Normalization and correlation of cross-nested logit models

Size: px
Start display at page:

Download "Normalization and correlation of cross-nested logit models"

Transcription

1 Normalization and correlation of cross-nested logit models E. Abbe, M. Bierlaire, T. Toledo Lab. for Information and Decision Systems, Massachusetts Institute of Technology Inst. of Mathematics, Ecole Polytechnique Fédérale de Lausanne, Switzerland Transport Research Institute, Technion, Israël European Transport Conference 2005 p./29

2 Introduction GEV models Cross-nested formulations Normalization Variance-covariance structure Simple examples Route choice examples European Transport Conference 2005 p.2/29

3 GEV models U = V + ε, random vector, V R J F ε,...,ε J (y,..., y J ) = e G(e y,...,e y J ). P (i C) = y ig i (y,..., y J ) µg(y,..., y J ) = e Vi+ln Gi(...) j C ev j+ln G j (...), where G i = G y i, y i = e V i G : R J + R +. European Transport Conference 2005 p.3/29

4 GEV models MNL: G(y,..., y J ) = j C y µ j NL: G(y,..., y J ) = M m= ( Jm j= ) µ µm y µ m j CNL: G(y,..., y J ) = M m= ( (α /µ jm y j ) µ m j C ) µ µm European Transport Conference 2005 p.4/29

5 Cross-nested logit models Ordered GEV mode, Small (987) Vovsha (997) G(y,..., y J ) = J+M r= ( w r j y /ρr j j B r ) ρr, G(y,..., y J ) = m ( j C α jm y j ) µ European Transport Conference 2005 p.5/29

6 Cross-nested logit models Ben-Akiva & Bierlaire (999) G(y,..., y J ) = m Wen & Koppelman (200) ( j C ) µ µm α jm y µ m j G(y,..., y J ) = m ( (α n mx n ) µm n N m ) µm European Transport Conference 2005 p.6/29

7 Cross-nested logit models Papola (2004) G(y,..., y J ) = k ( α θ0/θk jk y /θ k j j C k ) θ k θ0 General formulation (as Ben-Akiva & Bierlaire) Appropriate for easy normalization (as Wen & Koppelman) For consistency with GEV, we note µ = /θ 0 and µ k = /θ k European Transport Conference 2005 p.7/29

8 Normalization F ε,...,ε J (y,..., y J ) = e G(e y,...,e y J ). ( M G(y,..., y J ) = (α /µ jm y j ) µ m m= j C Marginal distribution of ε j : F εj (y j ) = exp exp µ y j ln ) µ µm ( M m= α jm µ ). European Transport Conference 2005 p.8/29

9 Normalization Marginal distribution: extreme value with location parameter ( M ) ln m= α jm µ and scale parameter µ. Therefore, ln E[ε j ] = ( M m= α jm µ ) + γ. Not necessarily constant across alternatives M Normalization: α jm = K, (K = makes sense) m= European Transport Conference 2005 p.9/29

10 Normalization Wen & Koppelman (200) the additional condition m α mn =, n provides a useful interpretation with respect to allocation of each alternative to each nest Condition is formally required to obtain an unbiased model The bias can be absorbed by the ASCs, if a full set is in the model Normalization for Ben-Akiva & Bierlaire: M m= µ µm αjm = c, j C European Transport Conference 2005 p.0/29

11 Variance-covariance Multinomial logit model Corr(U i, U j ) = 0 if i j. Nested logit model Corr(U i, U j ) = ( ( µ µ m ) 2 ) δ m (i, j) where δ m (i, j) = { if i and j are both in nest m 0 otherwise European Transport Conference 2005 p./29

12 Variance-covariance Cross-nested logit model (Papola, 2004) Corr(U i, U j ) = Conjecture M m= Exact for limit cases (NL) α im /2 α jm /2 Linear interpolation between limit cases Weights chosen so that, when i = j, ( ( µ ) ) 2. µ m M α im /2 α im /2 = M α im = m= m= European Transport Conference 2005 p.2/29

13 Variance-covariance CNL is equivalent to the model defined by U j = max m=,...,m Û jm where and ε jm are such that Û jm = V j + ln α jm µ + ε jm ε jm is independent of ε ln CDF of ε is F εm,...,ε Jm (y,..., y J ) = e ( P j C e µ my j ) µ µm European Transport Conference 2005 p.3/29

14 Variance-covariance Therefore, The error structure of a CNL is the maximum of error terms of underlying NL models Corr(U i, U j ) = Corr ( max m ε im, max m ε jm ) where Corr( ε im, ε jn ) = ( ( µ ) ) 2 δ m,n. µ m European Transport Conference 2005 p.4/29

