Deterministic sampling masks and compressed sensing: Compensating for partial image loss at the pixel level

Size: px
Start display at page:

Download "Deterministic sampling masks and compressed sensing: Compensating for partial image loss at the pixel level"

Transcription

1 Deterministic sampling masks and compressed sensing: Compensating for partial image loss at the pixel level Alfredo Nava-Tudela Institute for Physical Science and Technology and Norbert Wiener Center, University of Maryland, College Park Joint work with John J. Benedetto Department of Mathematics and Norbert Wiener Center, University of Maryland, College Park

2 Overview Problem statement Image representation concepts Image compression basics Sparsity is the key, l 0 -minimization, OMP Image compression revisited Imagery metrics Solving our problem: deterministic sampling masks and compressed sensing Solving our problem: results 1

3 Problem statement Image: Satellite Imaging Corporation Antigua 2

4 Problem statement JPEG, JPEG 2000 Sampling Compression Representation 3

5 Image representation concepts[1] 4

6 Image representation concepts[1] An image is Pixel = I[n 1,n 2 ] = intensity, brightness, at [n 1,n 2 ] n 2 n 1 0 n 1 < N 1, 0 n 2 < N 2 5

7 Image representation concepts[1] I[n 1,n 2 ] I[n 1,n 2 ] {0,, 2 B -1}, or {-2 B-1,, 2 B-1-1}, where I[n 1,n 2 ] = round(2 B J[n 1,n 2 ]) and J[n 1,n 2 ] [0,1) or [-½, ½) B is the depth of the image 6

8 Image representation concepts [1] 7

9 Image compression[1] 512 x 512 x 8 x 3 = 6,291,456 bits 8

10 Image compression[1] JPEG, JPEG

11 Image compression[1] 1) Partitioning of the image I in sub-images [1] D. S. Taubman and M. W. Mercellin, JPEG 2000: Image Compression Fundamentals,! Standards and Practice, Kluwer Academic Publishers,

12 Image compression[1] 1) Partitioning of the image I in sub-images 2) Transform sub-images to exploit correlations within them [1] D. S. Taubman and M. W. Mercellin, JPEG 2000: Image Compression Fundamentals,! Standards and Practice, Kluwer Academic Publishers,

13 Image compression[1] 1) Partitioning of the image I in sub-images 2) Transform sub-images to exploit correlations within them 3) Quantize and encode [1] D. S. Taubman and M. W. Mercellin, JPEG 2000: Image Compression Fundamentals,! Standards and Practice, Kluwer Academic Publishers,

14 Image compression 13

15 Sparsity is the key Cn u rd ths? vs Can you read this? 14

16 Sparsity is the key 15

17 Sparsity The l 0 norm : x 0 = # {k : x k 0} 16

18 l 0 -minimization ~ sparse solution (P 0 ): min x x 0 subject to Ax - b 2 = 0 17

19 l 0 -minimization ~ sparse solution (P 0ε ): min x x 0 subject to Ax - b 2 < ε 18

20 l 0 -minimization ~ sparse solution (P 0ε ): min x x 0 subject to Ax - b 2 < ε Solving (P 0 ε ) is NP-hard![2] Is there any hope? [2] B. K. Natarajan, Sparse approximate solutions to linear systems," SIAM Journal on Computing, 24 (1995), pp

21 Finding sparse solutions:omp Orthogonal Matching Pursuit algorithm: [3] [3] A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems of! 20 equations to sparse modeling of signals and images, SIAM Review, 51 (2009), pp "

22 Finding sparse solutions:omp Orthogonal Matching Pursuit algorithm: 21

23 Finding sparse solutions:omp Orthogonal Matching Pursuit algorithm: 22

24 Finding sparse solutions:omp Orthogonal Matching Pursuit algorithm: 23

25 Image compression T = T ε = OMP(A, -,ε), T = A 24

26 We need a matrix A DCT DCT2 25

27 We need a matrix A 26

28 We need a matrix A A = (c 3 ( ) c 3 ( ) c 3 ( ) c 3 ( )) 27

29 Compressing a test image Image c 3 ( ) = b x 0 = T b = OMP(A, b,ε) = c 3-1 (b ) b = T x 0 = A x 0 28

30 Compressing a test image ~? b - b 2 < ε But what does that mean visually? How many bits were used? 29

31 Imagery metrics Peak Signal-to-Noise Ratio (PSNR), measured in db: PSNR(X,Y) = 20 log 10 (MAX B / MSE), with MAX B = 2 B -1, and MSE = i,j [X(i,j) - Y(i,j)] 2 /nm. In our case, n = m = 512, and B = 8, i.e. MAX B =

32 Imagery metrics Structural Similarity (SSIM), and Mean Structural Similarity(MSSIM) indices: [4] [4] Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, Image quality assessment: from error! visibility to structural similarity, IEEE Transactions on Image Processing," vol.13, no.4 pp , April

33 Imagery metrics The normalized sparse bit-rate is nsbr(i,a,ε) = x j 0 /N 1 N 2, where image I is of size N 1 by N 2. 32

