On A Central Binomial Series Related to ζ(4).

Size: px
Start display at page:

Download "On A Central Binomial Series Related to ζ(4)."

Transcription

1 On A Central Binomial Series Related to ζ. Vivek Kaushik November 8 arxiv:8.67v [math.ca] 5 Nov 8 Abstract n n n 7π 3 by We prove a classical binomial coefficient series identity n evaluating a double integral equal to this sum in two ways. The latter way will lead us to evaluating a sum of polylogarithmic integrals, whose values are linear combinations of ζ n n π 6 and ζ n n π 9. Introduction We denote the central binomial series C n n. n n We show that C 7π /3 using standard techniques from real-analysis. We evaluate the double integral I log +y y dy d in two ways. First, we will change variables u + v/,y u v/ and integrate with respect to v. Upon converting the resulting integrand into a binomial series, echanging integral and series, and performing term-by-term integration with respect to u, we will obtain I C. On the other hand, reconsidering the original definition of I and integrating with respect to y, we will obtain a sum of 3 different polylogarithmic integrals. These integrals have values that are linear combinations of ζ n n π 6, ζ n π 9. n We assume the knowledge of the values of these two series throughout the paper. Thus, our goal is to prove C 7 ζ 36 We first recall the definition of the polylogarithm function and then evaluate a certain series that prominently appears in the computation of one of the three aforementioned polylogarithmic integrals. Then we prove and eplain why is important in generalizing Apostol s classical ζ proof in []. In the literature, C is a classical result from the theories of both central binomial sums and of log-sine integrals. See [] for a combinatorial treatment and evaluation of C. On the other hand, see all of[,3,5,6] for the evaluation involving Clausen functions and other sophisticated tools from Fourier Analysis and Comple Variables.

2 Some Preliminaries We recall the polylogarithm of order k N, It is easy to see Li k z n z n nk, z C. Li ζ, Li ζ. We state without proof the crucial differentiation and integration identities for the polylogarithm. See [7] for a detailed treatment of polylogarithms. and z d dz Li kz Li k z z Li k t t dt Li k+ z. The number Li / will prominently appear in our later calculations. We state its value and proof. Proof. Consider the double integral Li / ζ log. +z z +yz Integrating with respect to y, we get is equal to +z z +yz dy dz log z zz + dy dz. dz log z log z dz + dz z z + logt ζ+ dt 3 t ζ+ logt t/ dt ζ+ logtt/ n dt ζ+ n n logtt/ n dt ζ Li /, in which the second term of 3 follows from substituting z t to the second term.

3 Ontheotherhand, wereversetheorderofintegrationinandintegratewithrespect to z to see y dz dy +z z +yz y y z + dz dy y z + log y y dy log t dt 5 +t log t +t + log +t in which 5 follows from substituting y t. Hence, dt 6 Li /+log, 7 ζ Li / Li /+log, and the desired result follows from rearranging terms. Evaluating C Recall the series in question the double integral from the introduction: I I C. C n n, 8 n n log +y y Proof. We change variables u+v u v,y to see that I u n n n log u dv du u u +v 8tan u u log u du u 8sin u log u u n dy d. 9 du u n log u n n du n u n log u n n du n n 3 n n n n n C, n 3

4 where in, we used the identity n n n n n sin, <, 3 and in, we used integration by parts. Finally, follows from the simplification of the summand recalling the definition of the binomial coefficient n n! k n k!k! Now we seek the actual value of I, which is the purpose of this paper. I log+ log Li + + log Li Li 3 + Proof. This follows from integrating the inner integral in 9 with respect to y. With Mathematica, we obtained the antiderivative log +y y dy log y + log +y Li +y + log+y + d. Li +y which may be analytically confirmed by differentiating the right hand side with respect to y. Now, let ψy be the right hand side of 5. Taking ψ ψ gives the desired integrand. Hence, the desired result follows from writing I ψ ψ d., We evaluate I by splitting it into the three integrals: log+ log I d, 6 Li log Li + I 3 + d, 7 Li 3 + I 3 d. 8 We first evaluate I, which is the easiest of the three. I 7 6 ζ.

