Fission Product Yields for Neutrino Physics and Non- prolifera7on

Size: px
Start display at page:

Download "Fission Product Yields for Neutrino Physics and Non- prolifera7on"

Transcription

1 Fission Product Yields for Neutrino Physics and Non- prolifera7on

2 The nuclear physics proper7es of fission products are important for many fields Neutrino Physics Nuclear Forensics Monitoring Reprocessing Facili6es Weapons Physics Reactor Safeguards Stellar Astrophysics Nuclear Medicine In many cases more detailed experimental data is needed - Here are some examples from from the first two fields

3 Neutrino Physics

4 Reactors represent intense sources of anti-neutrinos and are used for neutrino oscillation studies A 3 GW reactor emits antineutrinos per second - All produced by the beta-decay of fission products E ν ~ 0 10 MeV Detected by Reines & Cowan via: ν e + p n + e +

5 Reactor Neutrino Experiments Discoveries since the 1950s: Short Middle Long Neutrino discovered in by Reines and Cowan. Short baseline expts determined an6neutrino spectrum/flux (maybe) Upper limit of mixing angle θ 13 to sin 2 2θ 13 <0.17 (Chooz, Palo Verde), s An6- neutrino disappearance at KamLAND in Precision measurements of θ 13 (Daya Bay, Double Chooz, RENO), present

6 An7- neutrino spectra are determined by the cumula7ve yields and the beta- decay spectra of the fission products Equilibrium aggregate beta spectra: S k (E) = FF Y FF (Z,A,m)S(E,Z,A,m) S(E,A,Z,m) = B i S(E,Z, A,m,E 0 i ) i Spectra are quite ac6nide dependent β- decay branching ra6os and end- point energies only known for ~95% of the decays Many of the cumula6ve fission yields are uncertain

7 Neutrino community determined the an7neutrino spectra from measurements of aggregate beta- decay spectra Measurements at ILL of thermal fission beta spectra for 235 U, 239 Pu, 241 Pu Converted to an6neutrino spectra by fidng to 30 end- point energies Use Vogel et al. and Mueller et al. database es6mates for 238 U 238 U ~ 7-8% of fissions =>small error K. Schreckenbach et al. PLB118, 162 (1985) A.A. Hahn et al. PLB160, 325 (1989) FIT S β (E) = A i S i (E, E i o ) i=1,30 S i (E, E 0 i ) = E β p β (E 0 i E β ) 2 F(E, Z)

8 As Burn Proceeds: Different Combination of Isotopes Fissioning 239 Pu steadily grows in via: 238 U+nà 239 Uà 239 Npà 239 Pu Followed by higher mass Pu This change translates into a change in the antineutrino spectrum emitted from the beginning to the end of a burn cycle T=0/T=1yr 5% fewer detected an6neutrinos ager 1 yr Must be taken into account in osc expts. Basis of non- prolifera6on schemes Bugey-3 energy-dependent decrease after 1 year

9 Calcula7ng the an7neutrino flux at a given reactor 1. Measure thermal power in primary & secondary loop W th uncertainty ~<2%, but KamLAND quote % Uncertainty usually dominated by water flow measurement. 2. Calculate number of fissions from W th E f good to ~0.5-1% (?) Kopeiken et al. Phys. Atom Nucl. 67 (2004) Power company reactor burn simula7on to determine which isotopes are fissioning N f = W th / E f E f = E tot < E ν > ΔE βγ + E (n,γ ) isotopes SE ( ν) = fs i i( Eν) i 4. Knowledge of individual an7neutrino spectra for each fissioning isotope 4. has recently become a serious problem observing an anomaly and a `bump

10 Men6on et al. PRD Short Baseline Reactor An7- Neutrino Anomaly Improved An7neutrino Spectra: Th. A. Mueller, et al. PRC, C83 (2011) A reanalysis of the conversion of the aggregate beta- spectrum to an an6- neutrino spectrum All short baseline experiments saw ~6% too few an6neutrinos If oscilla6ons would require 1 ev sterile neutrino

11 Known correc7ons to β- decay are the main source of the anomaly S(E e,z,a) = G 2 F 2π p E (E E 3 e e 0 e )2 C(E)F(E e,z, A)(1+δ(E e,z, A)) Frac7onal correc7ons to the individual beta decay spectra: δ(e e,z, A) = δ rad +δ FS +δ WM { δ rad = Radiative correction (used formalism of Sirlin) δ FS = Finite size correction to Fermi function δ WM = Weak magnetism Originally approximated as: δ FS +δ WM = (E ν 4MeV )) The difference between this original treatment and an improved treatment of these correc7ons is the main source of the anomaly

12 However, 30% of the transi7ons are forbidden => the uncertaunty in the anomaly large A~95 Peak Forbidden: Br, Kr, Rb, Y, Sr, Zr mostly forbidden Not Fermi (0+) or GT (1+) Nb, Mo, Tc ogen allowed GT i.e, ΔL>0, Δπ=+/- 1 A~ 137 Peak Sb, I, Te, Xe, Cs, Ba, Pr, La - mostly forbidden The forbidden transi6ons tend to dominate the high energy component of spectrum This makes the weak magne6sm and finite size correc6on quite uncertain If all allowed the fit to Schreckenbach => An6neutrino spectrum +3% If 25% forbidden Find an equally good fit with no increase in the an6neutrino spectrum

13 A significant shoulder (the bump) is seen in the near and far detectors at all current reactor neutrino experiments at E prompt =4-6 MeV Εν=Eprompt MeV