34 Compression results Original Compressed SSIM ε = 32 d = 4, average error per pixel for 8 x 8 blocks PSNR = db, MSSIM = , nsbr = bpp 33

35 Back to our original problem k = 40 (62.5%) 34

36 Compressed sensing and sampling min x x 0 subject to PA x c 2 < ε P in R k x n, A in R n x m, and c in R k 35

37 Deterministic sampling masks If d = 4, then use ε = d k 36

38 Deterministic sampling masks A x c 2 < ε, with x = OMP(A,c,ε), and x in R m 37

39 Deterministic sampling masks A x c 2 < ε, with x = OMP(A,c,ε), and x in R m = c 3-1 (A x ) 38

40 Results Original Masked Luminance: PSNR = db MSSIM = k = 40 (62.5%) d=4 Luminance SSIM Reconstruction CB: PSNR = db MSSIM = C R: PSNR = db MSSIM =

41 Results PSNR = PSNR = k = 40 (62.5%) d=4 PSNR =

42 Results Original detail Masked detail Reconstruction detail k = 40 (62.5%) d = 4 Deterministic sampling masks ~ In-painting? 41

43 Thank you! 42

Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images: Final Presentation

Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images: Final Presentation Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images: Final Presentation Alfredo Nava-Tudela John J. Benedetto, advisor 5/10/11 AMSC 663/664 1 Problem Let A be an n

More information

Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images!

Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images! Sparse Solutions of Linear Systems of Equations and Sparse Modeling of Signals and Images! Alfredo Nava-Tudela John J. Benedetto, advisor 1 Happy birthday Lucía! 2 Outline - Problem: Find sparse solutions

More information

Sparse Solutions of Systems of Equations and Sparse Modeling of Signals and Images

Sparse Solutions of Systems of Equations and Sparse Modeling of Signals and Images Sparse Solutions of Systems of Equations and Sparse Modeling of Signals and Images Alfredo Nava-Tudela ant@umd.edu John J. Benedetto Department of Mathematics jjb@umd.edu Abstract We are interested in

More information

Sparse Solutions of Systems of Equations and Sparse Modelling of Signals and Images

Sparse Solutions of Systems of Equations and Sparse Modelling of Signals and Images Sparse Solutions of Systems of Equations and Sparse Modelling of Signals and Images Alfredo Nava-Tudela ant@umd.edu John J. Benedetto Department of Mathematics jjb@umd.edu Abstract In this project we are

More information

MRI Reconstruction via Fourier Frames on Interleaving Spirals

MRI Reconstruction via Fourier Frames on Interleaving Spirals MRI Reconstruction via Fourier Frames on Interleaving Spirals Christiana Sabett Applied Mathematics & Statistics, and Scientific Computing (AMSC) University of Maryland, College Park Advisors: John Benedetto,

More information

Rate Bounds on SSIM Index of Quantized Image DCT Coefficients

Rate Bounds on SSIM Index of Quantized Image DCT Coefficients Rate Bounds on SSIM Index of Quantized Image DCT Coefficients Sumohana S. Channappayya, Alan C. Bovik, Robert W. Heath Jr. and Constantine Caramanis Dept. of Elec. & Comp. Engg.,The University of Texas

More information

I. INTRODUCTION. A. Related Work

I. INTRODUCTION. A. Related Work 1624 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 9, SEPTEMBER 2008 Rate Bounds on SSIM Index of Quantized Images Sumohana S. Channappayya, Member, IEEE, Alan Conrad Bovik, Fellow, IEEE, and Robert

More information

Sparse & Redundant Signal Representation, and its Role in Image Processing

Sparse & Redundant Signal Representation, and its Role in Image Processing Sparse & Redundant Signal Representation, and its Role in Michael Elad The CS Department The Technion Israel Institute of technology Haifa 3000, Israel Wave 006 Wavelet and Applications Ecole Polytechnique

More information

Fuzzy quantization of Bandlet coefficients for image compression

Fuzzy quantization of Bandlet coefficients for image compression Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2013, 4(2):140-146 Fuzzy quantization of Bandlet coefficients for image compression R. Rajeswari and R. Rajesh ISSN:

More information

SSIM-Inspired Perceptual Video Coding for HEVC

SSIM-Inspired Perceptual Video Coding for HEVC 2012 IEEE International Conference on Multimedia and Expo SSIM-Inspired Perceptual Video Coding for HEVC Abdul Rehman and Zhou Wang Dept. of Electrical and Computer Engineering, University of Waterloo,

More information

Learning an Adaptive Dictionary Structure for Efficient Image Sparse Coding

Learning an Adaptive Dictionary Structure for Efficient Image Sparse Coding Learning an Adaptive Dictionary Structure for Efficient Image Sparse Coding Jérémy Aghaei Mazaheri, Christine Guillemot, Claude Labit To cite this version: Jérémy Aghaei Mazaheri, Christine Guillemot,

More information

Image Data Compression

Image Data Compression Image Data Compression Image data compression is important for - image archiving e.g. satellite data - image transmission e.g. web data - multimedia applications e.g. desk-top editing Image data compression