5 Proof. From Mathematica, we obtain the antiderivative identity log+ log d Li +Li log Li 3 log. 9 Evaluating the right hand side at the end points and and taking the difference, we see I Li n n n n + n n n + n n n + n n ζ 7 6 ζ, n where follows from observing the odd terms in the Li sum are negative while the even terms are positive. Then follows from splitting the series representation of ζ into sums of the even and odd terms: ζ n n + n, n n n Remark. An alternative proof of the previous theorem is to recall log+ n,. n n By putting the series on the right hand side of in place of the log+ epression in the integrand of 6, echanging sum and integral, and finally integrating term by term using integration by parts, we may obtain Li /. The result follows from repeating the final steps of the previous proof. The evaluations of I and I 3 are much harder. The reason is that the antiderivatives of both integrals, upon evaluating at the endpoints and, possess a large number of constants that are not rational multiples of π. Such constants do turn out cancelling out with one another in the final result. Hence, to simplify the process, we only search for the following terms: Li ζ, Li / ζ log, Li ζ, Li 7 8 ζ. 3 All the terms in 3 possess rational multiples of π. 5

6 I 7 8 ζ. Proof. We make the substitution u to 7 to see + I Li ulog u u Li3 u u u Li ulog u u u u du log ulog u u u log 3 u u du du Li 3 u u u du logulog u u Li 3 u uu du + log ulog u u du Li 3 u uu du where follows from integrating by parts on the first term with the differentiating function being Li u, and 5 follows from epanding the integrand in the first term. Using Mathematica, we obtain 5 log 3 u du 3Li u+k u 6 u logulog u u du Li u+li +K u 7 u u log ulog u du K 3 u 8 u Li 3u uu du Li u +K u, 9 where K u,...,k u are linear combinations of miscellaneous functions. It turns out that π log + log + K i / K i. Note the first two terms are part of Li /. Upon summing the antiderivatives, evaluating at the endpoints u / and u and taking the difference, we see i I 3Li +Li +Li + Li ζ ζ in which 3 follows from the identity 7 ζ, 3 8 ζ 5 ζ. 6

7 Now we evaluate I 3. I 3 C + 35 ζ. Proof. Changing variables u on 8, we get + Li u 3 I 3 u u du nu n n 3 u du n n n nu n n 3 u du n β n 3 n, 3 where βu,v Now, we recall the well known identity: where and the facts u v d. βu,v ΓuΓv Γu+v, Γu u e d, Γ/ π, Γn n! for all n N. Then epanding 3 into even and odd terms, we see I 3 n n n β 3, + n n n 3β, n n n n + 7π 6 n n C C + 7π ζ where the first term in 3 follows from simplifying the summand with the recalled facts and the second term is a summation identity n n n 3β n, 3 7π 6, 33 7

8 which we obtained using Mathematica. At this moment, we do not know of a proof for 33, but we suspect the sum on the left hand side is equal to the integral πlog π 6 πlog sinθ dθ. Combining our obtained values for I,I,I 3, we see which implies upon rearranging terms, C I +I +I ζ 7 C ζ ζ 7 C ζ+ 8 C 3 Hence, we have proved the desired result. 7 8 ζ 7 7π ζ Relation to Apostol s Method We conclude by mentioning an interesting connection to Apostol s method to prove ζ π /6 in []. Apostol evaluates the double integral Putting y n y dy d. 3 y n, y <, in place of the integrand in 3, echanging sum and integral, and integrating term by term with respect to y and then gives ζ. On the other hand, 3 is equal to π /6, upon making the change of variables u+v u v,y, which transforms 3 into the sum of arctangent integrals u u dv du+ u +v u In particular, the first integral in 35 is equal to u u dv du u +v 8 +u dv du. 35 u +v sin u u du n n 36 n n π 8,

9 where 36 follows from replacing the integrand with the series in 3, echanging the sum and integral, and integrating term by term. Hence, we see the first integral in 35 is equal to a central binomial series, namely 36, which fortunately we could easily evaluate with elementary calculus. With a similar geometric series argument, we can show that the integral yzw dw dz dy d 37 is equal to ζ. But if we change variables u+v u v,y on 37, split it into a sum of two integrals over two different regions as in 35, we will get one of the integrals to be u u u wz +v wz wz sin dv du dw dz dw dz wz n n 38 n n C wz where 38 can beobtained by replacing sin epression with theantiderivative of the series from 3 evaluated at wz, and then performing the usual steps of echanging sum and integral and integrating term by term twice with respect to w and z. Thus, to generalize Apostol s method to find ζ, we would have to evaluate C, but this is unfortunately difficult to do if we don t assume the value of ζ in the first place. References [] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Epansions, Springer Netherlands,. [] Junesang Choi and Young Joon Cho and H. M. Srivastava, Log-Sine integrals involving series associated with the zeta function and polylogarithms, Mathematica Scandinavica 5 9, no., [3] Jonathan M. and Straub Borwein Armin, Special Values of Generalized Log-sine Integrals, ISSAC, ACM, New York, NY, USA,. [] Tom M. Apostol, A Proof that Euler Missed: Evaluating ζ the Easy Way, Springer New York, New York, NY,. [5] Alfred J. van der Poorten, Some wonderful formulas...an introduction to polylogarithms, Queen s Papers in Pure and Appl. Math., vol. 5, Queen s Univ., Kingston, Ont., 98. [6] David Borwein and Jonathan M. Borwein, On an Intriguing Integral and Some Series Related to ζ, Proceedings of the American Mathematical Society 3 995, no., [7] L. Lewin, Polylogarithms and associated functions, North Holland, 98. 9

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin Math : Practice Final Answer Key Name: The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. Problem : Consider the definite integral I = 5 sin ( ) d.

