+ γ3 A = I + A 1 (1 + γ + γ2. = I + A 1 ( t H O M E W O R K # 4 Sebastian A. Nugroho October 5, 2017

Size: px
Start display at page:

Download "+ γ3 A = I + A 1 (1 + γ + γ2. = I + A 1 ( t H O M E W O R K # 4 Sebastian A. Nugroho October 5, 2017"

Transcription

1 THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 543 LINEAR SYSTEMS AND CONTROL H O M E W O R K # 4 Sebasian A. Nugroho Ocober 5, 27 The objecive of his homework is o es your undersanding of he conen of Module 4. Due dae of he homework is: Thursday, Ocober :59pm.. Consider he following ime-varying sysem: (a) Find he sae ransiion marix. ẋ() + + x(). (b) Now assume ha he sysem sars from an unknown x() Also, assume ha x 2 ( 4). Given his, find x 2 (). x (), where x x 2 () (). (c) Afer obaining x 2 () and given x (), find a general from of x() saring x() as iniial condiions. (d) Wha happens o x () and x 2 () as? Answer: (a) Realize ha where A() A 2 A A β ()A,, hence, A is idempoen. Now, we need o evaluae he following inegral β (τ) dτ + dτ ( + dτ ln + ). + The sae ransiion marix now can be formulaed as where γ ln ( + + β Φ(, ) e (τ)a dτ ln e ) and Φ(, ) e γa (γa ) i i! i I + γa + γ2 A 2! ( + + I + γa + γ2 A 2 2! + γ3 A 3! ) A e γa, γ3 A 3 3! I + A ( + γ + γ2 2! + γ3 3! +... ) I + A (e γ ) I + A ( + + ) ( + )

2 (b) We know ha he soluion is given as x() Φ(, )x( ). Now, for 4 and wih x () and x 2 (4), we have x x (4) 4+ () x 2 (4) 4+ x 2 () x (4) x 2 () x (4) x. 2() We finally ge x 2 () 5. (c) The general form of x() is (d) As, we ge lim x x () + x 2 () + 5 x () x 2 () x () x 2 () lim x + lim x ( The STM of ẋ() A()x() is given as follows: ( ) + φ(, ) e 2 2 ln +. ) 5 6. (a) Given any STM, how can you obain A() back? Prove ha A() φ(, ) for any LTV sysem. (b) For he STM given in his problem, obain A(). (c) Find φ (, ) Answer: (a) Proof: Φ(, ) d d Φ(, ) d d e A(τ) dτ ( d I + A(τ) dτ + ( ) 2 A(τ) dτ + ( ) 3 A(τ) dτ +...) d 2! 3! d ( ) d A(τ) dτ + A(τ) dτ A(τ) dτ + ( ) 2 d A(τ) dτ A(τ) dτ +... d d 2! d ( ) A() + A(τ) dτ A() + ( ) 2 A(τ) dτ A() + ( ) 3 A(τ) dτ A() +..., 2! 3! since A() commues wih is inegral, hen ( ) Φ(, ) A() + A() A(τ) dτ + ( ) 2 2! A() A(τ) dτ + ( ) 3 3! A() A(τ) dτ +... ( A() I + A(τ) dτ + ( ) 2 A(τ) dτ + ( ) 3 A(τ) dτ +...) 2! 3! A(τ) dτ A()e A()Φ(, ), 2

3 seing, and knowing he fac ha Φ(, ) I, we ge Φ(, ) A()Φ(, ) A() (b) Since ( ) + φ(, ) e 2 2 ln +, hen he derivaive of φ(, ) is ( ) + φ(, ) d d Φ(, ) 2e 2 2 ln + ( ) + 2e2 2 2e 2 2 ln + e e e Seing yields which implies φ(, ) 2 +, 2 A() (c) φ (, ) can be compued as 3. The following sysem φ (, ) φ(, ) ( ) e 2 2 ln + + ( ) e2 2 e ln +. e 2 2 ẋ() A()x() + e α2 () π u(). The STM for his sysem is given by: φ(, ) e α2 ( ) α 2 (). cos(π) cos(π ) (a) Compue A(). (b) Deermine he inverse of he STM. (c) Find x() if x( ) and u(). Answer: 3

4 (a) The derivaive of φ(, ) can be compued as Φ(, ) d d φ(, ) 2α() α()e α2 ( ) α 2 () 2α() α()e α2 ( ) α 2 () (cos(π) cos(π )) + e α2 ( ) α 2 () (π sin(π)) 2α() α()e α2 ( ) α 2, () seing, hen we ge 2α() α() A() Φ(, ). π sin(π) 2α() α() (b) φ (, ) φ(, ) e α2 () α 2 ( ) cos(π ) cos(π) e α2 () α 2 ( ) e α2 () α 2 ( ) (cos(π ) cos(π)) e α2 () α 2. ( ) (c) The soluion is given as x() Φ(, )x( ) + Φ(, τ)b(τ)u(τ) dτ, for and x(), hen e x() α2 (τ) α 2 () e α2 (τ) α 2 () (cos(π) cos(πτ)) πe α2 () πe α2 () dτ (cos(π) cos(πτ)) πτe α2 () πτe α2 () cos(π) e α2 () sin(πτ)) πe α2 () πe α2 () cos(π) e α2 () sin(π) πe α2 () e α2 (). (π cos(π) sin(π)) e α2 (τ) α 2 () πe α 2 (τ) () dτ 4. Find he STM associaed wih sin() cos() β A() sin() cos(). sin() Answer: sin() cos() β A() sin() cos() sin() + cos() + β. sin() Now, he followings mus be compued sin(τ) dτ cos() + cos( ) cos(τ) dτ sin() sin( ) 4

