Algebraic properties of polynomial iterates

Size: px
Start display at page:

Download "Algebraic properties of polynomial iterates"

Transcription

1 Algebrac propertes of polynomal terates Alna Ostafe Department of Computng Macquare Unversty

2 1 Motvaton 1. Better and cryptographcally stronger pseudorandom number generators (PRNG) as lnear constructons has been succefully attacked. We recall that an attack on a PRNG s an algorthm that observes several outputs of a PRNG and then able to contnue to generate the same sequence wth a nontrval probablty. 2. Possble new hash functons 3. Lnks wth tradtonal questons n the theory of algebrac dynamcal systems such as degree growth, perods, etc.

3 2 General settng p: prme number IF p : fnte feld of p elements. F = {F 1,..., F m }: system of m polynomals/ratonal functons n m varables over IF p How do we terate? Defne the k-th teraton of the ratonal functons F by the recurrence relaton F (0) = X, F (k) = F (F (k 1) 1,..., F (k 1) m ), where = 1,..., m and k = 1, 2,....

4 3 Our motvaton: Polynomal Pseudorandom Number Generators (PRNG) Consder the PRNG defned by a recurrence relaton n IF p un+1 = F(u n ), where u n = (u n,1,..., u n,m ) and F = (F 1 (X 1,..., X m ),..., F m (X 1,..., X m )). In partcular, for any n, k 0 and = 1,..., m we have u n+k = F (k) (u n ). IF p = fnte feld = sequence of vectors (w n ) s eventually perodc wth some perod τ p m.

5 4 Qualty of PRNG Unformty of dstrbuton of PRNG Estmatng exponental sums In our case: where S a (N) = N 1 n=0 e m =1 a u n,, e(z) = exp(2πz/p), a = (a 1,..., a m ) Z m. Informally: Trval bound S a (N) N (as t s a sum on N roots of unty). Motvaton: Good pseudorandom sequences should have small values of S a (N)!!! The smaller, the better!

6 5 How do we estmate S a (N)? Standard technque of estmatng S a (N) reduces t to estmatng the exponental sum v IF m p e m =1 a (F (k) (v) F (l) We can now try to apply Wel 1948: p x 1,...,x m =1 (v)) e (F (x 1,..., x m )) < Dpm 1/2, where F IF p [X 1,..., X m ] s a nonconstant polynomal of degree D.. Remarks: The degree plays an mportant role n the estmate of the exponental sum! We need lnear ndependence of the teratons F (k), k 1. In some specal cases elementary methods replace the use of the Wel bound and gve stronger bounds!

7 6 Degree growth If f s a unvarate polynomal of degree d, the degree growth deg f (k) = d k s fully controlled and exponental (f d 2). Queston: How about the multvarate case? Clearly the growth cannot be faster than exponental, but can t be slower? YES!!... and for us, generally speakng, the slower the better.

8 7 What systems do we study? Ostafe and Shparlnsk : F = {F 1,..., F m }: system of m ratonal functons n m varables over IF p of the form: F 1 (X 1,..., X m ) = X e 1 1 G 1(X 2,..., X m ) + H 1 (X 2,..., X m ),... F m 1 (X 1,..., X m ) = X e m 1 m 1 G m 1(X m ) + H m 1 (X m ), F m (X 1,..., X m ) = g m X e m m + h m, where e { 1, 1}, G, H IF p [X +1,..., X m ], g m, h m IF p. g e = 1 : G has a unque leadng monomal, G (X +1,..., X m ) = g X s, Xs,m m + G (X +1,..., X m ), g 0, deg Xj G < s,j, deg Xj H s,j, 1 < j m e = 1 : H has a unque leadng monomal H (X +1,..., X m ) = h X s, Xs,m m + H (X +1,..., X m ), wth h 0, deg Xj H < s,j, deg Xj G 2s,j, 1 < j m

9 8 Lemma 1 For the above systems, f e = 1, F (k) = X G,k (X +1,..., X m ) + H,k (X +1,..., X m ), and f e = 1, F (k) = X R,k + S,k X R,k 1 + S,k 1, = 1,..., m, k = 0, 1,..., where G,k, H,k, R,k, S,k IF(X +1,..., X m ), = 1,..., m 1. In both cases, deg F (k) = 1 (m )! km s,+1... s m 1,m + ψ (k), ψ (T ) Q[T ], deg ψ < m, = 1,..., m 1. Concluson: The degree grows polynomally n the number of teratons monotoncally (beyond a certan pont). Remark: The above effect does not occur n the unvarate case.