More information

(x 3)(x + 5) = (x 3)(x 1) = x + 5

(x 3)(x + 5) = (x 3)(x 1) = x + 5 RMT 3 Calculus Test olutions February, 3. Answer: olution: Note that + 5 + 3. Answer: 3 3) + 5) = 3) ) = + 5. + 5 3 = 3 + 5 3 =. olution: We have that f) = b and f ) = ) + b = b + 8. etting these equal

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

Worksheet Week 7 Section

Worksheet Week 7 Section Worksheet Week 7 Section 8.. 8.4. This worksheet is for improvement of your mathematical writing skill. Writing using correct mathematical epression and steps is really important part of doing math. Please

More information

Preface. Computing Definite Integrals. 3 cos( x) dx. x 3

Preface. Computing Definite Integrals. 3 cos( x) dx. x 3 Preface Here are the solutions to the practice problems for my Calculus I notes. Some solutions will have more or less detail than other solutions. The level of detail in each solution will depend up on

More information

Euler-Maclaurin summation formula

Euler-Maclaurin summation formula Physics 4 Spring 6 Euler-Maclaurin summation formula Lecture notes by M. G. Rozman Last modified: March 9, 6 Euler-Maclaurin summation formula gives an estimation of the sum N in f i) in terms of the integral

More information

MATHEMATICS FOR ENGINEERING

MATHEMATICS FOR ENGINEERING MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL FURTHER INTEGRATION This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019 Review () Calculus II (-nyb-5/5,6) Winter 9 Note. You should also review the integrals eercises on the first review sheet. Eercise. Evaluate each of the following integrals. a. sin 3 ( )cos ( csc 3 (log)cot

More information

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. n=1. a) None b) 1 c) 2 d) 3 e) 1, 2 f) 1, 3 g) 2, 3 h) 1, 2, 3

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. n=1. a) None b) 1 c) 2 d) 3 e) 1, 2 f) 1, 3 g) 2, 3 h) 1, 2, 3 Math (Calculus II) Final Eam Form A Fall 22 RED KEY Part I: Multiple Choice Mark the correct answer on the bubble sheet provided.. Which of the following series converge absolutely? ) ( ) n 2) n 2 n (

More information

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim SMT Calculus Test Solutions February, x + x 5 Compute x x x + Answer: Solution: Note that x + x 5 x x + x )x + 5) = x )x ) = x + 5 x x + 5 Then x x = + 5 = Compute all real values of b such that, for fx)

More information

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44 Math B Prof. Audrey Terras HW #4 Solutions Due Tuesday, Oct. 9 Section 7.4 #, 5, 6, 8,, 3, 44, 53; Section 7.5 #7,,,, ; Section 7.7 #, 4,, 5,, 44 7.4. Since 5 = 5 )5 + ), start with So, 5 = A 5 + B 5 +.

More information

5.5. The Substitution Rule

5.5. The Substitution Rule INTEGRALS 5 INTEGRALS 5.5 The Substitution Rule In this section, we will learn: To substitute a new variable in place of an existing expression in a function, making integration easier. INTRODUCTION Due

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013 () Solution : MATH Calculus II Solution to Supplementary Eercises on Improper Integrals Ale Fok November, 3 b ( + )( + tan ) ( + )( + tan ) +tan b du u ln + tan b ( = ln + π ) (Let u = + tan. Then du =

More information

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx.

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx. Math 8, Eam 2, Fall 24 Problem Solution. Integrals, Part I (Trigonometric integrals: 6 points). Evaluate the integral: sin 3 () cos() d. Solution: We begin by rewriting sin 3 () as Then, after using the

More information

Experimental mathematics and integration

Experimental mathematics and integration Experimental mathematics and integration David H. Bailey http://www.davidhbailey.com Lawrence Berkeley National Laboratory (retired) Computer Science Department, University of California, Davis October

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find: Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly..