More information

A Class of Image Metrics Based on the Structural Similarity Quality Index

A Class of Image Metrics Based on the Structural Similarity Quality Index A Class of Image Metrics Based on the Structural Similarity Quality Index Dominique Brunet 1, Edward R. Vrscay 1, and Zhou Wang 2 1 Department of Applied Mathematics, Faculty of Mathematics, University

More information

Inverse Problems in Image Processing

Inverse Problems in Image Processing H D Inverse Problems in Image Processing Ramesh Neelamani (Neelsh) Committee: Profs. R. Baraniuk, R. Nowak, M. Orchard, S. Cox June 2003 Inverse Problems Data estimation from inadequate/noisy observations

More information

MRI Signal Reconstruction via Fourier Frames on Interleaving Spirals Project Proposal

MRI Signal Reconstruction via Fourier Frames on Interleaving Spirals Project Proposal MRI Signal Reconstruction via Fourier Frames on Interleaving Spirals Project Proposal Christiana Sabett Applied Mathematics, Applied Statistics, & Scientific Computation Advisors: John Benedetto, Alfredo

More information

A NO-REFERENCE SHARPNESS METRIC SENSITIVE TO BLUR AND NOISE. Xiang Zhu and Peyman Milanfar

A NO-REFERENCE SHARPNESS METRIC SENSITIVE TO BLUR AND NOISE. Xiang Zhu and Peyman Milanfar A NO-REFERENCE SARPNESS METRIC SENSITIVE TO BLUR AND NOISE Xiang Zhu and Peyman Milanfar Electrical Engineering Department University of California at Santa Cruz, CA, 9564 xzhu@soeucscedu ABSTRACT A no-reference

More information

Image Compression - JPEG

Image Compression - JPEG Overview of JPEG CpSc 86: Multimedia Systems and Applications Image Compression - JPEG What is JPEG? "Joint Photographic Expert Group". Voted as international standard in 99. Works with colour and greyscale

More information

Half-Pel Accurate Motion-Compensated Orthogonal Video Transforms

Half-Pel Accurate Motion-Compensated Orthogonal Video Transforms Flierl and Girod: Half-Pel Accurate Motion-Compensated Orthogonal Video Transforms, IEEE DCC, Mar. 007. Half-Pel Accurate Motion-Compensated Orthogonal Video Transforms Markus Flierl and Bernd Girod Max

More information

Review of Quantization. Quantization. Bring in Probability Distribution. L-level Quantization. Uniform partition

Review of Quantization. Quantization. Bring in Probability Distribution. L-level Quantization. Uniform partition Review of Quantization UMCP ENEE631 Slides (created by M.Wu 004) Quantization UMCP ENEE631 Slides (created by M.Wu 001/004) L-level Quantization Minimize errors for this lossy process What L values to

More information

SIGNAL COMPRESSION. 8. Lossy image compression: Principle of embedding

SIGNAL COMPRESSION. 8. Lossy image compression: Principle of embedding SIGNAL COMPRESSION 8. Lossy image compression: Principle of embedding 8.1 Lossy compression 8.2 Embedded Zerotree Coder 161 8.1 Lossy compression - many degrees of freedom and many viewpoints The fundamental

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

Uniqueness Conditions for A Class of l 0 -Minimization Problems

Uniqueness Conditions for A Class of l 0 -Minimization Problems Uniqueness Conditions for A Class of l 0 -Minimization Problems Chunlei Xu and Yun-Bin Zhao October, 03, Revised January 04 Abstract. We consider a class of l 0 -minimization problems, which is to search

More information

4x4 Transform and Quantization in H.264/AVC

4x4 Transform and Quantization in H.264/AVC Video compression design, analysis, consulting and research White Paper: 4x4 Transform and Quantization in H.264/AVC Iain Richardson / VCodex Limited Version 1.2 Revised November 2010 H.264 Transform and

More information

The Iteration-Tuned Dictionary for Sparse Representations

The Iteration-Tuned Dictionary for Sparse Representations The Iteration-Tuned Dictionary for Sparse Representations Joaquin Zepeda #1, Christine Guillemot #2, Ewa Kijak 3 # INRIA Centre Rennes - Bretagne Atlantique Campus de Beaulieu, 35042 Rennes Cedex, FRANCE

More information

arxiv: v1 [cs.mm] 2 Feb 2017 Abstract

arxiv: v1 [cs.mm] 2 Feb 2017 Abstract DCT-like Transform for Image Compression Requires 14 Additions Only F. M. Bayer R. J. Cintra arxiv:1702.00817v1 [cs.mm] 2 Feb 2017 Abstract A low-complexity 8-point orthogonal approximate DCT is introduced.