5 β dτ β( ) and he exponenial marices Since A is ideniy, hen e cos()+cos( ) sin(τ)a e dτ e cos()+cos( ) I e cos()+cos(). e cos()+cos() Noice ha A 2 is nilpoen for k 3, hus cos(τ)a e 2 dτ I + A2 (sin() sin( )) + 2! A2 2 (sin() sin()) 2 + (sin() sin( )) + (sin() sin( )) 2 2! sin() sin( ) 2 (sin() sin( )) 2 sin() sin( ). Noice ha A 3 is nilpoen for k 2, hus e Because A, A 2, and A 3 commue, hen A(τ) dτ Φ(, ) e e βa 3 dτ I + A3 β( ) + β( ) β( ). sin(τ)a dτ e cos(τ)a 2 dτ e e cos()+cos() βa 3 dτ sin() sin( ) 2 (sin() sin( )) 2 sin() sin( ) β( ). 5. Consider he following dynamical sysem: A () A ẋ() 2 () x(). A 22 () (a) Derive his srucure for he STM: φ(, ) φ (, ) φ 2 (, ). φ 22 (, ) You should basically show ha φ ii (, ) A ii ()φ ii (, ), and hen show a explici form for φ 2 (, ). Hin: Remember ha φ(, ) A()φ(, ) and φ(, ) I. You should use ha o prove he following resul: φ 2 (, ) φ (, τ)a 2 (τ)φ 22 (τ, )dτ. 5

6 (b) Assume ha he dynamics for a sysem are given by: 2 ẋ() x() + u(). 2 Answer: Use he resuls you developed in par (a) o deermine x() giving ha he iniial condiions for he sysem are zero, and u(), wihou evaluaing his inegral φ(, τ)b(τ)u(τ)dτ. (a) Since φ(, ) A()φ(, ), hen φ (, ) φ 2 (, ) φ 22 (, ) φ(, ) A()φ(, ) A () A φ(, ) 2 () φ (, ) φ 2 (, ) A 22 () φ 22 (, ) A ()φ (, ) A ()φ 2 (, ) + A 2 ()φ 22 (, ) A 22 ()φ 22 (, ) From he above, i is apparen ha φ ii (, ) A ii ()φ ii (, ). Now, we need o show he explici form of φ 2 (, ). From he above, we also have Pre-muliply wih φ (, ) yields φ 2 (, ) A ()φ 2 (, ) + A 2 ()φ 22 (, ). φ (, ) φ 2 (, ) φ (, )A ()φ 2 (, ) φ (, )A 2 ()φ 22 (, ). Realize ha φ (, ) is equal o φ (, ) d d e ( d d A (τ) dτ I + A (τ) dτ + ( 2! ( d A d (τ) dτ + + ( ) 2 d A 2! (τ) dτ d ( A () A (τ) dτ 3! ( Hence, we have A (τ) dτ ( 3 A (τ) dτ) A ()... I + A (τ) dτ + 2! φ (, )A (). ) 2 A (τ) dτ + 3! ) d d A (τ) dτ +... A (τ) dτ. ( ) 3 A (τ) dτ) +... ) A () ( 2 A 2! (τ) dτ) A () ( ) 2 A (τ) dτ + ( ) 3 A 3! (τ) dτ) +... φ (, ) φ 2 (, ) + φ (, )φ 2 (, ) φ (, )A 2 ()φ 22 (, ) d d (φ (, )φ 2 (, )) φ (, )A 2 ()φ 22 (, ) d (φ (, τ)φ 2 (τ, )) φ (, )φ 2 (, ) I 6 φ (, τ)a 2 (τ)φ 22 (τ, ) dτ φ (, τ)a 2 (τ)φ 22 (τ, ) dτ. A ()

7 Pre-muliply wih φ (, ) yields φ 2 (, ) φ (, ) + φ (, τ)a 2 (τ)φ 22 (τ, ) dτ. This resul is slighly differen han he one in he problem. I will be equivalen if we have φ (, ). (b) The sae ransiion marix is φ 2 (, ) φ (, τ)a 2 (τ)φ 22 (τ, ) dτ 2τ dτ 2 2. Then for a sysem wih zero iniial condiion, x() 2 τ 2 dτ 2τ 2 2 τ 2τ 3 dτ 2τ 2 τ 2 2 τ4 τ Building on he heoreical resuls from Problem 5, find he STM for A() You should use he resul you proved in Problem 5: Answer: φ 2 (, ) φ (, τ)a 2 (τ)φ 22 (τ, )dτ. φ 2 (, ) φ (, τ)a 2 (τ)φ 22 (τ, )dτ 2 τ 2τ 2 dτ 2 2τ 2 τ 2 τ 2 2τ τ 2τ 2( ) 2 ( 2 2 ) 2 2 2( ). 2( ) 7. You are given he following sysem: a() b() c() ẋ() λ()i + a() b() c() x() + u(), a() b() c() where M() denoes he derivaive of he marix, i.e., derivaive of he individual enries of he marix. 7