More information

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B

Sample Final Questions: Solutions Math 21B, Winter y ( y 1)(1 + y)) = A y + B Sample Final Questions: Solutions Math 2B, Winter 23. Evaluate the following integrals: tan a) y y dy; b) x dx; c) 3 x 2 + x dx. a) We use partial fractions: y y 3 = y y ) + y)) = A y + B y + C y +. Putting

More information

Hypergeometric series and the Riemann zeta function

Hypergeometric series and the Riemann zeta function ACTA ARITHMETICA LXXXII.2 (997) Hypergeometric series and the Riemann zeta function by Wenchang Chu (Roma) For infinite series related to the Riemann zeta function, De Doelder [4] established numerous

More information

Mathematics 805 Homework 9 Due Friday, April 3, 1 PM. j r. = (et 1)e tx t. e t 1. = t n! = xn 1. = x n 1

Mathematics 805 Homework 9 Due Friday, April 3, 1 PM. j r. = (et 1)e tx t. e t 1. = t n! = xn 1. = x n 1 Mathematics 85 Homework 9 Due Friday, April 3, PM. As before, let B n be the Bernoulli polynomial of degree n. a Show that B n B n n n. b By using part a, derive a formula epressing in terms of B r. Answer:

More information

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS EXAM Practice for Second Eam Math 135-006, Fall 003 Nov 4, 003 ANSWERS i Problem 1. In each part, find the integral. A. d (4 ) 3/ Make the substitution sin(θ). d cos(θ) dθ. We also have Then, we have d/dθ

More information

MATH 101 Midterm Examination Spring 2009

MATH 101 Midterm Examination Spring 2009 MATH Midterm Eamination Spring 9 Date: May 5, 9 Time: 7 minutes Surname: (Please, print!) Given name(s): Signature: Instructions. This is a closed book eam: No books, no notes, no calculators are allowed!.

More information

Euler s Formula for.2n/

Euler s Formula for.2n/ Euler s Formula for.2n/ Timothy W. Jones January 28, 208 Abstract In this article we derive a formula for zeta(2) and zeta(2n). Introduction In this paper we derive from scratch k 2 D 2 6 () and k 2p D.

More information

Physics 116A Solutions to Homework Set #2 Winter 2012

Physics 116A Solutions to Homework Set #2 Winter 2012 Physics 6A Solutions to Homework Set #2 Winter 22. Boas, problem. 23. Transform the series 3 n (n+ (+ n determine the interval of convergence to a power series and First we want to make the replacement

More information

The Riemann and Hurwitz zeta functions, Apery s constant and new rational series representations involving ζ(2k)

The Riemann and Hurwitz zeta functions, Apery s constant and new rational series representations involving ζ(2k) The Riemann and Hurwitz zeta functions, Apery s constant and new rational series representations involving ζ(k) Cezar Lupu 1 1 Department of Mathematics University of Pittsburgh Pittsburgh, PA, USA Algebra,

More information

VII. Techniques of Integration

VII. Techniques of Integration VII. Techniques of Integration Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration of functions given

More information

10.4: WORKING WITH TAYLOR SERIES

10.4: WORKING WITH TAYLOR SERIES 04: WORKING WITH TAYLOR SERIES Contributed by OpenSta Mathematics at OpenSta CNX In the preceding section we defined Taylor series and showed how to find the Taylor series for several common functions

More information

Fourier Analysis Fourier Series C H A P T E R 1 1

Fourier Analysis Fourier Series C H A P T E R 1 1 C H A P T E R Fourier Analysis 474 This chapter on Fourier analysis covers three broad areas: Fourier series in Secs...4, more general orthonormal series called Sturm iouville epansions in Secs..5 and.6

More information

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008 Mathematics 32 Calculus for Physical and Life Sciences 2 Eam 3 Review Sheet April 5, 2008 Sample Eam Questions - Solutions This list is much longer than the actual eam will be (to give you some idea of

More information

Math Calculus I

Math Calculus I Math 165 - Calculus I Christian Roettger 382 Carver Hall Mathematics Department Iowa State University www.iastate.edu/~roettger November 13, 2011 4.1 Introduction to Area Sigma Notation 4.2 The Definite

More information

Applications of Fourier Series and Zeta Functions to Genocchi Polynomials

Applications of Fourier Series and Zeta Functions to Genocchi Polynomials Appl. Math. Inf. Sci., No. 5, 95-955 (8) 95 Applied Mathematics & Information Sciences An International Journal http://d.doi.org/.8576/amis/58 Applications of Fourier Series Zeta Functions to Genocchi

More information

Fitting Integrands to Basic Rules

Fitting Integrands to Basic Rules 6_8.qd // : PM Page 8 8 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8. Basic Integration Rules Review proceres for fitting an integrand to one of the basic integration

More information

Math Final Exam Review

Math Final Exam Review Math - Final Exam Review. Find dx x + 6x +. Name: Solution: We complete the square to see if this function has a nice form. Note we have: x + 6x + (x + + dx x + 6x + dx (x + + Note that this looks a lot

More information

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer. Problem Sheet,. i) Draw the graphs for [] and {}. ii) Show that for α R, α+ α [t] dt = α and α+ α {t} dt =. Hint Split these integrals at the integer which must lie in any interval of length, such as [α,

More information

Lesson 50 Integration by Parts

Lesson 50 Integration by Parts 5/3/07 Lesson 50 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