14 Analyses of the Bump using ENDF versus JEFF cumula7ve yields differ ENDF, Dwyer + Langford, Phys. Rev. Ler (2015) A. A. Sonzogni, T. D. Johnson, and E. A. McCutchan, Phys. Rev. C 91, (R) (2015)

15 ENDF versus JEFF predic7ons for the BUMP Normailzed ratio to Huber-Mueller Huber-Mueller uncert. JEFF ENDF/B-VII.1 RENO The two evalua6ons disagree on many of the fission yields for nuclei domina6ng the bump Normalized Ratio to Huber-Mueller Huber-Mueller uncert. JEFF ENDF/B-VII.1 Daya Bay E Prompt (MeV)

16 ENDF versus JEFF predic7ons for the normaliza7on of the an7neutrino spectra σ ν N ν (E ν ) (10-16 mb/mev/fission) Huber-Mueller Daya Bay ENDF/B-VII Eν (MeV) Huber-Mueller Daya Bay JEFF The ENDF/B- VII.1 predic7ons are closer to Daya Bay, while the JEFF predic7ons are closer to the Huber- Mueller model that suggests an anomaly

17 The hardness of the reactor spectrum could be an issue The original fission aggregate beta spectra were measured at ILL, France - Heavy water reactor 10 Extremely thermal 7 The Daya Bay, RENO and Double Chooz measurements are all at PWR reactors Significant epithermal neutron component to the flux Fisison Cross cross section (b) Φ(E)*σ(E) σ(e) fission 239 Pu Φ(E) for 3% Enriched PWR 1 st epithermal resonance at 0.3 ev E (ev) Could the JEFF yields be closer to thermal And the ENDF/B- VII.1 yields be thermal/epithermal? Experimental measurements of the dominant fission yields would be very valuable in addressing the these neutrino issues

18 Nuclear Forensics

19 Nuclear Forensics relies on measuring the ac7nide ra7os in the debris Timescale is controlled by the difficult U & Pu chemistry: Separate key ac6nides and measure their isotopic ra6os by mass spectroscopy. Ac6nides provide the most detailed informa6on But there is a pressing need to get key informa6on on a faster 6mescale

20 The vola7le fission products could be collected and measured rapidly by flying into the plume 1. Collect the vola7le fission products on special filters 2. Assay key fission products on a rapid 7mescale using γ- ray spectroscopy 3. Deduce the fuel and whether the device was boosted from blocked Cs and I isotopes Timescale possible because no major chemical separa7on is needed for Cs and I

21 Sensi7vity of Cesium and Iodine to the type of explosion - blocked fission products retain fission informa7on The required cesium R- values are measured But the iodine isotopes of interest are not Radiochemistry always evaluated in terms of R- values: ( ) Y x 99Mo R = Y x 99Mo ( )thermal Varies by orders of magnitude Always ~1 Varies by orders of magnitude Close to ~1

22 Debris Frac7ona7on - always occurs but can be corrected for 136 Cs& 13$days$ 136 Xe& Stable&&! 137 Cs& 30$yrs$ β" 0.23% 137 Xe& 3.82$mins$ β" 3.5% 2.4% &&&&137 I& 24.5$sec$ 235 U fission β" 0.16% 137 Te& 2.5$sec$ The transport of 137 Cs depends 137 I and 137 Xe. 136 Cs has no precursors. => 136 Cs and 137 Cs from one another. 136Cs [R-value] R-value needed for Pu Cs [R-value] Frac7ona7on is corrected for by using the fact that the 137Cs/99Mo ra7o is close to unity for all fissions Uncertain7es in the method are small compared to the sensi7vity of 136 Cs/ 99 Mo to the nature of the fission

23 Summary Reactor neutrino physics is currently facing two major puzzles The anomaly, which is a 6% deficit in the an6neutrino flux at all short baseline experiments The shoulder (bump) at Eν= MeV ENDF and JEFF give very different predic6ons for these because their yields for the important fission product are different handful of fission products, that dominate the high- energy spectrum, need to be measured Nuclear Forensics could involve a new early phase The blocked cesium and iodine fission products can be used to determine whether the fuel is uranium and plutonium and whether 14 MeV fission is involved the 130 I and 135 I thermal, fast and 14 MeV fission yields need to be measured

24 Summary cont. Nuclear Forensics could involve a new early phase The blocked cesium and iodine fission products can be used to determine whether the fuel is uranium and plutonium and whether 14 MeV fission is involved the 130 I and 135 I thermal, fast and 14 MeV fission yields need to be measured

Reanalysis of the Reactor Neutrino Anomaly

Reanalysis of the Reactor Neutrino Anomaly LA-UR-13-24535 Reanalysis of the Reactor Neutrino Anomaly A. Hayes, J. Friar, G. Garvey, G. Jungman (LANL) G. Jonkmans (Chalk River) INT 5 th Nov 2013 The Reactor Antineutrino Anomaly The Reactor Neutrino

More information

In collaboration with:

In collaboration with: In collaboration with: G. Jungman, J.L. Friar, and G. Garvey, Los Alamos E. McCutchan and A. Sonzogni, Brookhaven National Lab Xiaobao Wang, Huzhou University, China Four Experimental Anomalies Do Not

More information

Reactor Anomaly an Overview. Petr Vogel, Caltech INT Seattle 11/6/2013

Reactor Anomaly an Overview. Petr Vogel, Caltech INT Seattle 11/6/2013 Reactor Anomaly an Overview Petr Vogel, Caltech INT Seattle 11/6/2013 in ν e + p -> e + + n Illustration of the reactor anomaly. Rates in various experiments are compared with the expectations based on