8 (a) Assume ha a() + b() + c() for all. Find a simple expression for φ(, ). (b) Given ha he conrol inpu is u() 2e λ(), and ha x(2) Answer:, obain x(). (a) Realize ha a() b() c() A() λ()i + a() b() c() a() b() c() A () + A 2 (), where A () and A 2 () commue. To compue is sae ransiion marix, we need o evaluae he following exponenial marices and e λ() λ( ) A e (τ) dτ e λ() dτ I e λ() λ(), e λ() λ() A e 2 (τ) dτ I + A 2 (τ) dτ + ( ) 2 A 2 (τ) dτ + ( ) 3 A 2 (τ) dτ ! 3! For he laer, firs we need o compue a() A 2 (τ) dτ a( ) b() b( ) c() c( ) a() a( ) b() b( ) c() c( ). a() a( ) b() b( ) c() c( ) Since a() + b() + c(), hen a() A 2 (τ) dτ a( ) b() b( ) a() b() + a( ) + b( ) a() a( ) b() b( ) a() b() + a( ) + b( ). a() a( ) b() b( ) a() b() + a( ) + b( ) We know ha he above marix is nilpoen for k 2, hus A e 2 (τ) dτ I + A 2 (τ) dτ + a() a( ) b() b( ) a() b() + a( ) + b( ) a() a( ) + b() b( ) a() b() + a( ) + b( ). a() a( ) b() b( ) a() b() + a( ) + b( ) The sae ransiion marix can now be formulaed as A Φ(, ) e (τ) dτ e A 2 (τ) dτ e λ() λ() + a() a( ) b() b( ) a() b() + a( ) + b( ) a() a( ) + b() b( ) a() b() + a( ) + b( ). a() a( ) b() b( ) a() b() + a( ) + b( ) 8

9 (b) The soluion of he above sysem is compued as follows x() Φ(, )x() + Φ(, τ)b(τ)u(τ) dτ + a() a() b() b() a() b() + a() + b() e λ() λ() a() a() + b() b() a() b() + a() + b() x() a() a() b() b() a() b() + a() + b() + a() a(τ) b() b(τ) a() b() + a(τ) + b(τ) + e λ() λ(τ) a() a(τ) + b() b(τ) a() b() + a(τ) + b(τ) a() a(τ) b() b(τ) a() b() + a(τ) + b(τ) (2e λ(τ) ) dτ + a() a() b() b() a() b() + a() + b() e λ() λ() a() a() + b() b() a() b() + a() + b() x() a() a() b() b() a() b() + a() + b() + 2e λ() 2e λ() 2e λ() dτ + a() a() b() b() a() b() + a() + b() e λ() λ() a() a() + b() b() a() b() + a() + b() x() a() a() b() b() a() b() + a() + b() 2τe λ() + 2τe λ() 2τe λ() + a() a() b() b() a() b() + a() + b() e λ() λ() a() a() + b() b() a() b() + a() + b() x() a() a() b() b() a() b() + a() + b() 2e λ() + 2e λ(). 2e λ() Subsiuing 2 and x(2) yields + a(2) a() b(2) b() a(2) b(2) + a() + b() e λ(2) λ() a(2) a() + b(2) b() a(2) b(2) + a() + b() x () 4e λ(2) x 2 () + 4e λ(2) a(2) a() b(2) b() a(2) b(2) + a() + b() x 3 () 4e λ(2) ( + a(2) a())x () + (b(2) b())x 2 () + ( a(2) b(2) + a() + b())x 3 () + 4e λ() e λ(2) λ() (a(2) a())x () + ( + b(2) b())x 2 () + ( a(2) b(2) + a() + b())x 3 () + 4e λ() (a(2) a())x () + (b(2) b())x 2 () + ( a(2) b(2) + a() + b())x 3 () + 4e λ() From he above equaion, one can obain x() where such ha x () x 2 () x 3 () 4eλ() e λ(2) λ(), x() x () x 2 () x 3 () 4e λ() e λ(2) λ() 4e λ() e λ(2) λ() 4e λ() e λ(2) λ(). 9

10 8. Using MATLAB, generae a random LTI dynamical sysem of saes, 5 conrol inpus, and 3 oupus. Simulae he sysem given ha he inpus are square(), sin(), cos() and he iniial condiions for he sysem are idenically zero. Firs, simulae he sysem using he ode45 solver. Then, apply he wo discreizaion mehods we discussed in class wih variable sampling periods. For example rying sampling periods of T.,., and 5 seconds. Discuss he oucome ha you ge beween he accurae ODE solver and wo discreizaion mehods. Is he discreizaion always accurae? When does i fail (if i does)? Include your code, plos, and a horough analysis of he resuls. Answer: Here, a randomly-generaed sable sysem is used. The inpu is a combinaion of sine, cosine, and square waves. The oupu of he LTI sysem is depiced in Fig.. The firs DTI is obained by applying he forward Euler discreizaion mehod. Here, several sampling periods are sudied. The oupu of his DTI sysem is given in Fig. 2. The second DTI is derived using he exac discreizaion mehod. I s oupu is given in Fig. 3. From hese figures, i is apparen ha for all DTI sysems, he ones wih smalles sampling period, which is Ts. s, have oupus ha are similar o ha of he LTI sysem. As he sampling period increases, he DTI sysems fail o give he same oupus as he LTI sysem. This happens because he approximaion of he LTI sysem in discree-ime is worse. A Ts.5 s, he firs DTI sysem compleely fails, hence i gives unsable oupu rajecory, whereas he second DTI sysem sill gives sable oupu rajecory, even if he oupu is much differen compared o he LTI sysem. This shows he superioriy of he exac discreizaion mehod over he simpler Euler discreizaion mehod. The MATLAB code is given below Figure : Oupu rajecory of he LTI sysem. %% Sysem Iniializaion clear all close all %Figure index