More information

Super-resolution by means of Beurling minimal extrapolation

Super-resolution by means of Beurling minimal extrapolation Super-resolution by means of Beurling minimal extrapolation Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu Acknowledgements ARO W911NF-16-1-0008

More information

MATCHING-PURSUIT DICTIONARY PRUNING FOR MPEG-4 VIDEO OBJECT CODING

MATCHING-PURSUIT DICTIONARY PRUNING FOR MPEG-4 VIDEO OBJECT CODING MATCHING-PURSUIT DICTIONARY PRUNING FOR MPEG-4 VIDEO OBJECT CODING Yannick Morvan, Dirk Farin University of Technology Eindhoven 5600 MB Eindhoven, The Netherlands email: {y.morvan;d.s.farin}@tue.nl Peter

More information

Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming

Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming Min Dai Electrical Engineering, Texas A&M University Dmitri Loguinov Computer Science, Texas A&M University

More information

Multiscale Image Transforms

Multiscale Image Transforms Multiscale Image Transforms Goal: Develop filter-based representations to decompose images into component parts, to extract features/structures of interest, and to attenuate noise. Motivation: extract

More information

Wavelet Packet Based Digital Image Watermarking

Wavelet Packet Based Digital Image Watermarking Wavelet Packet Based Digital Image ing A.Adhipathi Reddy, B.N.Chatterji Department of Electronics and Electrical Communication Engg. Indian Institute of Technology, Kharagpur 72 32 {aar, bnc}@ece.iitkgp.ernet.in

More information

ANALYSIS AND PREDICTION OF JND-BASED VIDEO QUALITY MODEL

ANALYSIS AND PREDICTION OF JND-BASED VIDEO QUALITY MODEL ANALYSIS AND PREDICTION OF JND-BASED VIDEO QUALITY MODEL Haiqiang Wang, Xinfeng Zhang, Chao Yang and C.-C. Jay Kuo University of Southern California, Los Angeles, California, USA {haiqianw, xinfengz, yangchao}@usc.edu,

More information

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Structure of the tutorial Session 1: Introduction to inverse problems & sparse

More information

Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France.

Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France. Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Overview of the course Introduction sparsity & data compression inverse problems

More information

EFFICIENT encoding of signals relies on an understanding

EFFICIENT encoding of signals relies on an understanding 68 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 1, JANUARY 2006 Nonlinear Image Representation for Efficient Perceptual Coding Jesús Malo, Irene Epifanio, Rafael Navarro, and Eero P. Simoncelli

More information

Tutorial: Sparse Signal Processing Part 1: Sparse Signal Representation. Pier Luigi Dragotti Imperial College London

Tutorial: Sparse Signal Processing Part 1: Sparse Signal Representation. Pier Luigi Dragotti Imperial College London Tutorial: Sparse Signal Processing Part 1: Sparse Signal Representation Pier Luigi Dragotti Imperial College London Outline Part 1: Sparse Signal Representation ~90min Part 2: Sparse Sampling ~90min 2

More information

- An Image Coding Algorithm

- An Image Coding Algorithm - An Image Coding Algorithm Shufang Wu http://www.sfu.ca/~vswu vswu@cs.sfu.ca Friday, June 14, 2002 22-1 Agenda Overview Discrete Wavelet Transform Zerotree Coding of Wavelet Coefficients Successive-Approximation

More information

EUSIPCO

EUSIPCO EUSIPCO 013 1569746769 SUBSET PURSUIT FOR ANALYSIS DICTIONARY LEARNING Ye Zhang 1,, Haolong Wang 1, Tenglong Yu 1, Wenwu Wang 1 Department of Electronic and Information Engineering, Nanchang University,

More information

Randomness-in-Structured Ensembles for Compressed Sensing of Images

Randomness-in-Structured Ensembles for Compressed Sensing of Images Randomness-in-Structured Ensembles for Compressed Sensing of Images Abdolreza Abdolhosseini Moghadam Dep. of Electrical and Computer Engineering Michigan State University Email: abdolhos@msu.edu Hayder

More information

Department of Electrical Engineering, Polytechnic University, Brooklyn Fall 05 EL DIGITAL IMAGE PROCESSING (I) Final Exam 1/5/06, 1PM-4PM

Department of Electrical Engineering, Polytechnic University, Brooklyn Fall 05 EL DIGITAL IMAGE PROCESSING (I) Final Exam 1/5/06, 1PM-4PM Department of Electrical Engineering, Polytechnic University, Brooklyn Fall 05 EL512 --- DIGITAL IMAGE PROCESSING (I) Y. Wang Final Exam 1/5/06, 1PM-4PM Your Name: ID Number: Closed book. One sheet of

More information

A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases

A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases 2558 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 48, NO 9, SEPTEMBER 2002 A Generalized Uncertainty Principle Sparse Representation in Pairs of Bases Michael Elad Alfred M Bruckstein Abstract An elementary

More information

COMPARATIVE ANALYSIS OF ORTHOGONAL MATCHING PURSUIT AND LEAST ANGLE REGRESSION

COMPARATIVE ANALYSIS OF ORTHOGONAL MATCHING PURSUIT AND LEAST ANGLE REGRESSION COMPARATIVE ANALYSIS OF ORTHOGONAL MATCHING PURSUIT AND LEAST ANGLE REGRESSION By Mazin Abdulrasool Hameed A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for