Math 112 Section 10 Lecture notes, 1/7/04

Math 112 Section 10 Lecture notes, 1/7/04 Math 11 Section 10 Lecture notes, 1/7/04 Section 7. Integration by parts To integrate the product of two functions, integration by parts is used when simpler methods such as substitution or simplifying

More information

Midterm Exam #1. (y 2, y) (y + 2, y) (1, 1)

Midterm Exam #1. (y 2, y) (y + 2, y) (1, 1) Math 5B Integral Calculus March 7, 7 Midterm Eam # Name: Answer Key David Arnold Instructions. points) This eam is open notes, open book. This includes any supplementary tets or online documents. You are

More information

Unit #11 - Integration by Parts, Average of a Function

Unit #11 - Integration by Parts, Average of a Function Unit # - Integration by Parts, Average of a Function Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Integration by Parts. For each of the following integrals, indicate whether

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

Mat104 Fall 2002, Improper Integrals From Old Exams

Mat104 Fall 2002, Improper Integrals From Old Exams Mat4 Fall 22, Improper Integrals From Old Eams For the following integrals, state whether they are convergent or divergent, and give your reasons. () (2) (3) (4) (5) converges. Break it up as 3 + 2 3 +

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS TUTORIAL 2 - INTEGRATION

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS TUTORIAL 2 - INTEGRATION EDEXCEL NATIONAL CERTIFICATE UNIT 8 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME - CALCULUS TUTORIAL - INTEGRATION CONTENTS Be able to apply calculus Differentiation: review of standard derivatives, differentiation

More information

6.1 Antiderivatives and Slope Fields Calculus

6.1 Antiderivatives and Slope Fields Calculus 6. Antiderivatives and Slope Fields Calculus 6. ANTIDERIVATIVES AND SLOPE FIELDS Indefinite Integrals In the previous chapter we dealt with definite integrals. Definite integrals had limits of integration.

More information

Evaluation of integrals by differentiation with respect to a parameter

Evaluation of integrals by differentiation with respect to a parameter December 8 Evaluation of integrals by differentiation with respect to a parameter Khristo N Boyadzhiev Department of Mathematics and Statistics, Ohio Northern University, Ada, OH 458, USA k-boyadzhiev@onuedu

More information

Relations for Nielsen polylogarithms

Relations for Nielsen polylogarithms Relations for Nielsen polylogarithms (Dedicated to Richard Askey at 80 Jonathan M. Borwein and Armin Straub April 5, 201 Abstract Polylogarithms appear in many diverse fields of mathematics. Herein, we

More information

Calculus 1: Sample Questions, Final Exam

Calculus 1: Sample Questions, Final Exam Calculus : Sample Questions, Final Eam. Evaluate the following integrals. Show your work and simplify your answers if asked. (a) Evaluate integer. Solution: e 3 e (b) Evaluate integer. Solution: π π (c)

More information

Upon completion of this course, the student should be able to satisfy the following objectives.

Upon completion of this course, the student should be able to satisfy the following objectives. Homework: Chapter 6: o 6.1. #1, 2, 5, 9, 11, 17, 19, 23, 27, 41. o 6.2: 1, 5, 9, 11, 15, 17, 49. o 6.3: 1, 5, 9, 15, 17, 21, 23. o 6.4: 1, 3, 7, 9. o 6.5: 5, 9, 13, 17. Chapter 7: o 7.2: 1, 5, 15, 17,

More information

INTEGRALS OF POLYLOGARITHMIC FUNCTIONS, RECURRENCE RELATIONS, AND ASSOCIATED EULER SUMS

INTEGRALS OF POLYLOGARITHMIC FUNCTIONS, RECURRENCE RELATIONS, AND ASSOCIATED EULER SUMS MATHEMATICS OF COMPUTATION Volume 74, Number 51, Pages 145 144 S 5-5718(5)1747-3 Article electronically published on February 14, 5 INTEGRALS OF POLYLOGARITHMIC FUNCTIONS, RECURRENCE RELATIONS, AND ASSOCIATED

More information

MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1

MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1 MATH4: Calculus II Exam #4 review solutions 7/0/07 Page. The limaçon r = + sin θ came up on Quiz. Find the area inside the loop of it. Solution. The loop is the section of the graph in between its two

More information

1 Review of di erential calculus

1 Review of di erential calculus Review of di erential calculus This chapter presents the main elements of di erential calculus needed in probability theory. Often, students taking a course on probability theory have problems with concepts

More information

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3.