15 Variance-covariance Equivalently, Corr(U i, U j ) = Corr ( ( ln αim max m µ + ε im ), max m ( ln αjm µ + ε jm ) where Corr(ε im, ε jn ) = ( ( µ ) ) 2 δ m,n. µ m Assumption of the conjecture: linear Actual relationship: maximum European Transport Conference 2005 p.5/29

16 Variance-covariance Computation of the true variance-covariance from the joint CDF Corr(U i, U j ) = 6µ2 π 2 R2 x i x j 2xixj F εi,εj (x i, x j )dx i dx j 6γ2 π 2, where F εi,ε j (x i, x j ) = e P M m= (α /µ im e x i ) µ m /µ +(α jm e xj ) µ m µ µ m. European Transport Conference 2005 p.6/29

17 Variance-covariance Parameter identification from a given variance-covariance System of equations: Corr(U i, U j ) = c ij J(J )/2 equations m α im = J equations Total: (J 2 + J)/2 equations Assume a full specification: JM α s, M µ s #equations = #unknowns if M = J/2. European Transport Conference 2005 p.7/29

18 Example A B 2 3 Scale parameters equal: µ A = µ B = µ m α A = α B3 = α B2 = α A2 European Transport Conference 2005 p.8/29

19 Example 0.2 Corr(,2) µ/µ m =0.9 Corr(,2) µ/µ m = α A α A2 µ/µ m =0.4 µ/µ m = Corr(,2) Corr(,2) Papola Exact α A2 α A2 European Transport Conference 2005 p.9/29

20 Example Papola s conjecture overestimates the correlation Overestimation increases with µ m Limit cases α A2 = 0 and α A = 0 are exact. European Transport Conference 2005 p.20/29

21 Example 2 A B 2 3 Scale parameters equal: µ A = µ B = µ m α B3 = α B = α A α B2 = α A2 European Transport Conference 2005 p.2/29

22 Example 2 Corr(,2) µ/µ m =0.9 Corr(,2) µ/µ m = α A α A α A α A 0.8 µ/µ m = µ/µ m =0. Corr(,2) Corr(,2) α A α A α A European Transport Conference 2005 p.22/29 α A

23 Example 2 Corr(,2) Corr(,2) µ/µ m =0.4, α A = α A2 µ/µ m =0.4, α A = α A2 Corr(,2) µ/µ m =0., α A = α A2 Corr(,2) µ/µ =0., α =0.5 m A Papola True α A2 European Transport Conference 2005 p.23/29

24 Example 2 Similar conclusions Papola s conjecture exact for α A = α A2, where the model is equivalent to a NL. European Transport Conference 2005 p.24/29

25 Route choice A a D -a O -a-b C D B -b E b Correlation matrix: a 0 b European Transport Conference 2005 p.25/29

26 Route choice A B C D E 2 3 European Transport Conference 2005 p.26/29

27 Route choice Parameters: 7 α s, µ/µ m Equations: 2 from the matrix, 3 from the normalization Missing: 3 equations. We arbitrarily set α A2 = /3 α C2 = /3 µ/µ m = 0.4 Compare the probabilities European Transport Conference 2005 p.27/29

28 Route choice µ/µ m =0.4, a=0.2 µ/µ m =0.4, a= Probability Probability Probability Probability b b Route Probability Route 2 Probability b b Papola Exact b Route b European Transport Conference 2005 p.28/29

29 Conclusions Normalization of CNL: formal motivation Correlation structure: correct formulation comparison with Papola s conjecture Advise: use the correct formulation Other issues: see next paper by Papola... European Transport Conference 2005 p.29/29

Normalization and correlation of cross-nested logit models

Normalization and correlation of cross-nested logit models Normalization and correlation of cross-nested logit models E. Abbe M. Bierlaire T. Toledo August 5, 25 Abstract We address two fundamental issues associated with the use of cross-nested logit models. On

More information

Normalization and correlation of cross-nested logit models

Normalization and correlation of cross-nested logit models Normalization and correlation of cross-nested logit models E. Abbe M. Bierlaire T. Toledo Paper submitted to Transportation Research B Final version November 2006 Abstract We address two fundamental issues

More information

The Network GEV model

The Network GEV model The Network GEV model Michel Bierlaire January, 2002 Discrete choice models play a major role in transportation demand analysis. Their nice and strong theoretical properties, and their flexibility to capture

More information

Hiroshima University 2) The University of Tokyo

Hiroshima University 2) The University of Tokyo September 25-27, 2015 The 14th Summer course for Behavior Modeling in Transportation Networks @The University of Tokyo Advanced behavior models Recent development of discrete choice models Makoto Chikaraishi