11 Figure 2: Oupu rajecory of he DTI sysem discreized by forward Euler mehod. figidx ; %Size sys.n ; sys.m 5; sys.p 3; %Random number inerval l -4; u 4; %Creae random marix sys.a l + (u-l)*rand(sys.n,sys.n); sys.b l + (u-l)*rand(sys.n,sys.m); sys.c l + (u-l)*rand(sys.p,sys.n); %Ge a sable A for i :sys.n sys.a(i,i) -5 + (--(-5))*rand(,); %Save sysem save( sysem_daa.ma, sys ) %Iniial condiion x zeros(sys.n,); %% LTI Sysem

12 Figure 3: Oupu rajecory of he DTI sysem discreized by exac discreizaion mehod. %Inerval ff 2; period.; span :period:ff; %ODE, x ode45(@model, span, x,, sys); %Generae y y zeros(lengh(),sys.p); for i:lengh() x x(i,:) ; y(i,:) sys.c*x; figure(figidx); figidx figidx + ; fs 6; se(gcf, numberile, off, name, Norm ) plo(,y(:,), r,,y(:,2), g,,y(:,3), b,... LineWidh,3); ile( LTI Sysem, Inerpreer, laex ) grid on xlabel( $\exrm{time\,(seconds)}$, inerpreer, laex, FonName, Times New Roman, FonSize,f ylabel( $y()$, inerpreer, laex, FonName, Times New Roman, FonSize,fs); se(gca, FonName, Times New Roman, fonsize,fs); h leg( $y_()$, $y_2()$, $y_3()$, Locaion, norheas ); se(h, Inerpreer, laex ) se(h, Fonsize,fs) 2

13 se(gcf, color, w ); %% DTI Based On Forward Euler Discreizaion Mehod, Ts. s %Time sampling Ts.; %Discreize Ad eye(sys.n)+sys.a*ts; Bd sys.b*ts; Cd sys.c; %Inerval ff 2; period.; span :period:ff; %Conrol inpu u ; for i:lengh(span) u sin(span(:,i)); cos(span(:,i)); square(span(:,i)); cos(span(:,i)); sin(span(:,i)); u u; u ; %sar simulaion x ; y ; xk x; for i:lengh(span) xkk Ad*xk + Bd*u(i,:) ; yk Cd*xk; x x; xkk ; y y; yk ; xk xkk; figure(figidx); %figidx figidx+; fs 6; se(gcf, numberile, off, name, Norm ) subplo(,3,); plo(span,y(:,), r,span,y(:,2), g,span,y(:,3), b,... LineWidh,3); ile({ DTI Sysem wih Euler Discreizaion Mehod, Ts. s }, Inerpreer, laex ) grid on xlabel( $\exrm{time\,(seconds)}$, inerpreer, laex, FonName, Times New Roman, FonSize,f ylabel( $y(k)$, inerpreer, laex, FonName, Times New Roman, FonSize,fs); se(gca, FonName, Times New Roman, fonsize,fs); h leg( $y_(k)$, $y_2(k)$, $y_3(k)$, Locaion, norheas ); se(h, Inerpreer, laex ) se(h, Fonsize,fs) se(gcf, color, w ); %% DTI Based On Forward Euler Discreizaion Mehod, Ts. s %Time sampling 3

14 Ts.; %Discreize Ad eye(sys.n)+sys.a*ts; Bd sys.b*ts; Cd sys.c; %Inerval ff 2; period.; span :period:ff; %Conrol inpu u ; for i:lengh(span) u sin(span(:,i)); cos(span(:,i)); square(span(:,i)); cos(span(:,i)); sin(span(:,i)); u u; u ; %sar simulaion x ; y ; xk x; for i:lengh(span) xkk Ad*xk + Bd*u(i,:) ; yk Cd*xk; x x; xkk ; y y; yk ; xk xkk; figure(figidx); %figidx figidx + ; fs 6; se(gcf, numberile, off, name, Norm ) subplo(,3,2); plo(span,y(:,), r,span,y(:,2), g,span,y(:,3), b,... LineWidh,3); ile({ Ts. s }, Inerpreer, laex ) grid on xlabel( $\exrm{time\,(seconds)}$, inerpreer, laex, FonName, Times New Roman, FonSize,f ylabel( $y(k)$, inerpreer, laex, FonName, Times New Roman, FonSize,fs); se(gca, FonName, Times New Roman, fonsize,fs); h leg( $y_(k)$, $y_2(k)$, $y_3(k)$, Locaion, norheas ); se(h, Inerpreer, laex ) se(h, Fonsize,fs) se(gcf, color, w ); %% DTI Based On Forward Euler Discreizaion Mehod, Ts.5 s %Time sampling Ts.5; %Discreize Ad eye(sys.n)+sys.a*ts; 4