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3. MATH 8.0 - FINAL EXAM - SOME REVIEW PROBLEMS WITH SOLUTIONS 8.0 Calculus, Fall 207 Professor: Jared Speck Problem. Consider the following curve in the plane: x 2 y = 2. Let a be a number. The portion of

More information

Math 205, Winter 2018, Assignment 3

Math 205, Winter 2018, Assignment 3 Math 05, Winter 08, Assignment 3 Solutions. Calculate the following integrals. Show your steps and reasoning. () a) ( + + )e = ( + + )e ( + )e = ( + + )e ( + )e + e = ( )e + e + c = ( + )e + c This uses

More information

DIFFERENTIATING UNDER THE INTEGRAL SIGN

DIFFERENTIATING UNDER THE INTEGRAL SIGN DIFFEENTIATING UNDE THE INTEGAL SIGN KEITH CONAD I had learned to do integrals by various methods shown in a book that my high school physics teacher Mr. Bader had given me. [It] showed how to differentiate

More information

MA261-A Calculus III 2006 Fall Homework 7 Solutions Due 10/20/2006 8:00AM

MA261-A Calculus III 2006 Fall Homework 7 Solutions Due 10/20/2006 8:00AM MA26-A Calculus III 2006 Fall Homework 7 Solutions Due 0/20/2006 8:00AM 3 #4 Find the rst partial derivatives of the function f (; ) 5 + 3 3 2 + 3 4 f (; ) 5 4 + 9 2 2 + 3 4 f (; ) 6 3 + 2 3 3 #6 Find

More information

Simplifying Coefficients in a Family of Ordinary Differential Equations Related to the Generating Function of the Laguerre Polynomials

Simplifying Coefficients in a Family of Ordinary Differential Equations Related to the Generating Function of the Laguerre Polynomials Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Applications and Applied Mathematics: An International Journal (AAM Vol. 13, Issue 2 (December 2018, pp. 750 755 Simplifying Coefficients

More information

Lesson 53 Integration by Parts

Lesson 53 Integration by Parts 5/0/05 Lesson 53 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

Math 21a Homework 24 Solutions Spring, 2014

Math 21a Homework 24 Solutions Spring, 2014 Math a Homework olutions pring, Due Friday, April th (MWF) or Tuesday, April 5th (TTh) This assignment is officially on urface Area (ection.6) and calar urface Integrals (ection.6), but it s most useful

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

Lecture 11: Fourier Cosine Series

Lecture 11: Fourier Cosine Series Introductory lecture notes on Partial Differential Equations - c Anthony Peirce Not to be copied, used, or revised without eplicit written permission from the copyright owner ecture : Fourier Cosine Series

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012 The Second Fundamental Theorem of Calculus Functions Defined by Integrals Given the functions, f(t), below, use F( ) f ( t) dt to find F() and F () in terms of.. f(t) = 4t t. f(t) = cos t Given the functions,

More information

y x arctan x arctan x x dx 2 ln by first expressing the integral as an iterated integral. f t dt dz dy 1 2 y x x t 2 f t dt F 2 Gm d 1 d 1 sr 2 d 2

y x arctan x arctan x x dx 2 ln by first expressing the integral as an iterated integral. f t dt dz dy 1 2 y x x t 2 f t dt F 2 Gm d 1 d 1 sr 2 d 2 CHALLENGE PROBLEMS CHALLENGE PROBLEMS: CHAPTER A Click here for answers. S Click here for solutions.. If denotes the greatest integer in, evaluate the integral where R, y 3, y 5.. Evaluate the integral

More information

Mathematics 324 Riemann Zeta Function August 5, 2005

Mathematics 324 Riemann Zeta Function August 5, 2005 Mathematics 324 Riemann Zeta Function August 5, 25 In this note we give an introduction to the Riemann zeta function, which connects the ideas of real analysis with the arithmetic of the integers. Define

More information

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36 We saw in Example 5.4. that we sometimes need to apply integration by parts several times in the course of a single calculation. Example 5.4.4: For n let S n = x n cos x dx. Find an expression for S n

More information

( ) ( ) = (2) u u u v v v w w w x y z x y z x y z. Exercise [17.09]

( ) ( ) = (2) u u u v v v w w w x y z x y z x y z. Exercise [17.09] Eercise [17.09] Suppose is a region of (Newtonian) space, defined at a point in time t 0. Let T(t,r) be the position at time t of a test particle (of insignificantly tiny mass) that begins at rest at point

More information

Math Calculus II Homework # Due Date Solutions

Math Calculus II Homework # Due Date Solutions Math 35 - Calculus II Homework # - 007.08.3 Due Date - 007.09.07 Solutions Part : Problems from sections 7.3 and 7.4. Section 7.3: 9. + d We will use the substitution cot(θ, d csc (θ. This gives + + cot

More information

Pre-Calculus and Trigonometry Capacity Matrix

Pre-Calculus and Trigonometry Capacity Matrix Pre-Calculus and Capacity Matri Review Polynomials A1.1.4 A1.2.5 Add, subtract, multiply and simplify polynomials and rational epressions Solve polynomial equations and equations involving rational epressions