More information

Estimation of mixed generalized extreme value models

Estimation of mixed generalized extreme value models Estimation of mixed generalized extreme value models Michel Bierlaire michel.bierlaire@epfl.ch Operations Research Group ROSO Institute of Mathematics EPFL Katholieke Universiteit Leuven, November 2004

More information

Hiroshima University 2) Tokyo University of Science

Hiroshima University 2) Tokyo University of Science September 23-25, 2016 The 15th Summer course for Behavior Modeling in Transportation Networks @The University of Tokyo Advanced behavior models Recent development of discrete choice models Makoto Chikaraishi

More information

The estimation of Generalized Extreme Value models from choice-based samples

The estimation of Generalized Extreme Value models from choice-based samples The estimation of Generalized Extreme Value models from choice-based samples M. Bierlaire D. Bolduc D. McFadden August 10, 2006 Abstract We consider an estimation procedure for discrete choice models in

More information

A general and operational representation of GEV models

A general and operational representation of GEV models A general and operational representation of GEV models Andrew Daly Michel Bierlaire Report RO-030502 May 2, 2003 Abstract Generalised Extreme Value models provide an interesting theoretical framework to

More information

BIOGEME: a free package for the estimation of discrete choice models

BIOGEME: a free package for the estimation of discrete choice models BIOGEME: a free package for the estimation of discrete choice models Michel Bierlaire, EPFL Conference paper STRC 2003 STRC 3rd Swiss Transport Research Conference Monte Verita, Ascona, March 2003 2 BIOGEME:

More information

Binary choice. Michel Bierlaire

Binary choice. Michel Bierlaire Binary choice Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne M. Bierlaire (TRANSP-OR ENAC EPFL)

More information

Divers aspects de la modélisation de la demande en transport

Divers aspects de la modélisation de la demande en transport Divers aspects de la modélisation de la demande en transport Michel Bierlaire Laboratoire Transport et Mobilité, Ecole Polytechnique Fédérale de Lausanne Divers aspects de la modélisation de la demande

More information

Optimization and Simulation

Optimization and Simulation Optimization and Simulation Variance reduction Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne M.

More information

Route choice models: Introduction and recent developments

Route choice models: Introduction and recent developments Route choice models: Introduction and recent developments Michel Bierlaire transp-or.epfl.ch Transport and Mobility Laboratory, EPFL Route choice models: Introduction and recent developments p.1/40 Route

More information

Capturing Correlation in Route Choice Models using Subnetworks

Capturing Correlation in Route Choice Models using Subnetworks Capturing Correlation in Route Choice Models using Subnetworks Emma Frejinger and Michel Bierlaire Transport and Mobility Laboratory (TRANSP-OR), EPFL Capturing Correlation with Subnetworks in Route Choice

More information

A general forulation of the cross-nested logit odel Michel Bierlaire, Dpt of Matheatics, EPFL, Lausanne Phone: Fax:

A general forulation of the cross-nested logit odel Michel Bierlaire, Dpt of Matheatics, EPFL, Lausanne Phone: Fax: A general forulation of the cross-nested logit odel Michel Bierlaire, EPFL Conference paper STRC 2001 Session: Choices A general forulation of the cross-nested logit odel Michel Bierlaire, Dpt of Matheatics,

More information

Route Choice Analysis: Data, Models, Algorithms and Applications Emma Frejinger Thesis Supervisor: Michel Bierlaire

Route Choice Analysis: Data, Models, Algorithms and Applications Emma Frejinger Thesis Supervisor: Michel Bierlaire p. 1/15 Emma Frejinger Thesis Supervisor: Michel Bierlaire p. 2/15 Which route would a given traveler take to go from one location to another in a transportation network? Car trips (uni-modal networks)

More information

Development and estimation of a semicompensatory model with a flexible error structure

Development and estimation of a semicompensatory model with a flexible error structure Development and estimation of a semicompensatory model with a flexible error structure Sigal Kaplan, Shlomo Bekhor, Yoram Shiftan Transportation Research Institute, Technion Workshop on Discrete Choice

More information

A sampling of alternatives approach for route choice models

A sampling of alternatives approach for route choice models Seminar, Namur, February 2009, A sampling of alternatives approach for route choice models p. 1/34 A sampling of alternatives approach for route choice models Emma Frejinger Centre for Transport Studies,

More information

Are You The Beatles Or The Rolling Stones?