More information

arxiv: v2 [hep-ex] 3 Jun 2018

arxiv: v2 [hep-ex] 3 Jun 2018 Investigation of antineutrino spectral anomaly with neutron spectrum Xubo Ma a,, Le Yang a arxiv:185.9973v2 [hep-ex] 3 Jun 218 a School of Nuclear Science and Engineering, North China Electric Power University,

More information

Precise Determination of the 235 U Reactor Antineutrino Cross Section per Fission Carlo Giunti

Precise Determination of the 235 U Reactor Antineutrino Cross Section per Fission Carlo Giunti C. Giunti Determination of the 235 U Reactor Antineutrino Cross Section per Fission AAP 2016 2 Dec 2016 1/10 Precise Determination of the 235 U Reactor Antineutrino Cross Section per Fission Carlo Giunti

More information

Neutrino Experiments with Reactors

Neutrino Experiments with Reactors Neutrino Experiments with Reactors 1 Ed Blucher, Chicago Reactors as antineutrino sources Antineutrino detection Reines-Cowan experiment Oscillation Experiments Solar Δm 2 (KAMLAND) Atmospheric Δm 2 --

More information

Sterile Neutrinos. Patrick Huber. Center for Neutrino Physics Virginia Tech

Sterile Neutrinos. Patrick Huber. Center for Neutrino Physics Virginia Tech Sterile Neutrinos Patrick Huber Center for Neutrino Physics Virginia Tech XIII Workshop on Electron-Nucleus Scattering June 23-27, 2014, Marciana Marina, Isola d Elba, Italy P. Huber p. 1 Outline The reactor

More information

arxiv: v2 [nucl-th] 16 Oct 2017

arxiv: v2 [nucl-th] 16 Oct 2017 Revealing Fine Structure in the Antineutrino Spectra From a Nuclear Reactor arxiv:1710.00092v2 [nucl-th] 16 Oct 2017 A. A. Sonzogni, 1, M. Nino, 2 and E. A. McCutchan 1 1 National Nuclear Data Center,

More information

Status of Light Sterile Neutrinos Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti Status of Light Sterile Neutrinos Carlo Giunti INFN, Torino, Italy EPS-HEP 07 07 European Physical Society Conference on High Energy Physics Venezia, Italy, 5- July 07 C. Giunti Status of Light Sterile

More information

The Energy Spectrum of Reactor Antineutrinos

The Energy Spectrum of Reactor Antineutrinos Lawrence Berkeley National Laboratory, Berkeley, CA, USA E-mail: dadwyer@lbl.gov Measurements of electron antineutrinos emitted by nuclear reactors have been central to our understanding the nature of

More information

arxiv: v1 [hep-ph] 22 Feb 2009

arxiv: v1 [hep-ph] 22 Feb 2009 Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor V.V. Sinev Institute for Nuclear Research RAS, Moscow (Dated: November 9, 2018) arxiv:0902.3781v1 [hep-ph]

More information

THE REACTOR ANTINEUTRINO SPECTRUM

THE REACTOR ANTINEUTRINO SPECTRUM THE REACTOR ANTINEUTRINO SPECTRUM M. Fallot 1 1 SUBATECH (CNRS/IN2P3, Ins=tut Mines-Telecom de Nantes, Université de Nantes), 4, rue A. Kastler, 44307 Nantes cedex 3, France fallot@subatech.in2p3.fr, Bruxelles

More information

Reactor Neutrinos I. Karsten M. Heeger. University of Wisconsin Pontecorvo Neutrino Summer School Alushta, Ukraine

Reactor Neutrinos I. Karsten M. Heeger. University of Wisconsin Pontecorvo Neutrino Summer School Alushta, Ukraine Reactor Neutrinos I Karsten M. Heeger University of Wisconsin 2012 Pontecorvo Neutrino Summer School Alushta, Ukraine 1 Outline Lecture 1 observation of the neutrino reactors as an antineutrino source

More information

Overview of Reactor Neutrino

Overview of Reactor Neutrino Overview of Reactor Neutrino Chan-Fai (Steven) Wong, Wei Wang Sun Yat-Sen University 22 September 2016 The 14th International Workshop on Tau Lepton Physics Many thanks to Jia Jie Ling, Liang Jian Wen

More information

Short baseline neutrino oscillation experiments at nuclear reactors

Short baseline neutrino oscillation experiments at nuclear reactors Short baseline neutrino oscillation experiments at nuclear reactors Christian Buck, MPIK Heidelberg Erice School, Sicily Sept, 17th 2017 Neutrino oscillations = 3 2 1 3 2 1 3 2 1 3 2 1 ν ν ν ν ν ν τ τ

More information

Sterile Neutrinos. Carlo Giunti

Sterile Neutrinos. Carlo Giunti C. Giunti Sterile Neutrinos PPC07 6 May 07 /5 Sterile Neutrinos Carlo Giunti INFN, Torino, Italy XI International Conference on Interconnections between Particle Physics and Cosmology Corpus Christi, Texas,

More information

Gamma-neutron competition above the neutron separation energy in betadelayed

Gamma-neutron competition above the neutron separation energy in betadelayed Gamma-neutron competition above the neutron separation energy in betadelayed neutron emitters Alejandro Algora IFIC (CSIC-Univ. Valencia), Spain DISCLAIMER: 1. We are only users of Level Densities and