15 Bd sys.b*ts; Cd sys.c; %Inerval ff 2; period.; span :period:ff; %Conrol inpu u ; for i:lengh(span) u sin(span(:,i)); cos(span(:,i)); square(span(:,i)); cos(span(:,i)); sin(span(:,i)); u u; u ; %sar simulaion x ; y ; xk x; for i:lengh(span) xkk Ad*xk + Bd*u(i,:) ; yk Cd*xk; x x; xkk ; y y; yk ; xk xkk; figure(figidx); figidx figidx + ; fs 6; se(gcf, numberile, off, name, Norm ) subplo(,3,3); plo(span,y(:,), r,span,y(:,2), g,span,y(:,3), b,... LineWidh,3); ile({ Ts.5 s }, Inerpreer, laex ) grid on xlabel( $\exrm{time\,(seconds)}$, inerpreer, laex, FonName, Times New Roman, FonSize,f ylabel( $y(k)$, inerpreer, laex, FonName, Times New Roman, FonSize,fs); se(gca, FonName, Times New Roman, fonsize,fs); h leg( $y_(k)$, $y_2(k)$, $y_3(k)$, Locaion, norheas ); se(h, Inerpreer, laex ) se(h, Fonsize,fs) se(gcf, color, w ); %% DTI Based On Exac Discreizaion Mehod, Ts. s %Time sampling Ts.; %Discreize Ad expm(sys.a*ts); Bd inv(sys.a)*(ad-eye(sys.n))*sys.b; Cd sys.c; %Inerval ff 2; 5

16 period.; span :period:ff; %Conrol inpu u ; for i:lengh(span) u sin(span(:,i)); cos(span(:,i)); square(span(:,i)); cos(span(:,i)); sin(span(:,i)); u u; u ; %sar simulaion x ; y ; xk x; for i:lengh(span) xkk Ad*xk + Bd*u(i,:) ; yk Cd*xk; x x; xkk ; y y; yk ; xk xkk; figure(figidx); %figidx figidx + ; fs 6; se(gcf, numberile, off, name, Norm ) subplo(,3,); plo(span,y(:,), r,span,y(:,2), g,span,y(:,3), b,... LineWidh,3); ile({ DTI Sysem wih Exac Discreizaion Mehod, Ts. s }, Inerpreer, laex ) grid on xlabel( $\exrm{time\,(seconds)}$, inerpreer, laex, FonName, Times New Roman, FonSize,f ylabel( $y(k)$, inerpreer, laex, FonName, Times New Roman, FonSize,fs); se(gca, FonName, Times New Roman, fonsize,fs); h leg( $y_(k)$, $y_2(k)$, $y_3(k)$, Locaion, norheas ); se(h, Inerpreer, laex ) se(h, Fonsize,fs) se(gcf, color, w ); %% DTI Based On Exac Discreizaion Mehod, Ts. s %Time sampling Ts.; %Discreize Ad expm(sys.a*ts); Bd inv(sys.a)*(ad-eye(sys.n))*sys.b; Cd sys.c; %Inerval ff 2; period.; span :period:ff; %Conrol inpu u ; 6

17 for i:lengh(span) u sin(span(:,i)); cos(span(:,i)); square(span(:,i)); cos(span(:,i)); sin(span(:,i)); u u; u ; %sar simulaion x ; y ; xk x; for i:lengh(span) xkk Ad*xk + Bd*u(i,:) ; yk Cd*xk; x x; xkk ; y y; yk ; xk xkk; figure(figidx); %figidx figidx + ; fs 6; se(gcf, numberile, off, name, Norm ) subplo(,3,2); plo(span,y(:,), r,span,y(:,2), g,span,y(:,3), b,... LineWidh,3); ile({ Ts. s }, Inerpreer, laex ) grid on xlabel( $\exrm{time\,(seconds)}$, inerpreer, laex, FonName, Times New Roman, FonSize,f ylabel( $y(k)$, inerpreer, laex, FonName, Times New Roman, FonSize,fs); se(gca, FonName, Times New Roman, fonsize,fs); h leg( $y_(k)$, $y_2(k)$, $y_3(k)$, Locaion, norheas ); se(h, Inerpreer, laex ) se(h, Fonsize,fs) se(gcf, color, w ); %% DTI Based On Exac Discreizaion Mehod, Ts.5 s %Time sampling Ts.5; %Discreize Ad expm(sys.a*ts); Bd inv(sys.a)*(ad-eye(sys.n))*sys.b; Cd sys.c; %Inerval ff 2; period.; span :period:ff; %Conrol inpu u ; for i:lengh(span) u sin(span(:,i)); cos(span(:,i)); square(span(:,i)); cos(span(:,i)); sin(span(:,i)); u u; u ; 7

18 %sar simulaion x ; y ; xk x; for i:lengh(span) xkk Ad*xk + Bd*u(i,:) ; yk Cd*xk; x x; xkk ; y y; yk ; xk xkk; figure(figidx); figidx figidx + ; fs 6; se(gcf, numberile, off, name, Norm ) subplo(,3,3); plo(span,y(:,), r,span,y(:,2), g,span,y(:,3), b,... LineWidh,3); ile({ Ts.5 s }, Inerpreer, laex ) grid on xlabel( $\exrm{time\,(seconds)}$, inerpreer, laex, FonName, Times New Roman, FonSize,f ylabel( $y(k)$, inerpreer, laex, FonName, Times New Roman, FonSize,fs); se(gca, FonName, Times New Roman, fonsize,fs); h leg( $y_(k)$, $y_2(k)$, $y_3(k)$, Locaion, norheas ); se(h, Inerpreer, laex ) se(h, Fonsize,fs) se(gcf, color, w ); %% LTI Sysem Model %Sysem model funcion xdo model(, x, sys) %% % Conrol inpu u sin(); cos(); square(); cos(); sin(); % Sysem xdo sys.a*x + sys.b*u; 8

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

MAE143A Signals & Systems - Homework 2, Winter 2014 due by the end of class Thursday January 23, 2014.