Are You The Beatles Or The Rolling Stones? N. Ortelli, G. Lederrey, A. Alahi, M. Bierlaire Transport and Mobility Laboratory School of Architecture, Civil, and Environmental Engineering ENAC École Polytechnique Fédérale de Lausanne 13th Workshop

More information

The estimation of multivariate extreme value models from choice-based samples

The estimation of multivariate extreme value models from choice-based samples The estimation of multivariate extreme value models from choice-based samples M. Bierlaire, D. Bolduc and D. McFadden Transport and Mobility Laboratory, EPFL Département d économique, Université Laval,

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

Recursive Network MEV Model for Route Choice Analysis

Recursive Network MEV Model for Route Choice Analysis Recursive Networ MEV Model for Route Choice Analysis Tien Mai August 2015 Tien Mai * Interuniversity Research Centre on Enterprise Networs, Logistics and Transportation (CIRRELT) and Department of Computer

More information

Goals. PSCI6000 Maximum Likelihood Estimation Multiple Response Model 1. Multinomial Dependent Variable. Random Utility Model

Goals. PSCI6000 Maximum Likelihood Estimation Multiple Response Model 1. Multinomial Dependent Variable. Random Utility Model Goals PSCI6000 Maximum Likelihood Estimation Multiple Response Model 1 Tetsuya Matsubayashi University of North Texas November 2, 2010 Random utility model Multinomial logit model Conditional logit model

More information

Statistical Tests. Matthieu de Lapparent

Statistical Tests. Matthieu de Lapparent Statistical Tests Matthieu de Lapparent matthieu.delapparent@epfl.ch Transport and Mobility Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne

More information

Activity path size for correlation between activity paths

Activity path size for correlation between activity paths Workshop in Discrete Choice Models Activity path size for correlation between activity paths Antonin Danalet, Michel Bierlaire EPFL, Lausanne, Switzerland May 29, 2015 Outline Motivation: Activity-based

More information

WiFi- Based Marauder's Map, or where are members of a campus and why?

WiFi- Based Marauder's Map, or where are members of a campus and why? WiFi- Based Marauder's Map, or where are members of a campus and why? Antonin Danalet Workshop on pedestrian models 2014 April 11, 2014 Presenta=on outline Motivation: Why pedestrian activities? Detection:

More information

Introduction to mixtures in discrete choice models

Introduction to mixtures in discrete choice models Introduction to mixtures in discrete choice models p. 1/42 Introduction to mixtures in discrete choice models Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Introduction to

More information

Masking Identification of Discrete Choice Models under Simulation Methods *

Masking Identification of Discrete Choice Models under Simulation Methods * Masking Identification of Discrete Choice Models under Simulation Methods * Lesley Chiou 1 and Joan L. Walker 2 Abstract We present examples based on actual and synthetic datasets to illustrate how simulation

More information

Preferred citation style. Schüssler, N. (2009) Challenges of route choice models derived from GPS, Workshop on Discrete Choice Models, EPF

Preferred citation style. Schüssler, N. (2009) Challenges of route choice models derived from GPS, Workshop on Discrete Choice Models, EPF Preferred citation style Schüssler, N. (2009) Challenges of route choice models derived from GPS, Workshop on Discrete Choice Models, EPF Lausanne, Lausanne, August 2009. Challenges of route choice models

More information

Probabilistic Choice Models

Probabilistic Choice Models Econ 3: James J. Heckman Probabilistic Choice Models This chapter examines different models commonly used to model probabilistic choice, such as eg the choice of one type of transportation from among many

More information

Introduction to Discrete Choice Models

Introduction to Discrete Choice Models Chapter 7 Introduction to Dcrete Choice Models 7.1 Introduction It has been mentioned that the conventional selection bias model requires estimation of two structural models, namely the selection model

More information

Exploratory analysis of endogeneity in discrete choice models. Anna Fernández Antolín Amanda Stathopoulos Michel Bierlaire

Exploratory analysis of endogeneity in discrete choice models. Anna Fernández Antolín Amanda Stathopoulos Michel Bierlaire Exploratory analysis of endogeneity in discrete choice models Anna Fernández Antolín Amanda Stathopoulos Michel Bierlaire Transportation and Mobility Laboratory, ENAC, EPFL April 2014 Transportation and

More information

4. Distributions of Functions of Random Variables

4. Distributions of Functions of Random Variables 4. Distributions of Functions of Random Variables Setup: Consider as given the joint distribution of X 1,..., X n (i.e. consider as given f X1,...,X n and F X1,...,X n ) Consider k functions g 1 : R n

More information

Goals. PSCI6000 Maximum Likelihood Estimation Multiple Response Model 2. Recap: MNL. Recap: MNL

Goals. PSCI6000 Maximum Likelihood Estimation Multiple Response Model 2. Recap: MNL. Recap: MNL Goals PSCI6000 Maximum Likelihood Estimation Multiple Response Model 2 Tetsuya Matsubayashi University of North Texas November 9, 2010 Learn multiple responses models that do not require the assumption