More information

Chapter 6. Techniques of Integration. 6.1 Differential notation

Chapter 6. Techniques of Integration. 6.1 Differential notation Chapter 6 Techniques of Integration In this chapter, we expand our repertoire for antiderivatives beyond the elementary functions discussed so far. A review of the table of elementary antiderivatives (found

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

AP Calculus BC Chapter 4 (A) 12 (B) 40 (C) 46 (D) 55 (E) 66

AP Calculus BC Chapter 4 (A) 12 (B) 40 (C) 46 (D) 55 (E) 66 AP Calculus BC Chapter 4 REVIEW 4.1 4.4 Name Date Period NO CALCULATOR IS ALLOWED FOR THIS PORTION OF THE REVIEW. 1. 4 d dt (3t 2 + 2t 1) dt = 2 (A) 12 (B) 4 (C) 46 (D) 55 (E) 66 2. The velocity of a particle

More information

Solutions to Math 41 Final Exam December 9, 2013

Solutions to Math 41 Final Exam December 9, 2013 Solutions to Math 4 Final Eam December 9,. points In each part below, use the method of your choice, but show the steps in your computations. a Find f if: f = arctane csc 5 + log 5 points Using the Chain

More information

Fitting Integrands to Basic Rules. x x 2 9 dx. Solution a. Use the Arctangent Rule and let u x and a dx arctan x 3 C. 2 du u.

Fitting Integrands to Basic Rules. x x 2 9 dx. Solution a. Use the Arctangent Rule and let u x and a dx arctan x 3 C. 2 du u. 58 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8 Basic Integration Rules Review proceres for fitting an integrand to one of the basic integration rules Fitting Integrands

More information

Calculus II Lecture Notes

Calculus II Lecture Notes Calculus II Lecture Notes David M. McClendon Department of Mathematics Ferris State University 206 edition Contents Contents 2 Review of Calculus I 5. Limits..................................... 7.2 Derivatives...................................3

More information

F = m a. t 2. stress = k(x) strain

F = m a. t 2. stress = k(x) strain The Wave Equation Consider a bar made of an elastic material. The bar hangs down vertically from an attachment point = and can vibrate vertically but not horizontally. Since chapter 5 is the chapter on

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

Math 259: Introduction to Analytic Number Theory Functions of finite order: product formula and logarithmic derivative

Math 259: Introduction to Analytic Number Theory Functions of finite order: product formula and logarithmic derivative Math 259: Introduction to Analytic Number Theory Functions of finite order: product formula and logarithmic derivative This chapter is another review of standard material in complex analysis. See for instance

More information

Math 21B - Homework Set 8

Math 21B - Homework Set 8 Math B - Homework Set 8 Section 8.:. t cos t dt Let u t, du t dt and v sin t, dv cos t dt Let u t, du dt and v cos t, dv sin t dt t cos t dt u v v du t sin t t sin t dt [ t sin t u v ] v du [ ] t sin t

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions Math 1, Fall 17 Problem 1. Find a parameterization for the given curve, including bounds on the parameter t. Part a) The ellipse in R whose major axis has endpoints, ) and 6, )

More information

4.3. Differentiation Rules for Sinusoidal Functions. How do the differentiation rules apply to sinusoidal functions?

4.3. Differentiation Rules for Sinusoidal Functions. How do the differentiation rules apply to sinusoidal functions? .3 Differentiation Rules for Sinusoidal Functions Sinusoidal patterns occur frequentl in nature. Sinusoidal functions and compound sinusoidal functions are used to describe the patterns found in the stu

More information

On the Convergence of the Summation Formulas Constructed by Using a Symbolic Operator Approach

On the Convergence of the Summation Formulas Constructed by Using a Symbolic Operator Approach On the Convergence of the Summation Formulas Constructed by Using a Symbolic Operator Approach Tian-Xiao He 1, Leetsch C. Hsu 2, and Peter J.-S. Shiue 3 1 Department of Mathematics and Computer Science

More information

Integration by parts (product rule backwards)

Integration by parts (product rule backwards) Integration by parts (product rule backwards) The product rule states Integrating both sides gives f(x)g(x) = d dx f(x)g(x) = f(x)g (x) + f (x)g(x). f(x)g (x)dx + Letting f(x) = u, g(x) = v, and rearranging,

More information

MATH QUIZ 3 1/2. sin 1 xdx. π/2. cos 2 (x)dx. x 3 4x 10 x 2 x 6 dx.