MAE143A Signals & Systems - Homework 2, Winter 2014 due by the end of class Thursday January 23, 2014. MAE43A Signals & Sysems - Homework, Winer 4 due by he end of class Thursday January 3, 4. Quesion Zener diode malab [Chaparro Quesion.] A zener diode circui is such ha an oupu corresponding o an inpu v

More information

EE363 homework 1 solutions

EE363 homework 1 solutions EE363 Prof. S. Boyd EE363 homework 1 soluions 1. LQR for a riple accumulaor. We consider he sysem x +1 = Ax + Bu, y = Cx, wih 1 1 A = 1 1, B =, C = [ 1 ]. 1 1 This sysem has ransfer funcion H(z) = (z 1)

More information

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that ODEs, Homework #4 Soluions. Check ha y ( = is a soluion of he second-order ODE ( cos sin y + y sin y sin = 0 and hen use his fac o find all soluions of he ODE. When y =, we have y = and also y = 0, so

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

EE 301 Lab 2 Convolution

EE 301 Lab 2 Convolution EE 301 Lab 2 Convoluion 1 Inroducion In his lab we will gain some more experience wih he convoluion inegral and creae a scrip ha shows he graphical mehod of convoluion. 2 Wha you will learn This lab will

More information

ME 452 Fourier Series and Fourier Transform

ME 452 Fourier Series and Fourier Transform ME 452 Fourier Series and Fourier ransform Fourier series From Joseph Fourier in 87 as a resul of his sudy on he flow of hea. If f() is almos any periodic funcion i can be wrien as an infinie sum of sines

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Announcements: Warm-up Exercise:

Announcements: Warm-up Exercise: Fri Apr 13 7.1 Sysems of differenial equaions - o model muli-componen sysems via comparmenal analysis hp//en.wikipedia.org/wiki/muli-comparmen_model Announcemens Warm-up Exercise Here's a relaively simple

More information

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction EE-202/445, 3/18/18 9-1 R. A. DeCarlo Lecures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS I. Inroducion 1. The biquadraic ransfer funcion has boh a 2nd order numeraor and a 2nd order denominaor:

More information

to have roots with negative real parts, the necessary and sufficient conditions are that:

to have roots with negative real parts, the necessary and sufficient conditions are that: THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 543 LINEAR SYSTEMS AND CONTROL H O M E W O R K # 7 Sebastian A. Nugroho November 6, 7 Due date of the homework is: Sunday, November 6th @ :59pm.. The following

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

Math Final Exam Solutions

Math Final Exam Solutions Mah 246 - Final Exam Soluions Friday, July h, 204 () Find explici soluions and give he inerval of definiion o he following iniial value problems (a) ( + 2 )y + 2y = e, y(0) = 0 Soluion: In normal form,

More information

Ordinary dierential equations

Ordinary dierential equations Chaper 5 Ordinary dierenial equaions Conens 5.1 Iniial value problem........................... 31 5. Forward Euler's mehod......................... 3 5.3 Runge-Kua mehods.......................... 36

More information

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction /9/ Coninuous Time Linear Time Invarian (LTI) Sysems Why LTI? Inroducion Many physical sysems. Easy o solve mahemaically Available informaion abou analysis and design. We can apply superposiion LTI Sysem

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

Math 4600: Homework 11 Solutions

Math 4600: Homework 11 Solutions Mah 46: Homework Soluions Gregory Handy [.] One of he well-known phenomenological (capuring he phenomena, bu no necessarily he mechanisms) models of cancer is represened by Gomperz equaion dn d = bn ln(n/k)

More information

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples EE263 Auumn 27-8 Sephen Boyd Lecure 1 Overview course mechanics ouline & opics wha is a linear dynamical sysem? why sudy linear sysems? some examples 1 1 Course mechanics all class info, lecures, homeworks,

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

6.003 Homework #8 Solutions

6.003 Homework #8 Solutions 6.003 Homework #8 Soluions Problems. Fourier Series Deermine he Fourier series coefficiens a k for x () shown below. x ()= x ( + 0) 0 a 0 = 0 a k = e /0 sin(/0) for k 0 a k = π x()e k d = 0 0 π e 0 k d

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow KEY Mah 334 Miderm III Winer 008 secion 00 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mar Fowler Noe Se #1 C-T Signals: Circuis wih Periodic Sources 1/1 Solving Circuis wih Periodic Sources FS maes i easy o find he response of an RLC circui o a periodic source!