More information

End-Use Residential Energy Demand: a MDCEV-GEV Model for the Joint Estimation of Perfect and Imperfect Substitute Goods

End-Use Residential Energy Demand: a MDCEV-GEV Model for the Joint Estimation of Perfect and Imperfect Substitute Goods End-Use Residential Energy Demand: a MDCEV-GEV Model for the Joint Estimation of Perfect and Imperfect Substitute Goods Vito Frontuto Department of Economics Cognetti de Martiis University of Turin FEEM

More information

A MODIFIED PAIRED COMBINATORIAL LOGIT ROUTE CHOICE MODEL WITH PROBIT-BASED EQUIVALENT IMPEDANCE

A MODIFIED PAIRED COMBINATORIAL LOGIT ROUTE CHOICE MODEL WITH PROBIT-BASED EQUIVALENT IMPEDANCE A MODIFIED PAIRED COMBINATORIAL LOGIT ROUTE CHOICE MODEL WITH PROBIT-BASED EQUIVALENT IMPEDANCE Reporter: LAI Xinjun Research Center of Intelligent Transportation System Sun Yat-sen University Guangzhou,

More information

A Mixed Spatially Correlated Logit Model: Formulation and Application to Residential Choice Modeling

A Mixed Spatially Correlated Logit Model: Formulation and Application to Residential Choice Modeling A Mixed Spatially Correlated Logit Model: Formulation and Application to Residential Choice Modeling Chandra R. Bhat and Jessica Guo Department of Civil Engineering, ECJ Hall, Suite 6.8 The University

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

A Dynamic Programming Approach for Quickly Estimating Large Scale MEV Models

A Dynamic Programming Approach for Quickly Estimating Large Scale MEV Models A Dynamic Programming Approach for Quickly Estimating Large Scale MEV Models Tien Mai Emma Frejinger Mogens Fosgerau Fabien Bastin June 2015 A Dynamic Programming Approach for Quickly Estimating Large

More information

A path choice approach to ac,vity modeling with a pedestrian case study

A path choice approach to ac,vity modeling with a pedestrian case study A path choice approach to ac,vity modeling with a pedestrian case study Antonin Danalet Sta,s,que, transport et ac,vités, Grenoble November 5, 2013 Presenta,on outline Motivation: Why pedestrian activities?

More information

Probabilistic Choice Models

Probabilistic Choice Models Probabilistic Choice Models James J. Heckman University of Chicago Econ 312 This draft, March 29, 2006 This chapter examines dierent models commonly used to model probabilistic choice, such as eg the choice

More information

f (1 0.5)/n Z =

f (1 0.5)/n Z = Math 466/566 - Homework 4. We want to test a hypothesis involving a population proportion. The unknown population proportion is p. The null hypothesis is p = / and the alternative hypothesis is p > /.

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Ensembles Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne

More information

Bayesian tsunami fragility modeling considering input data uncertainty

Bayesian tsunami fragility modeling considering input data uncertainty Bayesian tsunami fragility modeling considering input data uncertainty Raffaele De Risi Research Associate University of Bristol United Kingdom De Risi, R., Goda, K., Mori, N., & Yasuda, T. (2016). Bayesian

More information

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm by Korbinian Schwinger Overview Exponential Family Maximum Likelihood The EM Algorithm Gaussian Mixture Models Exponential

More information

Chapter 3 Choice Models

Chapter 3 Choice Models Chapter 3 Choice Models 3.1 Introduction This chapter describes the characteristics of random utility choice model in a general setting, specific elements related to the conjoint choice context are given

More information

2 Statistical Estimation: Basic Concepts

2 Statistical Estimation: Basic Concepts Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 2 Statistical Estimation:

More information

Part I Behavioral Models

Part I Behavioral Models Part I Behavioral Models 2 Properties of Discrete Choice Models 2.1 Overview This chapter describes the features that are common to all discrete choice models. We start by discussing the choice set, which

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Simulation. Alberto Ceselli MSc in Computer Science Univ. of Milan. Part 4 - Statistical Analysis of Simulated Data

Simulation. Alberto Ceselli MSc in Computer Science Univ. of Milan. Part 4 - Statistical Analysis of Simulated Data Simulation Alberto Ceselli MSc in Computer Science Univ. of Milan Part 4 - Statistical Analysis of Simulated Data A. Ceselli Simulation P.4 Analysis of Sim. data 1 / 15 Statistical analysis of simulated

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Consider a sample of observations on a random variable Y. his generates random variables: (y 1, y 2,, y ). A random sample is a sample (y 1, y 2,, y ) where the random variables y