More information

arxiv: v1 [nucl-th] 5 Mar 2018

arxiv: v1 [nucl-th] 5 Mar 2018 Impact of Fission Neutron Energies on Reactor Antineutrino Spectra B. R. Littlejohn, 1, A. Conant, 2 D. A. Dwyer, 3 A. Erickson, 2 I. Gustafson, 1 and K. Hermanek 1 1 Physics Department, Illinois Institute

More information

Reactor anomaly and searches of sterile neutrinos in experiments at very short baseline

Reactor anomaly and searches of sterile neutrinos in experiments at very short baseline Reactor anomaly and searches of sterile neutrinos in experiments at very short baseline G. MENTION CEA Saclay Irfu / SPP Workshop Inνisibles 13 July 17 th, 2013 Content Is the standard 3 neutrino mixing

More information

Reactor Neutrino Oscillation Experiments: Status and Prospects

Reactor Neutrino Oscillation Experiments: Status and Prospects 6! 5! 4! 1 2! 3!! Reactor Neutrino Oscillation Experiments: Status and Prospects Survival Probability 1 0.8 0.6 0.4 0.2 0 20 4! 15 Karsten M. Heeger University of Wisconsin Data - BG - Geo & e 99.73% C.L.

More information

Current Results from Reactor Neutrino Experiments

Current Results from Reactor Neutrino Experiments Current Results from Reactor Neutrino Experiments Soo-Bong Kim (KNRC, Seoul National University) Tsukuba Global Science Week (TGSW015), Tsukuba, Sep. 8-30, 015 Neutrino Physics with Reactor 1956 Discovery

More information

Neutrinos & Non-proliferation in Europe

Neutrinos & Non-proliferation in Europe Neutrino Sciences 2005 Neutrinos & Non-proliferation in Europe Michel Cribier CEA/Saclay DSM/DAPNIA/SPP & APC mcribier@cea.fr December 16, 2005 Michel Cribier 2/39 Physics principles allowing monitoring

More information

ECT Lecture 2. - Reactor Antineutrino Detection - The Discovery of Neutrinos. Thierry Lasserre (Saclay)

ECT Lecture 2. - Reactor Antineutrino Detection - The Discovery of Neutrinos. Thierry Lasserre (Saclay) ECT Lecture 2 - Reactor Antineutrino Detection - The Discovery of Neutrinos Thierry Lasserre (Saclay) Reactor Neutrino Detection Inverse Beta Decay p + anti-v e à e + + n cross section @2 MeV : 5 10-43

More information

Reactor neutrinos: toward oscillations

Reactor neutrinos: toward oscillations Reactor neutrinos: toward oscillations Petr Vogel, Caltech History of neutrinos, Paris, Sept. 7, 2018 Plan:Sketch of history of reactor neutrino physics over five decades since the Reines-Cowan proof of

More information

The Reactor Antineutrino Anomaly

The Reactor Antineutrino Anomaly The Reactor Antineutrino Anomaly M. Fechner, G. Mention, T. Lasserre, M. Cribier, Th. Mueller D. Lhuillier, A. Letourneau, CEA / Irfu arxiv:1101.2755 [hep-ex] Introduction New spectra calculations presented

More information

The Daya Bay Reactor Neutrino Experiment

The Daya Bay Reactor Neutrino Experiment The Daya Bay Reactor Neutrino Experiment Ming-chung Chu The Chinese University of Hong Kong, Hong Kong On behalf of the Daya Bay Collaboration Partial support: CUHK VC Discretionary Fund, RGC CUHK3/CRF/10R

More information

Known and Unknown for Neutrinos. Kim Siyeon Chung-Ang g University Lecture at Yonsei Univ.

Known and Unknown for Neutrinos. Kim Siyeon Chung-Ang g University Lecture at Yonsei Univ. Known and Unknown for Neutrinos Kim Siyeon Chung-Ang g University Lecture at Yonsei Univ. Known and Unknown for Neutrinos Dirac vs. Majorana 3 generation vs. 4 generation (neutrino vs. antineutrino) (terrestrial

More information

Status and Prospects of Reactor Neutrino Experiments

Status and Prospects of Reactor Neutrino Experiments Status and Prospects of Reactor Neutrino Experiments Soo-Bong Kim, Department of Physics and Astronomy Seoul National University Seoul 151-742, Republic of Korea arxiv:1504.08268v1 [hep-ph] 30 Apr 2015

More information

PROSPECT: Precision Reactor Oscillation and SPECTrum Experiment

PROSPECT: Precision Reactor Oscillation and SPECTrum Experiment PROSPECT: Precision Reactor Oscillation and SPECTrum Experiment Penn Neutrino Seminar November 20, 2015 1 Outline 1. Introduction to neutrinos and neutrino anomalies 2. PROSPECT short baseline reactor

More information

A brief overview of the 8 th Annual Applied An4neutrino Physics Workshop and next steps. University of Hawaii, Manoa East- West Center October

A brief overview of the 8 th Annual Applied An4neutrino Physics Workshop and next steps. University of Hawaii, Manoa East- West Center October A brief overview of the 8 th Annual Applied An4neutrino Physics Workshop and next steps University of Hawaii, Manoa East- West Center October 5 2012 Principles of detec4on Work horse - Inverse Beta Decay

More information

THE SUMMATION METHOD FOR REACTOR ANTINEUTRINO FUNDAMENTAL AND APPLIED PHYSICS

THE SUMMATION METHOD FOR REACTOR ANTINEUTRINO FUNDAMENTAL AND APPLIED PHYSICS THE SUMMATION METHOD FOR REACTOR ANTINEUTRINO FUNDAMENTAL AND APPLIED PHYSICS M. Fallot 1 1 ERDRE group, SUBATECH (CNRS/IN2P3, Ecole des Mines de Nantes, Université de Nantes), 4, rue A. Kastler, 44307