More information

Unsteady Flow Problems

Unsteady Flow Problems School of Mechanical Aerospace and Civil Engineering Unseady Flow Problems T. J. Craf George Begg Building, C41 TPFE MSc CFD-1 Reading: J. Ferziger, M. Peric, Compuaional Mehods for Fluid Dynamics H.K.

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions 8-90 Signals and Sysems Profs. Byron Yu and Pulki Grover Fall 07 Miderm Soluions Name: Andrew ID: Problem Score Max 0 8 4 6 5 0 6 0 7 8 9 0 6 Toal 00 Miderm Soluions. (0 poins) Deermine wheher he following

More information

Solutions - Midterm Exam

Solutions - Midterm Exam DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERITY OF NEW MEXICO ECE-34: ignals and ysems ummer 203 PROBLEM (5 PT) Given he following LTI sysem: oluions - Miderm Exam a) kech he impulse response

More information

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore Soluions of Sample Problems for Third In-Class Exam Mah 6, Spring, Professor David Levermore Compue he Laplace ransform of f e from is definiion Soluion The definiion of he Laplace ransform gives L[f]s

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y Review - Quiz # 1 (1) Solving Special Tpes of Firs Order Equaions I. Separable Equaions (SE). d = f() g() Mehod of Soluion : 1 g() d = f() (The soluions ma be given implicil b he above formula. Remember,

More information

Ordinary differential equations. Phys 750 Lecture 7

Ordinary differential equations. Phys 750 Lecture 7 Ordinary differenial equaions Phys 750 Lecure 7 Ordinary Differenial Equaions Mos physical laws are expressed as differenial equaions These come in hree flavours: iniial-value problems boundary-value problems

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff Laplace ransfom: -ranslaion rule 8.03, Haynes Miller and Jeremy Orloff Inroducory example Consider he sysem ẋ + 3x = f(, where f is he inpu and x he response. We know is uni impulse response is 0 for

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

Homework 6 AERE331 Spring 2019 Due 4/24(W) Name Sec. 1 / 2

Homework 6 AERE331 Spring 2019 Due 4/24(W) Name Sec. 1 / 2 Homework 6 AERE33 Spring 9 Due 4/4(W) Name Sec / PROBLEM (5p In PROBLEM 4 of HW4 we used he frequency domain o design a yaw/rudder feedback conrol sysem for a plan wih ransfer funcion 46 Gp () s The conroller

More information

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions.

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions. Signals And Sysems Exam#. Given x() and y() below: x() y() 4 4 (A) Give he expression of x() in erms of sep funcions. (%) x () = q() q( ) + q( 4) (B) Plo x(.5). (%) x() g() = x( ) h() = g(. 5) = x(. 5)

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI THE 2-BODY PROBLEM ROBERT J. VANDERBEI ABSTRACT. In his shor noe, we show ha a pair of ellipses wih a common focus is a soluion o he 2-body problem. INTRODUCTION. Solving he 2-body problem from scrach

More information

Convolution. Lecture #6 2CT.3 8. BME 333 Biomedical Signals and Systems - J.Schesser

Convolution. Lecture #6 2CT.3 8. BME 333 Biomedical Signals and Systems - J.Schesser Convoluion Lecure #6 C.3 8 Deiniion When we compue he ollowing inegral or τ and τ we say ha he we are convoluing wih g d his says: ae τ, lip i convolve in ime -τ, hen displace i in ime by seconds -τ, and

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #8 on Continuous-Time Signals & Systems

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #8 on Continuous-Time Signals & Systems EE 33 Linear Signals & Sysems (Fall 08) Soluion Se for Homework #8 on Coninuous-Time Signals & Sysems By: Mr. Houshang Salimian & Prof. Brian L. Evans Here are several useful properies of he Dirac dela

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Signals and Systems Linear Time-Invariant (LTI) Systems

Signals and Systems Linear Time-Invariant (LTI) Systems Signals and Sysems Linear Time-Invarian (LTI) Sysems Chang-Su Kim Discree-Time LTI Sysems Represening Signals in Terms of Impulses Sifing propery 0 x[ n] x[ k] [ n k] k x[ 2] [ n 2] x[ 1] [ n1] x[0] [

More information

e 2t u(t) e 2t u(t) =?

e 2t u(t) e 2t u(t) =? EE : Signals, Sysems, and Transforms Fall 7. Skech he convoluion of he following wo signals. Tes No noes, closed book. f() Show your work. Simplify your answers. g(). Using he convoluion inegral, find

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du. MATH 3B: MIDTERM REVIEW JOE HUGHES. Inegraion by Pars. Evaluae 3 e. Soluion: Firs make he subsiuion u =. Then =, hence 3 e = e = ue u Now inegrae by pars o ge ue u = ue u e u + C and subsiue he definiion

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.00 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 0 a 0 5 a k sin πk 5 sin πk 5 πk for k 0 a k 0 πk j

More information

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018 MATH 5720: Gradien Mehods Hung Phan, UMass Lowell Ocober 4, 208 Descen Direcion Mehods Consider he problem min { f(x) x R n}. The general descen direcions mehod is x k+ = x k + k d k where x k is he curren

More information

Math 116 Second Midterm March 21, 2016

Math 116 Second Midterm March 21, 2016 Mah 6 Second Miderm March, 06 UMID: EXAM SOLUTIONS Iniials: Insrucor: Secion:. Do no open his exam unil you are old o do so.. Do no wrie your name anywhere on his exam. 3. This exam has pages including