More information

A Discrete choice framework for acceleration and direction change behaviors in walking pedestrians

A Discrete choice framework for acceleration and direction change behaviors in walking pedestrians A Discrete choice framework for acceleration and direction change behaviors in walking pedestrians G. Antonini 1 and M. Bierlaire 1 The walking process is interpreted as a sequence of decisions about where

More information

Choice Theory. Matthieu de Lapparent

Choice Theory. Matthieu de Lapparent Choice Theory Matthieu de Lapparent matthieu.delapparent@epfl.ch Transport and Mobility Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne

More information

Fractional Imputation in Survey Sampling: A Comparative Review

Fractional Imputation in Survey Sampling: A Comparative Review Fractional Imputation in Survey Sampling: A Comparative Review Shu Yang Jae-Kwang Kim Iowa State University Joint Statistical Meetings, August 2015 Outline Introduction Fractional imputation Features Numerical

More information

Lecture 1. Behavioral Models Multinomial Logit: Power and limitations. Cinzia Cirillo

Lecture 1. Behavioral Models Multinomial Logit: Power and limitations. Cinzia Cirillo Lecture 1 Behavioral Models Multinomial Logit: Power and limitations Cinzia Cirillo 1 Overview 1. Choice Probabilities 2. Power and Limitations of Logit 1. Taste variation 2. Substitution patterns 3. Repeated

More information

Integrating advanced discrete choice models in mixed integer linear optimization

Integrating advanced discrete choice models in mixed integer linear optimization Integrating advanced discrete choice models in mixed integer linear optimization Meritxell Pacheco Shadi Sharif Azadeh, Michel Bierlaire, Bernard Gendron Transport and Mobility Laboratory (TRANSP-OR) École

More information

e-companion ONLY AVAILABLE IN ELECTRONIC FORM Electronic Companion Stochastic Kriging for Simulation Metamodeling

e-companion ONLY AVAILABLE IN ELECTRONIC FORM Electronic Companion Stochastic Kriging for Simulation Metamodeling OPERATIONS RESEARCH doi 10.187/opre.1090.0754ec e-companion ONLY AVAILABLE IN ELECTRONIC FORM informs 009 INFORMS Electronic Companion Stochastic Kriging for Simulation Metamodeling by Bruce Ankenman,

More information

Discrete Choice Modeling

Discrete Choice Modeling [Part 4] 1/43 Discrete Choice Modeling 0 Introduction 1 Summary 2 Binary Choice 3 Panel Data 4 Bivariate Probit 5 Ordered Choice 6 Count Data 7 Multinomial Choice 8 Nested Logit 9 Heterogeneity 10 Latent

More information

Destination Choice Model including panel data using WiFi localization in a pedestrian facility

Destination Choice Model including panel data using WiFi localization in a pedestrian facility Destination Choice Model including panel data using WiFi localization in a pedestrian facility Loïc Tinguely, Antonin Danalet, Matthieu de Lapparent & Michel Bierlaire Transport and Mobility Laboratory

More information

A Lagrangian relaxation method for solving choice-based mixed linear optimization models that integrate supply and demand interactions

A Lagrangian relaxation method for solving choice-based mixed linear optimization models that integrate supply and demand interactions A Lagrangian relaxation method for solving choice-based mixed linear optimization models that integrate supply and demand interactions Meritxell Pacheco Shadi Sharif Azadeh, Michel Bierlaire, Bernard Gendron

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Lecture 14 More on structural estimation

Lecture 14 More on structural estimation Lecture 14 More on structural estimation Economics 8379 George Washington University Instructor: Prof. Ben Williams traditional MLE and GMM MLE requires a full specification of a model for the distribution

More information

The 17 th Behavior Modeling Summer School

The 17 th Behavior Modeling Summer School The 17 th Behavior Modeling Summer School September 14-16, 2017 Introduction to Discrete Choice Models Giancarlos Troncoso Parady Assistant Professor Urban Transportation Research Unit Department of Urban

More information

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization Prof. Daniel Cremers 6. Mixture Models and Expectation-Maximization Motivation Often the introduction of latent (unobserved) random variables into a model can help to express complex (marginal) distributions

More information

I. Multinomial Logit Suppose we only have individual specific covariates. Then we can model the response probability as

I. Multinomial Logit Suppose we only have individual specific covariates. Then we can model the response probability as Econ 513, USC, Fall 2005 Lecture 15 Discrete Response Models: Multinomial, Conditional and Nested Logit Models Here we focus again on models for discrete choice with more than two outcomes We assume that

More information

Discrete choice models Michel Bierlaire Intelligent Transportation Systems Program Massachusetts Institute of Technology URL: http