More information

KamLAND. Studying Neutrinos from Reactor

KamLAND. Studying Neutrinos from Reactor KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KEK : High Energy Accelerator Research Organization KamLAND Collaboration Outline 1. KamLAND Overview 2. Reactor Neutrinos 3. e Detection in Liquid

More information

The reactor antineutrino anomaly & experimental status of anomalies beyond 3 flavors

The reactor antineutrino anomaly & experimental status of anomalies beyond 3 flavors The reactor antineutrino anomaly & experimental status of anomalies beyond 3 flavors G. Mention CEA Saclay / Irfu / SPP Rencontres IPhT-SPP, 24 janvier 2012 Overview List of anomalies: LSND MB, anti- Gallium

More information

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University The role of neutrinos in the formation of heavy elements Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What are the fundamental properties of neutrinos? What do they do in astrophysical

More information

X N 1. + e X N+1. + e +

X N 1. + e X N+1. + e + Beta decay: the neutrino One of the most pervasive forms of mauer in the universe, yet it is also one of the most elusive! inverse beta processes Shortly amer publica:on of the Fermi theory of beta decay,

More information

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae I Outline of scenarios for neutron capture nucleosynthesis (Red Giants, Supernovae) and implications for laboratory

More information

Nuclear Theory - Course 127 FISSION

Nuclear Theory - Course 127 FISSION Nuclear Theory - Course 127 FISSION After having looked at neutron reactions in general, we shall use this lesson to describe the fission reaction and its products in some detail. The Fission Reaction

More information

A Trial of Neutrino Detection from Joyo Fast Research Reactor

A Trial of Neutrino Detection from Joyo Fast Research Reactor A Trial of Neutrino Detection from Joyo Fast Research Reactor F.Suekane Tohoku University For KASKA group, made up of; Tohoku Univ., Tokyo Inst. of Tech., Niigata Univ., Tokyo Metropolitan Univ., Tohoku

More information

Sterile Neutrinos with WbLS! detector. Jelena Maricic! University of Hawaii at Manoa! May 17, 2014

Sterile Neutrinos with WbLS! detector. Jelena Maricic! University of Hawaii at Manoa! May 17, 2014 Sterile Neutrinos with WbLS detector Jelena Maricic University of Hawaii at Manoa May 17, 2014 Outline Physics motivation for the very short baseline neutrino oscillations search Concept of the antineutrino

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Neutrinos in Nuclear Physics

Neutrinos in Nuclear Physics Neutrinos in Nuclear Physics R. D. McKeown Jefferson Lab, Newport News, VA, USA Department of Physics, College of William and Mary, Williamsburg, VA, USA DOI: http://dx.doi.org/10.3204/desy-proc-2014-04/305

More information

Recent Discoveries in Neutrino Physics

Recent Discoveries in Neutrino Physics Recent Discoveries in Neutrino Physics Experiments with Reactor Antineutrinos Karsten Heeger http://neutrino.physics.wisc.edu/ Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009 Standard Model and

More information

Role of radioactive beams in stockpile stewardship science

Role of radioactive beams in stockpile stewardship science Role of radioactive beams in stockpile stewardship science Ed Hartouni August 23, 2010 NUCL Symposium Radiochemistry at the Facility for Rare Isotope Beams (FRIB) American Chemical Society Fall National

More information

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012 Observation of Reactor Antineutrinos at RENO Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012 Outline Introduction Experimental setup & detector Data-taking & data

More information

Control of the fission chain reaction

Control of the fission chain reaction Control of the fission chain reaction Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 April 8, 2011 NUCS 342 (Lecture 30) April 8, 2011 1 / 29 Outline 1 Fission chain reaction

More information

Neutrino Masses and Mixing

Neutrino Masses and Mixing Neutrino Masses and Mixing < Why so different??? (Harrison, Perkins, Scott 1999) The Mass Puzzle Seesaw mechanism L R m m D m 2 D M m D M m D L R M Heavy Majorana Neutrino Connection with high mass scales

More information

Prospects for Measuring the Reactor Neutrino Flux and Spectrum

Prospects for Measuring the Reactor Neutrino Flux and Spectrum Prospects for Measuring the Reactor Neutrino Flux and Spectrum Karsten Heeger Yale University as a member of the Daya Bay and PROSPECT collaborations INT, Seattle, November 8, 2013 ν e /MeV/fisson Reactor

More information

arxiv:hep-ex/ v1 15 Aug 2006

arxiv:hep-ex/ v1 15 Aug 2006 The Double Chooz Experiment 1 Daniel M. Kaplan (for the Double Chooz Collaboration) Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois, USA arxiv:hep-ex/0608040v1 15 Aug 2006

More information

New results from RENO and prospects with RENO-50

New results from RENO and prospects with RENO-50 New results from RENO and prospects with RENO-50 Soo-Bong Kim KNRC, Department of Physics and Astronomy, Seoul National University, Seoul 151-742, South Korea Abstract RENO (Reactor Experiment for Neutrino

More information

Some thoughts on Fission Yield Data in Estimating Reactor Core Radionuclide Activities (for anti-neutrino estimation)

Some thoughts on Fission Yield Data in Estimating Reactor Core Radionuclide Activities (for anti-neutrino estimation) Some thoughts on Fission Yield Data in Estimating Reactor Core Radionuclide Activities (for anti-neutrino estimation) Dr Robert W. Mills, NNL Research Fellow for Nuclear Data, UK National Nuclear Laboratory.