10 9 Why do we wn? we estmate the exponental sum for e = 1 for all = 1,..., m, v IF m p e m 1 =1 a (F (k) (v) F (l) (v)) where, as before, e(z) = exp(2πz/p) and F (k) F (l) = X (G,k G,l ) + H,k H,l. the case of ratonal functons wll follow more or less the same... but we have to take care of the poles!!! slow degree growth of the polynomals Remark: Slow, but not too slow!!!... so that G,k G,l s nontrval for k l the lnearty of the polynomals F n X Remark: We do not use the Wel bound. Instead we evaluate exponental sume wth lnear functons and estmate the number of zeros of G,k G,l, k l: any nontrval m-varate polynomal of degree D has at most Dp m 1 zeros, and thus we save p nstead of p 1/2 from the Wel bound.,

11 10 Wsh lst All results at some pont are based on an estmate of exponental sums wth L a,k,l (v) = m 1 =1 ( a F (k) (v) F (l) ) (v) We want L a,k,l (v) to be nontrval (.e. not to be a constant) exponental sums frendly: () of small degree (to apply the Wel bound) () lnear n some of the varables () to have a low dmensonal locus of sngularty (to apply the Delgne bound, or Delgnelke bounds by Katz, etc.) Propertes () and () have been exploted n the above constructons, a dream project s to fnd a system wth well-controlled property () and mprove prevous results.

12 11 Maxmal perods Ostafe 2010: Let (u n ) be defned as above wth perod τ p m. If e = 1 for all = 1,..., m, then τ = p m f and only f v IF m p where G (v) = 1, g m = 1, deg R = (m )(p 1), R = H G (2)... G (pm ) (mod I) s of degree at most p 1 n each varable and I s the deal generated by X p 1 X 1,..., X p m X m. Example: m = 2, p 3 (mod 4), F 1 = X 1 (f(x 2 ) 2 +(p+1)/4)+a and F 2 = X 2 +b, a, b IF p and f IF p [X] generates a permutaton. Queston: When do the systems of ratonal functons defned above acheve maxmal perod? Ostafe and Shparlnsk 2011 (n progress): When all e = 1, the maxmal perod reduces to descrbng the maxmal perod of a certan Möbus transformaton defned by the teratons of F.

13 12 Other algebrac propertes Can we fnd nontrval lower bounds for the number of monomals of the polynomals F (k), for any = 1,..., m, k = 1, 2,... over fnte felds? Fuchs and Zanner 2009: The number of monomals of the kth teratons of a unvarate ratonal functon over C tends to nfnty wth k. Remark: Ths s not necessarly the case of multvarate polynomals... Example: Let m = 4, F 1 = X 1 X 4 (X 3 X 1 + X 4 X 2 ), F 2 = X 2 +X 3 (X 3 X 1 +X 4 X 2 ), F 3 = X 3, F 4 = X 4. Then, for any k 1, F (k) 1 = X 1 kx 4 (X 3 X 1 + X 4 X 2 ) F (k) 2 = X 2 + kx 3 (X 3 X 1 + X 4 X 2 ). So, the degree growth s constant, as the number of monomals at every teraton (over any feld)!!!

14 13 There are stuatons (wth a bt of drty trcks wth the characterstc) when the degree grows exponentally, the number of monomals s constant, or even decreases to a monomal... at least over fnte felds. Example: Let m = 2, F 1 = X p 1 Xp 2, F 2 = X p 1 + Xp 2 over IF q, q = p m. Then F (k) = c,k X pk j, k = even, j k k {1, 2}, d,k (X pk 1 ± Xpk 2 ), k = odd where c,k, d,k IF q, = 1, 2. Queston: Can we acheve ths wthout cheatng?