Discrete choice models Michel Bierlaire Intelligent Transportation Systems Program Massachusetts Institute of Technology   URL: http Discrete choice models Michel Bierlaire Intelligent Transportation Systems Program Massachusetts Institute of Technology E-mail: mbi@mit.edu URL: http://web.mit.edu/mbi/www/michel.html May 23, 1997 Abstract

More information

A note on multiple imputation for general purpose estimation

A note on multiple imputation for general purpose estimation A note on multiple imputation for general purpose estimation Shu Yang Jae Kwang Kim SSC meeting June 16, 2015 Shu Yang, Jae Kwang Kim Multiple Imputation June 16, 2015 1 / 32 Introduction Basic Setup Assume

More information

LIST OF FORMULAS FOR STK1100 AND STK1110

LIST OF FORMULAS FOR STK1100 AND STK1110 LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function

More information

ECONOMETRICS II (ECO 2401) Victor Aguirregabiria. Winter 2017 TOPIC 3: MULTINOMIAL CHOICE MODELS

ECONOMETRICS II (ECO 2401) Victor Aguirregabiria. Winter 2017 TOPIC 3: MULTINOMIAL CHOICE MODELS ECONOMETRICS II (ECO 2401) Victor Aguirregabiria Winter 2017 TOPIC 3: MULTINOMIAL CHOICE MODELS 1. Introduction 2. Nonparametric model 3. Random Utility Models - De nition; - Common Speci cation and Normalizations;

More information

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 1998 Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ Lawrence D. Brown University

More information

Estimation of Parameters

Estimation of Parameters CHAPTER Probability, Statistics, and Reliability for Engineers and Scientists FUNDAMENTALS OF STATISTICAL ANALYSIS Second Edition A. J. Clark School of Engineering Department of Civil and Environmental

More information

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction Estimation Tasks Short Course on Image Quality Matthew A. Kupinski Introduction Section 13.3 in B&M Keep in mind the similarities between estimation and classification Image-quality is a statistical concept

More information

Properties of Random Variables

Properties of Random Variables Properties of Random Variables 1 Definitions A discrete random variable is defined by a probability distribution that lists each possible outcome and the probability of obtaining that outcome If the random

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Web Appendix for The Value of Reputation in an Online Freelance Marketplace

Web Appendix for The Value of Reputation in an Online Freelance Marketplace Web Appendix for The Value of Reputation in an Online Freelance Marketplace Hema Yoganarasimhan 1 Details of Second-Step Estimation All the estimates from state transitions (θ p, θ g, θ t ), η i s, and

More information

Logit kernel (or mixed logit) models for large multidimensional choice problems: identification and estimation

Logit kernel (or mixed logit) models for large multidimensional choice problems: identification and estimation Logit kernel (or mixed logit) models for large multidimensional choice problems: identification and estimation John L. Bowman, Ph. D., Research Affiliate, Massachusetts Institute of Technology, 5 Beals

More information

Lecture 20: Linear model, the LSE, and UMVUE

Lecture 20: Linear model, the LSE, and UMVUE Lecture 20: Linear model, the LSE, and UMVUE Linear Models One of the most useful statistical models is X i = β τ Z i + ε i, i = 1,...,n, where X i is the ith observation and is often called the ith response;

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data January 17, 2006 Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Other Artificial Neural Networks Samy Bengio IDIAP Research Institute, Martigny, Switzerland,

More information

Multivariate Statistics

Multivariate Statistics Multivariate Statistics Chapter 2: Multivariate distributions and inference Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es Course 2016/2017 Master in Mathematical

More information

A Few Special Distributions and Their Properties

A Few Special Distributions and Their Properties A Few Special Distributions and Their Properties Econ 690 Purdue University Justin L. Tobias (Purdue) Distributional Catalog 1 / 20 Special Distributions and Their Associated Properties 1 Uniform Distribution

More information

An Efficient Estimation Method for Longitudinal Surveys with Monotone Missing Data

An Efficient Estimation Method for Longitudinal Surveys with Monotone Missing Data An Efficient Estimation Method for Longitudinal Surveys with Monotone Missing Data Jae-Kwang Kim 1 Iowa State University June 28, 2012 1 Joint work with Dr. Ming Zhou (when he was a PhD student at ISU)

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

Negative Association, Ordering and Convergence of Resampling Methods

Negative Association, Ordering and Convergence of Resampling Methods Negative Association, Ordering and Convergence of Resampling Methods Nicolas Chopin ENSAE, Paristech (Joint work with Mathieu Gerber and Nick Whiteley, University of Bristol) Resampling schemes: Informal