More information

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material A Generative Perspective on MRFs in Low-Level Vision Supplemental Material Uwe Schmidt Qi Gao Stefan Roth Department of Computer Science, TU Darmstadt 1. Derivations 1.1. Sampling the Prior We first rewrite

More information

Compressive Sensing of Sparse Tensor

Compressive Sensing of Sparse Tensor Shmuel Friedland Univ. Illinois at Chicago Matheon Workshop CSA2013 December 12, 2013 joint work with Q. Li and D. Schonfeld, UIC Abstract Conventional Compressive sensing (CS) theory relies on data representation

More information

New image-quality measure based on wavelets

New image-quality measure based on wavelets Journal of Electronic Imaging 19(1), 118 (Jan Mar 2) New image-quality measure based on wavelets Emil Dumic Sonja Grgic Mislav Grgic University of Zagreb Faculty of Electrical Engineering and Computing

More information

Wavelet Scalable Video Codec Part 1: image compression by JPEG2000

Wavelet Scalable Video Codec Part 1: image compression by JPEG2000 1 Wavelet Scalable Video Codec Part 1: image compression by JPEG2000 Aline Roumy aline.roumy@inria.fr May 2011 2 Motivation for Video Compression Digital video studio standard ITU-R Rec. 601 Y luminance

More information

Over-enhancement Reduction in Local Histogram Equalization using its Degrees of Freedom. Alireza Avanaki

Over-enhancement Reduction in Local Histogram Equalization using its Degrees of Freedom. Alireza Avanaki Over-enhancement Reduction in Local Histogram Equalization using its Degrees of Freedom Alireza Avanaki ABSTRACT A well-known issue of local (adaptive) histogram equalization (LHE) is over-enhancement

More information

SYDE 575: Introduction to Image Processing. Image Compression Part 2: Variable-rate compression

SYDE 575: Introduction to Image Processing. Image Compression Part 2: Variable-rate compression SYDE 575: Introduction to Image Processing Image Compression Part 2: Variable-rate compression Variable-rate Compression: Transform-based compression As mentioned earlier, we wish to transform image data

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Vector Quantization Encoder Decoder Original Form image Minimize distortion Table Channel Image Vectors Look-up (X, X i ) X may be a block of l

Vector Quantization Encoder Decoder Original Form image Minimize distortion Table Channel Image Vectors Look-up (X, X i ) X may be a block of l Vector Quantization Encoder Decoder Original Image Form image Vectors X Minimize distortion k k Table X^ k Channel d(x, X^ Look-up i ) X may be a block of l m image or X=( r, g, b ), or a block of DCT

More information

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk Model-Based Compressive Sensing for Signal Ensembles Marco F. Duarte Volkan Cevher Richard G. Baraniuk Concise Signal Structure Sparse signal: only K out of N coordinates nonzero model: union of K-dimensional

More information

Estimation Error Bounds for Frame Denoising

Estimation Error Bounds for Frame Denoising Estimation Error Bounds for Frame Denoising Alyson K. Fletcher and Kannan Ramchandran {alyson,kannanr}@eecs.berkeley.edu Berkeley Audio-Visual Signal Processing and Communication Systems group Department

More information

Intraframe Prediction with Intraframe Update Step for Motion-Compensated Lifted Wavelet Video Coding

Intraframe Prediction with Intraframe Update Step for Motion-Compensated Lifted Wavelet Video Coding Intraframe Prediction with Intraframe Update Step for Motion-Compensated Lifted Wavelet Video Coding Aditya Mavlankar, Chuo-Ling Chang, and Bernd Girod Information Systems Laboratory, Department of Electrical

More information

Research Article The High-Resolution Rate-Distortion Function under the Structural Similarity Index

Research Article The High-Resolution Rate-Distortion Function under the Structural Similarity Index Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume 0, Article ID 857959, 7 pages doi:055/0/857959 Research Article The High-Resolution Rate-Distortion Function under

More information

VIDEO CODING USING A SELF-ADAPTIVE REDUNDANT DICTIONARY CONSISTING OF SPATIAL AND TEMPORAL PREDICTION CANDIDATES. Author 1 and Author 2

VIDEO CODING USING A SELF-ADAPTIVE REDUNDANT DICTIONARY CONSISTING OF SPATIAL AND TEMPORAL PREDICTION CANDIDATES. Author 1 and Author 2 VIDEO CODING USING A SELF-ADAPTIVE REDUNDANT DICTIONARY CONSISTING OF SPATIAL AND TEMPORAL PREDICTION CANDIDATES Author 1 and Author 2 Address - Line 1 Address - Line 2 Address - Line 3 ABSTRACT All standard

More information

Multimedia & Computer Visualization. Exercise #5. JPEG compression

Multimedia & Computer Visualization. Exercise #5. JPEG compression dr inż. Jacek Jarnicki, dr inż. Marek Woda Institute of Computer Engineering, Control and Robotics Wroclaw University of Technology {jacek.jarnicki, marek.woda}@pwr.wroc.pl Exercise #5 JPEG compression

More information

CHAPTER 3. Transformed Vector Quantization with Orthogonal Polynomials Introduction Vector quantization