MATH QUIZ 3 1/2. sin 1 xdx. π/2. cos 2 (x)dx. x 3 4x 10 x 2 x 6 dx. NAME: I.D.: MATH 56 - QUIZ 3 Instruction: Each problem is worth of point in this take home project. Circle your answers and show all your work CLEARLY. Use additional paper if needed. Solutions with answer

More information

RAMANUJAN: A TALE OF TWO EVALUATIONS

RAMANUJAN: A TALE OF TWO EVALUATIONS ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 46, Number 3, 06 RAMANUJAN: A TALE OF TWO EVALUATIONS DONALD J. MANZOLI ABSTRACT. In 887, beneath a canopy of stars, Srinivasa Ramanujan commenced his brief

More information

Integrals evaluated in terms of Catalan s constant. Graham Jameson and Nick Lord (Math. Gazette, March 2017)

Integrals evaluated in terms of Catalan s constant. Graham Jameson and Nick Lord (Math. Gazette, March 2017) Integrals evaluated in terms of Catalan s constant Graham Jameson and Nick Lord (Math. Gazette, March 7) Catalan s constant, named after E. C. Catalan (84 894) and usually denoted by G, is defined by G

More information

MULTISECTION METHOD AND FURTHER FORMULAE FOR π. De-Yin Zheng

MULTISECTION METHOD AND FURTHER FORMULAE FOR π. De-Yin Zheng Indian J. pure appl. Math., 39(: 37-55, April 008 c Printed in India. MULTISECTION METHOD AND FURTHER FORMULAE FOR π De-Yin Zheng Department of Mathematics, Hangzhou Normal University, Hangzhou 30036,

More information

Parametric Euler Sum Identities

Parametric Euler Sum Identities Parametric Euler Sum Identities David Borwein, Jonathan M. Borwein, and David M. Bradley September 23, 2004 Introduction A somewhat unlikely-looking identity is n n nn x m m x n n 2 n x, valid for all

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

Some Fun with Divergent Series

Some Fun with Divergent Series Some Fun with Divergent Series 1. Preliminary Results We begin by examining the (divergent) infinite series S 1 = 1 + 2 + 3 + 4 + 5 + 6 + = k=1 k S 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + = k=1 k 2 (i)

More information

Chapter 6. Techniques of Integration. 6.1 Differential notation

Chapter 6. Techniques of Integration. 6.1 Differential notation Chapter 6 Techniques of Integration In this chapter, we expand our repertoire for antiderivatives beyond the elementary functions discussed so far. A review of the table of elementary antiderivatives (found

More information

A Symbolic Operator Approach to Several Summation Formulas for Power Series

A Symbolic Operator Approach to Several Summation Formulas for Power Series A Symbolic Operator Approach to Several Summation Formulas for Power Series T. X. He, L. C. Hsu 2, P. J.-S. Shiue 3, and D. C. Torney 4 Department of Mathematics and Computer Science Illinois Wesleyan

More information

arxiv: v1 [math.ca] 4 Apr 2016

arxiv: v1 [math.ca] 4 Apr 2016 The Fourier series of the log-barnes function István Mező Department of Mathematics, Nanjing University of Information Science and Technology, No.29 Ningliu Rd, Pukou, Nanjing, Jiangsu, P. R. China arxiv:64.753v

More information

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers Martin Nicholson In this brief note, we show how to apply Kummer s and other quadratic transformation formulas for

More information

n and C and D be positive constants so that nn 1

n and C and D be positive constants so that nn 1 Math Activity 0 (Due by end of class August 6). The graph of the equation y is called an astroid. a) Find the length of this curve. {Hint: One-fourth of the curve is given by the graph of y for 0.} b)

More information

Candidates sitting FP2 may also require those formulae listed under Further Pure Mathematics FP1 and Core Mathematics C1 C4. e π.

Candidates sitting FP2 may also require those formulae listed under Further Pure Mathematics FP1 and Core Mathematics C1 C4. e π. F Further IAL Pure PAPERS: Mathematics FP 04-6 AND SPECIMEN Candidates sitting FP may also require those formulae listed under Further Pure Mathematics FP and Core Mathematics C C4. Area of a sector A

More information

Learning Objectives for Math 166

Learning Objectives for Math 166 Learning Objectives for Math 166 Chapter 6 Applications of Definite Integrals Section 6.1: Volumes Using Cross-Sections Draw and label both 2-dimensional perspectives and 3-dimensional sketches of the

More information

Ch 4 Differentiation

Ch 4 Differentiation Ch 1 Partial fractions Ch 6 Integration Ch 2 Coordinate geometry C4 Ch 5 Vectors Ch 3 The binomial expansion Ch 4 Differentiation Chapter 1 Partial fractions We can add (or take away) two fractions only

More information

Assignment 11 Assigned Mon Sept 27

Assignment 11 Assigned Mon Sept 27 Assignment Assigned Mon Sept 7 Section 7., Problem 4. x sin x dx = x cos x + x cos x dx ( = x cos x + x sin x ) sin x dx u = x dv = sin x dx du = x dx v = cos x u = x dv = cos x dx du = dx v = sin x =

More information