More information

Binding Energy and Mass defect

Binding Energy and Mass defect Binding Energy and Mass defect Particle Relative Electric Charge Relative Mass Mass (kg) Charge (C) (u) Electron -1-1.60 x 10-19 5.485779 x 10-4 9.109390 x 10-31 Proton +1 +1.60 x 10-19 1.007276 1.672623

More information

PoS(NEUTEL2017)007. Results from RENO. Soo-Bong Kim. for the RENO collaboration Seoul National University, Republic of Korea

PoS(NEUTEL2017)007. Results from RENO. Soo-Bong Kim. for the RENO collaboration Seoul National University, Republic of Korea for the RENO collaboration Seoul National University, Republic of Korea E-mail: sbk@snu.ac.kr The Reactor Experiment for Neutrino Oscillation (RENO) has been taking data near the Hanbit nuclear power plant

More information

NEUTRINO OSCILLATION EXPERIMENTS AT NUCLEAR REACTORS

NEUTRINO OSCILLATION EXPERIMENTS AT NUCLEAR REACTORS NEUTRINO OSCILLATION EXPERIMENTS AT NUCLEAR REACTORS GIORGIO GRATTA Physics Department, Stanford University, Stanford, CA 94305, USA E-mail: gratta@hep.stanford.edu In this paper I give an overview of

More information

Daya Bay and joint reactor neutrino analysis

Daya Bay and joint reactor neutrino analysis Daya Bay and joint reactor neutrino analysis Logan Lebanowski (Tsinghua University) on behalf of the Daya Bay collaboration 2016/11/4 - NNN16, Beijing 1 Contents Daya Bay Reactor Neutrino Experiment Introduction

More information

Montecarlo simulation to get nuclear composition using neutrino spectrum analysis

Montecarlo simulation to get nuclear composition using neutrino spectrum analysis Angra Neutrino Project AngraNote 009-2009 (Draft) Montecarlo simulation to get nuclear composition using neutrino spectrum analysis H. R. M. Falcon Universidad Michoacana de San Nicolas de Hidalgo - UMSNH,

More information

The Double Chooz Project

The Double Chooz Project The Double Chooz Project Progress and Expected Sensitivity David McKee, KSU 13 17 July 2009 TeVPA @ SLAC Outline I. Neutrino mixing and θ 13 II. Existing θ 13 measurements III. This is hard with a single

More information

Mitchell Institute Neutrino Experiment at a Reactor (MINER) Status and Physics Reach

Mitchell Institute Neutrino Experiment at a Reactor (MINER) Status and Physics Reach Mitchell Institute Neutrino Experiment at a Reactor (MINER) Status and Physics Reach Will Flanagan on behalf of the MINER Collaboration (other collaborators at PPC: Andy Kubik, Nader Mirabolfathi, Fedja

More information

A reference worldwide model for antineutrinos from reactors

A reference worldwide model for antineutrinos from reactors A reference worldwide model for antineutrinos from reactors Marica Baldoncini University of Ferrara INFN In collaboration with Ivan Callegari, Giovanni Fiorentini, Fabio Mantovani, Barbara Ricci, Virginia

More information

7. Fission Products and Yields, ϒ

7. Fission Products and Yields, ϒ 7. Fission Products and Yields, ϒ 7.1 Nuclear Fission Among the processes of nuclear decay, fission is certainly the most complicated. Spontaneous fission (SF) was discovered by Flerov and Petrzhak in1940,

More information

Oscillations Beyond Three-Neutrino Mixing. Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing. Carlo Giunti C. Giunti Oscillations Beyond Three-Neutrino Mixing CNNP07 9 October 07 /3 Oscillations Beyond Three-Neutrino Mixing Carlo Giunti INFN, Torino, Italy CNNP07 Conference on Neutrino and Nuclear Physics Catania,

More information

Observation of Reactor Electron Antineutrino Disappearance & Future Prospect

Observation of Reactor Electron Antineutrino Disappearance & Future Prospect Observation of Reactor Electron Antineutrino Disappearance & Future Prospect Soo-Bong Kim (KNRC, Seoul National University) at Kyungpook National Univ., November 1, 01 Birth of Neutrino Physics in trouble

More information

Searching for Sterile Neutrinos with an Isotope β-decay Source: The IsoDAR Experiment

Searching for Sterile Neutrinos with an Isotope β-decay Source: The IsoDAR Experiment 1 Searching for Sterile Neutrinos with an Isotope β-decay Source: The IsoDAR Experiment Mike Shaevitz - Columbia University Aspen Winter Workshop--New Directions in Neutrino Physics February 8, 2013 Where

More information

Status of the Sterile Neutrino(s) Carlo Giunti

Status of the Sterile Neutrino(s) Carlo Giunti C. Giunti Status of the Sterile Neutrino(s) LNGS 7 September 07 /40 Status of the Sterile Neutrino(s) Carlo Giunti INFN, Torino, Italy Recent Developments in Neutrino Physics and Astrophysics th Anniversary

More information

1 Neutrinos. 1.1 Introduction

1 Neutrinos. 1.1 Introduction 1 Neutrinos 1.1 Introduction It was a desperate attempt to rescue energy and angular momentum conservation in beta decay when Wolfgang Pauli postulated the existence of a new elusive particle, the neutrino.

More information

Prospects of Reactor ν Oscillation Experiments

Prospects of Reactor ν Oscillation Experiments Prospects of Reactor ν Oscillation Experiments F.Suekane RCNS, Tohoku Univ. Erice School 3/09/009 1 Contents * Motivation * Physics of Neutrino Oscillation * Accessible Parameters of Reactor Neutrinos

More information

Nuclear Fission. Q for 238 U + n 239 U is 4.??? MeV. E A for 239 U 6.6 MeV MeV neutrons are needed.