CHAPTER 3. Transformed Vector Quantization with Orthogonal Polynomials Introduction Vector quantization 3.1. Introduction CHAPTER 3 Transformed Vector Quantization with Orthogonal Polynomials In the previous chapter, a new integer image coding technique based on orthogonal polynomials for monochrome images

More information

Perceptual Image Coding: Introduction of Φ SET Image Compression System

Perceptual Image Coding: Introduction of Φ SET Image Compression System Perceptual Image Coding: Introduction of Φ SET Image Compression System Jesús Jaime Moreno Escobar Communication and Electronics Engineering Department Superior School of Mechanical and Electrical Engineers

More information

IMAGE COMPRESSION-II. Week IX. 03/6/2003 Image Compression-II 1

IMAGE COMPRESSION-II. Week IX. 03/6/2003 Image Compression-II 1 IMAGE COMPRESSION-II Week IX 3/6/23 Image Compression-II 1 IMAGE COMPRESSION Data redundancy Self-information and Entropy Error-free and lossy compression Huffman coding Predictive coding Transform coding

More information

Greedy Dictionary Selection for Sparse Representation

Greedy Dictionary Selection for Sparse Representation Greedy Dictionary Selection for Sparse Representation Volkan Cevher Rice University volkan@rice.edu Andreas Krause Caltech krausea@caltech.edu Abstract We discuss how to construct a dictionary by selecting

More information

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Journal of Information & Computational Science 11:9 (214) 2933 2939 June 1, 214 Available at http://www.joics.com Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Jingfei He, Guiling Sun, Jie

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

Revolutionary Image Compression and Reconstruction via Evolutionary Computation, Part 2: Multiresolution Analysis Transforms

Revolutionary Image Compression and Reconstruction via Evolutionary Computation, Part 2: Multiresolution Analysis Transforms Proceedings of the 6th WSEAS International Conference on Signal, Speech and Image Processing, Lisbon, Portugal, September 22-24, 2006 144 Revolutionary Image Compression and Reconstruction via Evolutionary

More information

Multimedia Networking ECE 599

Multimedia Networking ECE 599 Multimedia Networking ECE 599 Prof. Thinh Nguyen School of Electrical Engineering and Computer Science Based on lectures from B. Lee, B. Girod, and A. Mukherjee 1 Outline Digital Signal Representation

More information

arxiv: v1 [cs.mm] 10 Mar 2016

arxiv: v1 [cs.mm] 10 Mar 2016 Predicting Chroma from Luma with Frequency Domain Intra Prediction Nathan E. Egge and Jean-Marc Valin Mozilla, Mountain View, USA Xiph.Org Foundation arxiv:1603.03482v1 [cs.mm] 10 Mar 2016 ABSTRACT This

More information

Image Compression. Fundamentals: Coding redundancy. The gray level histogram of an image can reveal a great deal of information about the image

Image Compression. Fundamentals: Coding redundancy. The gray level histogram of an image can reveal a great deal of information about the image Fundamentals: Coding redundancy The gray level histogram of an image can reveal a great deal of information about the image That probability (frequency) of occurrence of gray level r k is p(r k ), p n

More information

Constant Amplitude and Zero Autocorrelation Sequences and Single Pixel Camera Imaging

Constant Amplitude and Zero Autocorrelation Sequences and Single Pixel Camera Imaging Constant Amplitude and Zero Autocorrelation Sequences and Single Pixel Camera Imaging Mark Magsino mmagsino@math.umd.edu Norbert Wiener Center for Harmonic Analysis and Applications Department of Mathematics

More information

A Variation on SVD Based Image Compression

A Variation on SVD Based Image Compression A Variation on SVD Based Image Compression Abhiram Ranade Srikanth S. M. Satyen Kale Department of Computer Science and Engineering Indian Institute of Technology Powai, Mumbai 400076 ranade@cse.iitb.ac.in,

More information

arxiv: v2 [cs.cv] 19 Sep 2017

arxiv: v2 [cs.cv] 19 Sep 2017 Learning Convolutional Networks for Content-weighted Image Compression arxiv:1703.10553v2 [cs.cv] 19 Sep 2017 Mu Li Hong Kong Polytechnic University csmuli@comp.polyu.edu.hk Shuhang Gu Hong Kong Polytechnic

More information

Lecture 2: Introduction to Audio, Video & Image Coding Techniques (I) -- Fundaments

Lecture 2: Introduction to Audio, Video & Image Coding Techniques (I) -- Fundaments Lecture 2: Introduction to Audio, Video & Image Coding Techniques (I) -- Fundaments Dr. Jian Zhang Conjoint Associate Professor NICTA & CSE UNSW COMP9519 Multimedia Systems S2 2006 jzhang@cse.unsw.edu.au

More information

Wedgelets and Image Compression

Wedgelets and Image Compression Wedgelets and Image Compression Laurent Demaret, Mattia Fedrigo, Hartmut Führ Summer school: New Trends and Directions in Harmonic Analysis, Approximation Theory, and Image Analysis, Inzell, Germany, 20