15 14 The addtve complexty of the polynomals F (k), for any = 1,..., m, k = 1, 2,..., s the smallest number of + sgns n the formulas evaluatng these polynomals. Note that the addtve complexty can be much smaller than the number of monomals. Example: f(x, Y ) = (X 2 +2Y ) 100 (3X+Y 3 ) 200 +(X 300 +Y ) 10 s of total degree 3000 and thus has a very long representaton va the lst of coeffcents. However, the addtve complexty s 4 and thus has a very concse representaton/evaluaton. Construct polynomal systems wth exponentally degree growth, but wth polynomal addtve complexty growth of ther teratons. It s possble... Example: f(x) = (x b) d + b, f (k) (X) = (X b) dk + b, b IF q, d 2 If we have a Gröbner bass (GB) for {F 1,..., F m }, what can we say about the GB of {F (k) 1,..., F m (k) }? Can we say somethng about the dmenson of the deal generated by F (k) 1,..., F m (k)?

16 15 Let s talk about rreducblty!!! At some pont of the argument we need to estmate the number of zeros of some lnear combnatons of several dstnct terates F (k) (X) of F 1,..., F m. It s natural to start wth studyng the same terates. E.g.: can we say anythng nterestng about the polynomals F (k) (X)? Are they rreducble for any k? NO RESULTS! Let s start wth the unvarate case... stll no general results yet... except Gomez, Ncolas, Ostafe and Sadornl 2011, work n progress. Let s start wth quadratc polynomals... not too many results but there are some!!

17 16 Irreducblty of teratons For a feld IF, f IF[X] s called stable f f (k) rreducble for all k. Irreducblty s very common over Q. = over IF = Q a random polynomal s expected to be stable. Ahmad, Luca, Ostafe and Shparlnsk 2010: proved ths for quadratc polynomals. Over IF q rreducblty s rare: prob. 1/d for a random polynomal of degree d. = We expect very few stable polynomals (recall that deg f (k) grows fast). Gomez Perez and Pñera Ncolas 2010: estmate on the number of stable quadratc polynomals for odd q. Ahmad, Luca, Ostafe and Shparlnsk 2010: No stable quadratc polynomal over IF 2 n; t has nothng to do wth char = 2 as x 2 + t s stable over IF 2 (t).

18 17 Stablty testng of quadratc polynomals over IF q f(x) = ax 2 + bx + c IF q [X], a 0 γ = b/2a the unque crtcal pont of f Crtcal orbt of f: Orb(f) = {f (n) (γ) : n = 2, 3,...} t such that f (t) (γ) = f (s) (γ) for some postve nteger s < t. t f =the smallest value of t wth the above condton. Then: Orb(f) = {f (n) (γ) : n = 2,..., t f } Jones and Boston 2009: f IF q [X] s stable f and only f the adjusted crtcal orbt contans no squares. Orb(f) = { f(γ)} Orb(f)

19 18 Trvally #Orb(f) q and thus one can test f IF q [X] for stablty n q steps. Ostafe and Shparlnsk 2009: Theorem 2 For any odd q and any stable quadratc polynomal f IF q [X] we have t f = O ( q 3/4). Corollary 3 For any odd q, a quadratc polynomal f IF q [X] can be tested for stablty n tme q 3/4+o(1).

20 19 Stablty of arbtrary unvarate polynomals over IF q Ahmad, Luca, Ostafe and Shparlnsk 2010: even degree polynomals of the form F = g(f) where f s a quadratc polynomal, and g s any polynomal of degree d Theorem 4 For any odd q and any stable polynomal F = g(f) IF q [X], where f = ax 2 + bx + c IF q [X] and g IF q [X] of degree d, we have t F = O ( q 1 α d), where α d = log 2 2 log(4d). We can say a bt more...