Nuclear Fission. Q for 238 U + n 239 U is 4.??? MeV. E A for 239 U 6.6 MeV MeV neutrons are needed. Q for 235 U + n 236 U is 6.54478 MeV. Table 13.11 in Krane: Activation energy E A for 236 U 6.2 MeV (Liquid drop + shell) 235 U can be fissioned with zero-energy neutrons. Q for 238 U + n 239 U is 4.???

More information

Fission-yield data. Karl-Heinz Schmidt

Fission-yield data. Karl-Heinz Schmidt Fission-yield data Karl-Heinz Schmidt Topical day From nuclear data to a reliable estimate of spent fuel decay heat October 26, 2017 SCK CEN Lakehouse, Mol, Belgium Lay out Introduction Stages of the fission

More information

Observation of Reactor Antineutrino Disappearance at RENO

Observation of Reactor Antineutrino Disappearance at RENO Observation of Reactor Antineutrino Disappearance at RENO Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University (presented at KEK on May 17, 2012) Outline Introduction Experimental setup

More information

Sterile Neutrino Search at the NEOS Experiment. Department of Physics, Chonnam National University, Gwangju 61186, Korea

Sterile Neutrino Search at the NEOS Experiment. Department of Physics, Chonnam National University, Gwangju 61186, Korea Sterile Neutrino Search at the NEOS Experiment, Chang-Hwan Jang, Kim Siyeon Department of Physics, Chung-Ang University, Seoul 06974, Korea E-mail: godpapa7@gmail.com Kyung-Kwang Joo, Ba-Ro Kim Department

More information

Neutrinos & Non-proliferation in Europe

Neutrinos & Non-proliferation in Europe Neutrinos & Non-proliferation in Europe Michel Cribier * APC, Paris CEA/Saclay, DAPNIA/SPP The International Atomic Energy Agency (IAEA) is the United Nations agency in charge of the development of peaceful

More information

Neutrino Experiments with Reactors

Neutrino Experiments with Reactors Neutrino Experiments with Reactors 1 Ed Blucher, Chicago Lecture 2 Reactors as antineutrino sources Antineutrino detection Reines-Cowan experiment Oscillation Experiments Solar Δm 2 (KAMLAND) Atmospheric

More information

Nuclear Chemistry. Decay Reactions The most common form of nuclear decay reactions are the following:

Nuclear Chemistry. Decay Reactions The most common form of nuclear decay reactions are the following: Nuclear Chemistry Nuclear reactions are transmutation of the one element into another. We can describe nuclear reactions in a similar manner as regular chemical reactions using ideas of stoichiometry,

More information

Nuclear Physics. AP Physics B

Nuclear Physics. AP Physics B Nuclear Physics AP Physics B Nuclear Physics - Radioactivity Before we begin to discuss the specifics of radioactive decay we need to be certain you understand the proper NOTATION that is used. To the

More information

The Double Chooz experiment

The Double Chooz experiment The Double Chooz experiment Chris&an Buck, MPIK Heidelberg on behalf of the Double Chooz Collabora&on NOW 2016, Otranto September, 5th 2016 Reactor an&neutrinos 3 MeV reactor antineutrino flux worldwide

More information

arxiv: v1 [hep-ex] 27 Sep 2011

arxiv: v1 [hep-ex] 27 Sep 2011 Search for Sterile Neutrinos with a Radioactive Source at Daya Bay arxiv:1109.6036v1 [hep-ex] 27 Sep 2011 D.A. Dwyer, 1 K.M. Heeger, 2 B.R. Littlejohn, 2 and P. Vogel 1 1 Kellogg Radiation Laboratory and

More information

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element.

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element. I. NUCLEAR PHYSICS I.1 Atomic Nucleus Very briefly, an atom is formed by a nucleus made up of nucleons (neutrons and protons) and electrons in external orbits. The number of electrons and protons is equal

More information

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB Neutrino Oscillation Measurements, Past and Present Art McDonald Queen s University And SNOLAB Early Neutrino Oscillation History -1940 s to 1960 s: - Neutrino oscillations were proposed by Pontecorvo

More information

Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti C. Giunti Oscillations Beyond Three-Neutrino Mixing Moriond EW 07 4 March 07 /3 Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti INFN, Torino, Italy Moriond Electroweak

More information

Nucleosynthesis Process. Ba: s-process Ag, Eu: r-process

Nucleosynthesis Process. Ba: s-process Ag, Eu: r-process Nucleosynthesis Process Ba: s-process Ag, Eu: r-process Ba Ag Eu Nucleosynthesis Process Ba: s-process Ag, Eu: r-process Ba Ag Eu Nucleosynthesis Process Ba: s-process Ag, Eu: r-process Ba Ag Eu 0 Metal-poor

More information

PROSPECTs for Sterile Neutrino Searches at Reactors

PROSPECTs for Sterile Neutrino Searches at Reactors PROSPECTs for Sterile Neutrino Searches at Reactors Pranava Teja Surukuchi Illinois Institute of Technology (on behalf of the PROSPECT collaboration). T. Surukuchi APS April Meeting 2017, Nu HoRIzons VII

More information

Information Nuclide = is an atomic species characterized by the specific constitution of its nucleus (protons and neutrons) Neutron