More information

A WAVELET BASED CODING SCHEME VIA ATOMIC APPROXIMATION AND ADAPTIVE SAMPLING OF THE LOWEST FREQUENCY BAND

A WAVELET BASED CODING SCHEME VIA ATOMIC APPROXIMATION AND ADAPTIVE SAMPLING OF THE LOWEST FREQUENCY BAND A WAVELET BASED CODING SCHEME VIA ATOMIC APPROXIMATION AND ADAPTIVE SAMPLING OF THE LOWEST FREQUENCY BAND V. Bruni, D. Vitulano Istituto per le Applicazioni del Calcolo M. Picone, C. N. R. Viale del Policlinico

More information

Sparsifying Transform Learning for Compressed Sensing MRI

Sparsifying Transform Learning for Compressed Sensing MRI Sparsifying Transform Learning for Compressed Sensing MRI Saiprasad Ravishankar and Yoram Bresler Department of Electrical and Computer Engineering and Coordinated Science Laborarory University of Illinois

More information

Fourier Transforms 1D

Fourier Transforms 1D Fourier Transforms 1D 3D Image Processing Alireza Ghane 1 Overview Recap Intuitions Function representations shift-invariant spaces linear, time-invariant (LTI) systems complex numbers Fourier Transforms

More information

INTERNATIONAL ORGANISATION FOR STANDARDISATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC1/SC29/WG11 CODING OF MOVING PICTURES AND AUDIO

INTERNATIONAL ORGANISATION FOR STANDARDISATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC1/SC29/WG11 CODING OF MOVING PICTURES AND AUDIO INTERNATIONAL ORGANISATION FOR STANDARDISATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC1/SC9/WG11 CODING OF MOVING PICTURES AND AUDIO ISO/IEC JTC1/SC9/WG11 MPEG 98/M3833 July 1998 Source:

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

Can the sample being transmitted be used to refine its own PDF estimate?

Can the sample being transmitted be used to refine its own PDF estimate? Can the sample being transmitted be used to refine its own PDF estimate? Dinei A. Florêncio and Patrice Simard Microsoft Research One Microsoft Way, Redmond, WA 98052 {dinei, patrice}@microsoft.com Abstract

More information

Lecture 2: Introduction to Audio, Video & Image Coding Techniques (I) -- Fundaments. Tutorial 1. Acknowledgement and References for lectures 1 to 5

Lecture 2: Introduction to Audio, Video & Image Coding Techniques (I) -- Fundaments. Tutorial 1. Acknowledgement and References for lectures 1 to 5 Lecture : Introduction to Audio, Video & Image Coding Techniques (I) -- Fundaments Dr. Jian Zhang Conjoint Associate Professor NICTA & CSE UNSW COMP959 Multimedia Systems S 006 jzhang@cse.unsw.edu.au Acknowledgement

More information

Lecture 22: More On Compressed Sensing

Lecture 22: More On Compressed Sensing Lecture 22: More On Compressed Sensing Scribed by Eric Lee, Chengrun Yang, and Sebastian Ament Nov. 2, 207 Recap and Introduction Basis pursuit was the method of recovering the sparsest solution to an

More information

Vector Quantization. Institut Mines-Telecom. Marco Cagnazzo, MN910 Advanced Compression

Vector Quantization. Institut Mines-Telecom. Marco Cagnazzo, MN910 Advanced Compression Institut Mines-Telecom Vector Quantization Marco Cagnazzo, cagnazzo@telecom-paristech.fr MN910 Advanced Compression 2/66 19.01.18 Institut Mines-Telecom Vector Quantization Outline Gain-shape VQ 3/66 19.01.18

More information

IQA [, ] = 42. Information Content Redundancies of Image Quality Assessments. Jens Preiss and Philipp Urban

IQA [, ] = 42. Information Content Redundancies of Image Quality Assessments. Jens Preiss and Philipp Urban Information Content Redundancies of Image Quality Assessments Jens Preiss and Philipp Urban IQA [, ] = 42 29.09.2011 Institut für Druckmaschinen und Druckverfahren Dipl.-Phys. Jens Preiss Table of Contents

More information

LORD: LOw-complexity, Rate-controlled, Distributed video coding system

LORD: LOw-complexity, Rate-controlled, Distributed video coding system LORD: LOw-complexity, Rate-controlled, Distributed video coding system Rami Cohen and David Malah Signal and Image Processing Lab Department of Electrical Engineering Technion - Israel Institute of Technology

More information

Elaine T. Hale, Wotao Yin, Yin Zhang

Elaine T. Hale, Wotao Yin, Yin Zhang , Wotao Yin, Yin Zhang Department of Computational and Applied Mathematics Rice University McMaster University, ICCOPT II-MOPTA 2007 August 13, 2007 1 with Noise 2 3 4 1 with Noise 2 3 4 1 with Noise 2

More information

Low-Complexity FPGA Implementation of Compressive Sensing Reconstruction

Low-Complexity FPGA Implementation of Compressive Sensing Reconstruction 2013 International Conference on Computing, Networking and Communications, Multimedia Computing and Communications Symposium Low-Complexity FPGA Implementation of Compressive Sensing Reconstruction Jerome