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.003 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 3 0 a 0 5 a k a k 0 πk j3 e 0 e j πk 0 jπk πk e 0

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation Mos Probable Phase Porrais of Sochasic Differenial Equaions and Is Numerical Simulaion Bing Yang, Zhu Zeng and Ling Wang 3 School of Mahemaics and Saisics, Huazhong Universiy of Science and Technology,

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Linear Time-invariant systems, Convolution, and Cross-correlation

Linear Time-invariant systems, Convolution, and Cross-correlation Linear Time-invarian sysems, Convoluion, and Cross-correlaion (1) Linear Time-invarian (LTI) sysem A sysem akes in an inpu funcion and reurns an oupu funcion. x() T y() Inpu Sysem Oupu y() = T[x()] An

More information

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15. SMT Calculus Tes Soluions February 5,. Le f() = and le g() =. Compue f ()g (). Answer: 5 Soluion: We noe ha f () = and g () = 6. Then f ()g () =. Plugging in = we ge f ()g () = 6 = 3 5 = 5.. There is a

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Modeling Economic Time Series with Stochastic Linear Difference Equations

Modeling Economic Time Series with Stochastic Linear Difference Equations A. Thiemer, SLDG.mcd, 6..6 FH-Kiel Universiy of Applied Sciences Prof. Dr. Andreas Thiemer e-mail: andreas.hiemer@fh-kiel.de Modeling Economic Time Series wih Sochasic Linear Difference Equaions Summary:

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

h[n] is the impulse response of the discrete-time system:

h[n] is the impulse response of the discrete-time system: Definiion Examples Properies Memory Inveribiliy Causaliy Sabiliy Time Invariance Lineariy Sysems Fundamenals Overview Definiion of a Sysem x() h() y() x[n] h[n] Sysem: a process in which inpu signals are

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Lecture 1: Contents of the course. Advanced Digital Control. IT tools CCSDEMO

Lecture 1: Contents of the course. Advanced Digital Control. IT tools CCSDEMO Goals of he course Lecure : Advanced Digial Conrol To beer undersand discree-ime sysems To beer undersand compuer-conrolled sysems u k u( ) u( ) Hold u k D-A Process Compuer y( ) A-D y ( ) Sampler y k

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Signal and System (Chapter 3. Continuous-Time Systems)

Signal and System (Chapter 3. Continuous-Time Systems) Signal and Sysem (Chaper 3. Coninuous-Time Sysems) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 0-760-453 Fax:0-760-4435 1 Dep. Elecronics and Informaion Eng. 1 Nodes, Branches, Loops A nework wih b

More information

Four Generations of Higher Order Sliding Mode Controllers. L. Fridman Universidad Nacional Autonoma de Mexico Aussois, June, 10th, 2015

Four Generations of Higher Order Sliding Mode Controllers. L. Fridman Universidad Nacional Autonoma de Mexico Aussois, June, 10th, 2015 Four Generaions of Higher Order Sliding Mode Conrollers L. Fridman Universidad Nacional Auonoma de Mexico Aussois, June, 1h, 215 Ouline 1 Generaion 1:Two Main Conceps of Sliding Mode Conrol 2 Generaion

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

Week #13 - Integration by Parts & Numerical Integration Section 7.2

Week #13 - Integration by Parts & Numerical Integration Section 7.2 Week #3 - Inegraion by Pars & Numerical Inegraion Secion 7. From Calculus, Single Variable by Hughes-Halle, Gleason, McCallum e. al. Copyrigh 5 by John Wiley & Sons, Inc. This maerial is used by permission

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

Notes 04 largely plagiarized by %khc

Notes 04 largely plagiarized by %khc Noes 04 largely plagiarized by %khc Convoluion Recap Some ricks: x() () =x() x() (, 0 )=x(, 0 ) R ț x() u() = x( )d x() () =ẋ() This hen ells us ha an inegraor has impulse response h() =u(), and ha a differeniaor

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Comparison between the Discrete and Continuous Time Models

Comparison between the Discrete and Continuous Time Models Comparison beween e Discree and Coninuous Time Models D. Sulsky June 21, 2012 1 Discree o Coninuous Recall e discree ime model Î = AIS Ŝ = S Î. Tese equaions ell us ow e populaion canges from one day o

More information

B Signals and Systems I Solutions to Midterm Test 2. xt ()

B Signals and Systems I Solutions to Midterm Test 2. xt () 34-33B Signals and Sysems I Soluions o Miderm es 34-33B Signals and Sysems I Soluions o Miderm es ednesday Marh 7, 7:PM-9:PM Examiner: Prof. Benoi Boule Deparmen of Elerial and Compuer Engineering MGill

More information

Economics 8105 Macroeconomic Theory Recitation 6

Economics 8105 Macroeconomic Theory Recitation 6 Economics 8105 Macroeconomic Theory Reciaion 6 Conor Ryan Ocober 11h, 2016 Ouline: Opimal Taxaion wih Governmen Invesmen 1 Governmen Expendiure in Producion In hese noes we will examine a model in which

More information

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition EE 224 Signals and Sysems I Complex numbers sinusodal signals Complex exponenials e jω phasor addiion 1/28 Complex Numbers Recangular Polar y z r z θ x Good for addiion/subracion Good for muliplicaion/division

More information