Information Nuclide = is an atomic species characterized by the specific constitution of its nucleus (protons and neutrons) Neutron NAME: DUE DATE: JULY nd AP Chemistry SUMMER REV: Balancing Nuclear Reactions Why? Nuclear reactions are going on all around us in the form of transmutation, fission and fusion. Using correctly balanced

More information

Lecture 18. Neutrinos. Part IV Neutrino mass and Sterile Neutrinos

Lecture 18. Neutrinos. Part IV Neutrino mass and Sterile Neutrinos Neutrinos Part IV Neutrino mass and Sterile Neutrinos Measuring the Neutrino Mass Recall the beta spectrum You solved for massless neutrinos (in exam I) But neutrino mass carries away some energy Reduces

More information

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL SURROGATE REACTIONS An overview of papers by Jason Burke from LLNL Compound Nuclear Reaction cross sections Cross sections for compound-nuclear reactions are required input for astrophysical models and

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics III: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt Tokyo, November 18, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Tokyo, November 18, 2008

More information

Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

Recent Results from RENO & Future Project RENO-50

Recent Results from RENO & Future Project RENO-50 Recent Results from RENO & Future Project RENO-50 Sunny (Seon-Hee) Seo Seoul National University Feb. 15, 2014 KIAS- NCTS Joint Workshop 2014 @High1 Neutrino Oscillation Pontecorvo 1957 MNS 1967 Solar

More information

Probing Neutrino Oscillations At Very Short Baselines with Reactors and Radioactive Sources

Probing Neutrino Oscillations At Very Short Baselines with Reactors and Radioactive Sources Probing Neutrino Oscillations At Very Short Baselines with Reactors and Radioactive Sources Savannah River Karsten Heeger University of Wisconsin Aspen, February 8, 2013 1 Neutrino Anomalies and Sterile

More information

Observation of Electron Antineutrino Disappearance at Daya Bay

Observation of Electron Antineutrino Disappearance at Daya Bay Observation of Electron Antineutrino Disappearance at Daya Bay Karsten M. Heeger, University of Wisconsin on behalf of the Daya Bay collaboration 1 Neutrino Physics at Reactors Next - Discovery and precision

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Nuclear Reactions in Stellar Interiors Binding Energy Coulomb Barrier Penetration Hydrogen Burning Reactions

More information

arxiv: v1 [hep-ph] 12 Jan 2018

arxiv: v1 [hep-ph] 12 Jan 2018 Extraction of neutrino mixing parameters from experiments with multiple identical detectors Fu-Guang Cao 1 and William S. Marks 1 1 Institute of Fundamental Sciences, Massey University, arxiv:1801.04051v1

More information

Neutrino Experiment. Wei Wang NEPPSR09, Aug 14, 2009

Neutrino Experiment. Wei Wang NEPPSR09, Aug 14, 2009 Search for at the Daya Bay Neutrino Experiment, Aug 14, 2009 Outline Neutrino oscillation and the search for θ 13 The Daya Bay neutrino experiment - Design of the Daya Bay detector - Systematic uncertainty

More information

Review A Z. a particle. proton. neutron. electron e -1. positron. e +1. Mass Number Atomic Number. Element Symbol

Review A Z. a particle. proton. neutron. electron e -1. positron. e +1. Mass Number Atomic Number. Element Symbol Nuclear Chemistry 1 Review Atomic number (Z) = number of protons in nucleus Mass number (A) = number of protons + number of neutrons = atomic number (Z) + number of neutrons Mass Number Atomic Number A

More information

Introduction to Nuclear Engineering

Introduction to Nuclear Engineering 2016/9/27 Introduction to Nuclear Engineering Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@n.t.u-tokyo.ac.jp 1 References Nuclear Physics basic properties of nuclei nuclear

More information

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions. 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Chapter VIII: Nuclear fission

Chapter VIII: Nuclear fission Chapter VIII: Nuclear fission 1 Summary 1. General remarks 2. Spontaneous and induced fissions 3. Nucleus deformation 4. Mass distribution of fragments 5. Number of emitted electrons 6. Radioactive decay

More information

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV SOLAR NEUTRINOS Solar spectrum Nuclear burning in the sun produce Heat, Luminosity and Neutrinos pp neutrinos < 0.4 MeV Beryllium neutrinos 0.86 MeV Monochromatic since 2 body decay 2 kev width due to

More information

O WILEY- MODERN NUCLEAR CHEMISTRY. WALTER D. LOVELAND Oregon State University. DAVID J. MORRISSEY Michigan State University

O WILEY- MODERN NUCLEAR CHEMISTRY. WALTER D. LOVELAND Oregon State University. DAVID J. MORRISSEY Michigan State University MODERN NUCLEAR CHEMISTRY WALTER D. LOVELAND Oregon State University DAVID J. MORRISSEY Michigan State University GLENN T. SEABORG University of California, Berkeley O WILEY- INTERSCIENCE A JOHN WILEY &

More information

arxiv: v1 [hep-ex] 14 May 2015

arxiv: v1 [hep-ex] 14 May 2015 arxiv:1505.03641v1 [hep-ex] 14 May 2015 Recent Results from Daya Bay Reactor Neutrino Experiment B. Z. HU on behalf of the Daya Bay collaboration Department of Physics, National Taiwan University, No.

More information

Numerical analysis on element creation by nuclear transmutation of fission products

Numerical analysis on element creation by nuclear transmutation of fission products NUCLEAR SCIENCE AND TECHNIQUES 26, S10311 (2015) Numerical analysis on element creation by nuclear transmutation of fission products Atsunori Terashima 1, and Masaki Ozawa 2 1 Department of Nuclear Engineering,

More information