More information

Bayes methods for categorical data. April 25, 2017

Bayes methods for categorical data. April 25, 2017 Bayes methods for categorical data April 25, 2017 Motivation for joint probability models Increasing interest in high-dimensional data in broad applications Focus may be on prediction, variable selection,

More information

ECO 2901 EMPIRICAL INDUSTRIAL ORGANIZATION

ECO 2901 EMPIRICAL INDUSTRIAL ORGANIZATION ECO 2901 EMPIRICAL INDUSTRIAL ORGANIZATION Lecture 7 & 8: Models of Competition in Prices & Quantities Victor Aguirregabiria (University of Toronto) Toronto. Winter 2018 Victor Aguirregabiria () Empirical

More information

1 of 7 7/16/2009 6:12 AM Virtual Laboratories > 7. Point Estimation > 1 2 3 4 5 6 1. Estimators The Basic Statistical Model As usual, our starting point is a random experiment with an underlying sample

More information

Principles Underlying Evaluation Estimators

Principles Underlying Evaluation Estimators The Principles Underlying Evaluation Estimators James J. University of Chicago Econ 350, Winter 2019 The Basic Principles Underlying the Identification of the Main Econometric Evaluation Estimators Two

More information

Multivariate random variables

Multivariate random variables Multivariate random variables DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Joint distributions Tool to characterize several

More information

ISyE 6644 Fall 2014 Test 3 Solutions

ISyE 6644 Fall 2014 Test 3 Solutions 1 NAME ISyE 6644 Fall 14 Test 3 Solutions revised 8/4/18 You have 1 minutes for this test. You are allowed three cheat sheets. Circle all final answers. Good luck! 1. [4 points] Suppose that the joint

More information

Introduction to Maximum Likelihood Estimation

Introduction to Maximum Likelihood Estimation Introduction to Maximum Likelihood Estimation Eric Zivot July 26, 2012 The Likelihood Function Let 1 be an iid sample with pdf ( ; ) where is a ( 1) vector of parameters that characterize ( ; ) Example:

More information

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Random Vectors and Random Sampling. 1+ x2 +y 2 ) (n+2)/2

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Random Vectors and Random Sampling. 1+ x2 +y 2 ) (n+2)/2 MATH 3806/MATH4806/MATH6806: MULTIVARIATE STATISTICS Solutions to Problems on Rom Vectors Rom Sampling Let X Y have the joint pdf: fx,y) + x +y ) n+)/ π n for < x < < y < this is particular case of the

More information

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Jae-Kwang Kim 1 Iowa State University June 26, 2013 1 Joint work with Shu Yang Introduction 1 Introduction

More information

MATH 312 Section 2.4: Exact Differential Equations

MATH 312 Section 2.4: Exact Differential Equations MATH 312 Section 2.4: Exact Differential Equations Prof. Jonathan Duncan Walla Walla College Spring Quarter, 2007 Outline 1 Exact Differential Equations 2 Solving an Exact DE 3 Making a DE Exact 4 Conclusion

More information

Structural estimation for a route choice model with uncertain measurement

Structural estimation for a route choice model with uncertain measurement Structural estimation for a route choice model with uncertain measurement Yuki Oyama* & Eiji Hato *PhD student Behavior in Networks studies unit Department of Urban Engineering School of Engineering, The

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

(Behavioral Model and Duality Theory)

(Behavioral Model and Duality Theory) 2018 (Behavioral Model and Duality Theory) fukuda@plan.cv.titech.ac.jp 2 / / (Rational Inattention) 6 max u(x 1,x 2 ) x 1,x 2 s.t. p 1 x 1 + p 2 x 2 = I u = V (p 1,p 2,I) I = M(p 1,p 2, ū) x H j (p 1,p

More information

Spatial tessellations of pedestrian dynamics

Spatial tessellations of pedestrian dynamics Spatial tessellations of pedestrian dynamics Marija Nikolić Michel Bierlaire Bilal Farooq TRANSP-OR, Ecole Polytechnique Fédérale de Lausanne heart2013 -- 2nd Symposium of the European Association for

More information

Practical note on specification of discrete choice model. Toshiyuki Yamamoto Nagoya University, Japan

Practical note on specification of discrete choice model. Toshiyuki Yamamoto Nagoya University, Japan Practical note on specification of discrete choice model Toshiyuki Yamamoto Nagoya University, Japan 1 Contents Comparison between bary logit model and bary probit model Comparison between multomial logit

More information

Regression. Oscar García

Regression. Oscar García Regression Oscar García Regression methods are fundamental in Forest Mensuration For a more concise and general presentation, we shall first review some matrix concepts 1 Matrices An order n m matrix is

More information