More information

Thresholds for the Recovery of Sparse Solutions via L1 Minimization

Thresholds for the Recovery of Sparse Solutions via L1 Minimization Thresholds for the Recovery of Sparse Solutions via L Minimization David L. Donoho Department of Statistics Stanford University 39 Serra Mall, Sequoia Hall Stanford, CA 9435-465 Email: donoho@stanford.edu

More information

Image compression using an edge adapted redundant dictionary and wavelets

Image compression using an edge adapted redundant dictionary and wavelets Image compression using an edge adapted redundant dictionary and wavelets Lorenzo Peotta, Lorenzo Granai, Pierre Vandergheynst Signal Processing Institute Swiss Federal Institute of Technology EPFL-STI-ITS-LTS2

More information

Lecture 7 Predictive Coding & Quantization

Lecture 7 Predictive Coding & Quantization Shujun LI (李树钧): INF-10845-20091 Multimedia Coding Lecture 7 Predictive Coding & Quantization June 3, 2009 Outline Predictive Coding Motion Estimation and Compensation Context-Based Coding Quantization

More information

Compressed Sensing. 1 Introduction. 2 Design of Measurement Matrices

Compressed Sensing. 1 Introduction. 2 Design of Measurement Matrices Compressed Sensing Yonina C. Eldar Electrical Engineering Department, Technion-Israel Institute of Technology, Haifa, Israel, 32000 1 Introduction Compressed sensing (CS) is an exciting, rapidly growing

More information

Sparsity in Underdetermined Systems

Sparsity in Underdetermined Systems Sparsity in Underdetermined Systems Department of Statistics Stanford University August 19, 2005 Classical Linear Regression Problem X n y p n 1 > Given predictors and response, y Xβ ε = + ε N( 0, σ 2

More information

Waveform-Based Coding: Outline

Waveform-Based Coding: Outline Waveform-Based Coding: Transform and Predictive Coding Yao Wang Polytechnic University, Brooklyn, NY11201 http://eeweb.poly.edu/~yao Based on: Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing and

More information

on a per-coecient basis in large images is computationally expensive. Further, the algorithm in [CR95] needs to be rerun, every time a new rate of com

on a per-coecient basis in large images is computationally expensive. Further, the algorithm in [CR95] needs to be rerun, every time a new rate of com Extending RD-OPT with Global Thresholding for JPEG Optimization Viresh Ratnakar University of Wisconsin-Madison Computer Sciences Department Madison, WI 53706 Phone: (608) 262-6627 Email: ratnakar@cs.wisc.edu

More information

Basic Principles of Video Coding

Basic Principles of Video Coding Basic Principles of Video Coding Introduction Categories of Video Coding Schemes Information Theory Overview of Video Coding Techniques Predictive coding Transform coding Quantization Entropy coding Motion

More information

Z Algorithmic Superpower Randomization October 15th, Lecture 12

Z Algorithmic Superpower Randomization October 15th, Lecture 12 15.859-Z Algorithmic Superpower Randomization October 15th, 014 Lecture 1 Lecturer: Bernhard Haeupler Scribe: Goran Žužić Today s lecture is about finding sparse solutions to linear systems. The problem

More information

Compressed sensing techniques for hyperspectral image recovery

Compressed sensing techniques for hyperspectral image recovery Compressed sensing techniques for hyperspectral image recovery A. Abrardo, M. Barni, C. M. Carretti, E. Magli, S. Kuiteing Kamdem, R. Vitulli ABSTRACT Compressed Sensing (CS) theory is progressively gaining

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Truncation Strategy of Tensor Compressive Sensing for Noisy Video Sequences

Truncation Strategy of Tensor Compressive Sensing for Noisy Video Sequences Journal of Information Hiding and Multimedia Signal Processing c 2016 ISSN 207-4212 Ubiquitous International Volume 7, Number 5, September 2016 Truncation Strategy of Tensor Compressive Sensing for Noisy

More information

Transform coding - topics. Principle of block-wise transform coding

Transform coding - topics. Principle of block-wise transform coding Transform coding - topics Principle of block-wise transform coding Properties of orthonormal transforms Discrete cosine transform (DCT) Bit allocation for transform Threshold coding Typical coding artifacts

More information

Performance of Image Similarity Measures under Burst Noise with Incomplete Reference

Performance of Image Similarity Measures under Burst Noise with Incomplete Reference Performance of Image Similarity Measures under Burst Noise with Incomplete Reference Nisreen R. Hamza 1, Hind R. M. Shaaban 1, Zahir M. Hussain 1,* and Katrina L. Neville 2 1 Faculty of Computer Science

More information

Hyper-Trellis Decoding of Pixel-Domain Wyner-Ziv Video Coding

Hyper-Trellis Decoding of Pixel-Domain Wyner-Ziv Video Coding 1 Hyper-Trellis Decoding of Pixel-Domain Wyner-Ziv Video Coding Arun Avudainayagam, John M. Shea, and Dapeng Wu Wireless Information Networking Group (WING) Department of Electrical and Computer Engineering

More information