drsq GrrR fr;t - oslogllotsfierft

qfu fiqrqrot sqr*lrq \rq rrrq frmrs rrwtrq, *Ea qqft-{ f,er ofrq qyfl-{ wtrd u'unflq * *,rqrrd drsq GrrR fr;t - oslogllotsfierft fqqt q*q q q fm wtq qyf T mcq fgmf -* : 13/ y j f;t - gfef qfu qq qf fuq q fu *{eq quznq {'q qq fu" {H cc{f cm Tc[ c; qr{ qqem q"tq qf f+** e* qfq * qqf-{ fe fq qyf{ w u'unfq * *qr q GR fq?cq qf fft R'

More information

Nonclassical Harmonic Oscillator. Werner Vogel Universität Rostock, Germany

Nonclassical Harmonic Oscillator. Werner Vogel Universität Rostock, Germany Nonclassical Harmonic Oscillator Werner Vogel Universität Rostock, Germany Contents Introduction Nonclassical phase-space functions Nonclassical characteristic functions Nonclassical moments Recent experiments

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Wednesday March 30 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response

Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response Junyi Tu, Yuncheng You University of South Florida, USA you@mail.usf.edu IMA Workshop in Memory of George R. Sell June 016 Outline

More information

Econophysics III: Financial Correlations and Portfolio Optimization

Econophysics III: Financial Correlations and Portfolio Optimization FAKULTÄT FÜR PHYSIK Econophysics III: Financial Correlations and Portfolio Optimization Thomas Guhr Let s Face Chaos through Nonlinear Dynamics, Maribor 21 Outline Portfolio optimization is a key issue

More information

Leader-Follower Stochastic Differential Game with Asymmetric Information and Applications

Leader-Follower Stochastic Differential Game with Asymmetric Information and Applications Leader-Follower Stochastic Differential Game with Asymmetric Information and Applications Jie Xiong Department of Mathematics University of Macau Macau Based on joint works with Shi and Wang 2015 Barrett

More information

ETIKA V PROFESII PSYCHOLÓGA

ETIKA V PROFESII PSYCHOLÓGA P r a ž s k á v y s o k á š k o l a p s y c h o s o c i á l n í c h s t u d i í ETIKA V PROFESII PSYCHOLÓGA N a t á l i a S l o b o d n í k o v á v e d ú c i p r á c e : P h D r. M a r t i n S t r o u

More information

. Then Φ is a diffeomorphism from (0, ) onto (0, 1)

. Then Φ is a diffeomorphism from (0, ) onto (0, 1) 1 + 5..0: uv i Set F s, t s α 1 t β 1 e s+t and Φu, v. Then Φ is a u1 v diffeomorphism from 0, 0, 1 onto 0,, and JΦu, v u. Hence, ΓαΓβ F s, t dsdt F Φu, vjφu, v dudv 0, 0, 0,1 u α+β 1 e u v α 1 1 v β 1

More information

Projection Methods. Michal Kejak CERGE CERGE-EI ( ) 1 / 29

Projection Methods. Michal Kejak CERGE CERGE-EI ( ) 1 / 29 Projection Methods Michal Kejak CERGE CERGE-EI ( ) 1 / 29 Introduction numerical methods for dynamic economies nite-di erence methods initial value problems (Euler method) two-point boundary value problems

More information

Abstract. A generalized analytical tripartite loss model is posited for Mach-Zehnder interferometer (MZI)

Abstract. A generalized analytical tripartite loss model is posited for Mach-Zehnder interferometer (MZI) Tripartite loss model for Mach-Zehnder interferometers with application to phase sensitivity : Complete expressions for measurement operator mean values variances cross correlations A. D. Parks S. E. Spence

More information