21 20 Gomez, Ncolas, Ostafe and Sadornl n progress): 2011 (work f IF q [X] stable wth leadng coeffcent a IF q, q odd, deg f 2, (deg f, p) = 1 f nonconstant, γ roots of f, = 1,..., deg f 1 Then 1. f d = deg f s even, {a deg f 1 =1 f (n) (γ ) n > 1 } { ( 1) d 2a contans only non squares n IF q ; d 1 =1 f(γ ) } 2. f d = deg f s odd, { ( 1) (d 1) 2 d d 1 =1 f (n) (γ ) n 1 } contans only squares n IF q.

22 21 Questons: Is there an algorthm to check a quadratc polynomal for stablty n Q[X] n fntely many steps? Do there exst stable polynomals of degree kp, k 1, over a feld of characterstc p? Can we say somethng about the stablty of multvarate polynomals? Zaharescu 2005: some results about the rreducblty of terates of multvarate polynomals, but not n the usual way, only wth respect to one varable.

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

18.781: Solution to Practice Questions for Final Exam

18.781: Solution to Practice Questions for Final Exam 18.781: Soluton to Practce Questons for Fnal Exam 1. Fnd three solutons n postve ntegers of x 6y = 1 by frst calculatng the contnued fracton expanson of 6. Soluton: We have 1 6=[, ] 6 6+ =[, ] 1 =[,, ]=[,,

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization DISCRIMINANTS AND RAMIFIED PRIMES KEITH CONRAD 1. Introducton A prme number p s sad to be ramfed n a number feld K f the prme deal factorzaton (1.1) (p) = po K = p e 1 1 peg g has some e greater than 1.

More information

MTH 819 Algebra I S13. Homework 1/ Solutions. 1 if p n b and p n+1 b 0 otherwise ) = 0 if p q or n m. W i = rw i

MTH 819 Algebra I S13. Homework 1/ Solutions. 1 if p n b and p n+1 b 0 otherwise ) = 0 if p q or n m. W i = rw i MTH 819 Algebra I S13 Homework 1/ Solutons Defnton A. Let R be PID and V a untary R-module. Let p be a prme n R and n Z +. Then d p,n (V) = dm R/Rp p n 1 Ann V (p n )/p n Ann V (p n+1 ) Note here that

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Differential Polynomials

Differential Polynomials JASS 07 - Polynomals: Ther Power and How to Use Them Dfferental Polynomals Stephan Rtscher March 18, 2007 Abstract Ths artcle gves an bref ntroducton nto dfferental polynomals, deals and manfolds and ther

More information

DIFFERENTIAL FORMS BRIAN OSSERMAN

DIFFERENTIAL FORMS BRIAN OSSERMAN DIFFERENTIAL FORMS BRIAN OSSERMAN Dfferentals are an mportant topc n algebrac geometry, allowng the use of some classcal geometrc arguments n the context of varetes over any feld. We wll use them to defne

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

1 Generating functions, continued

1 Generating functions, continued Generatng functons, contnued. Exponental generatng functons and set-parttons At ths pont, we ve come up wth good generatng-functon dscussons based on 3 of the 4 rows of our twelvefold way. Wll our nteger-partton

More information

a b a In case b 0, a being divisible by b is the same as to say that

a b a In case b 0, a being divisible by b is the same as to say that Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

More information

A p-adic PERRON-FROBENIUS THEOREM

A p-adic PERRON-FROBENIUS THEOREM A p-adic PERRON-FROBENIUS THEOREM ROBERT COSTA AND PATRICK DYNES Advsor: Clayton Petsche Oregon State Unversty Abstract We prove a result for square matrces over the p-adc numbers akn to the Perron-Frobenus

More information

ALGEBRA HW 7 CLAY SHONKWILER

ALGEBRA HW 7 CLAY SHONKWILER ALGEBRA HW 7 CLAY SHONKWILER 1 Whch of the followng rngs R are dscrete valuaton rngs? For those that are, fnd the fracton feld K = frac R, the resdue feld k = R/m (where m) s the maxmal deal), and a unformzer

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/8.40J Lecture 7 Prof. Potr Indyk Data Structures Role of data structures: Encapsulate data Support certan operatons (e.g., INSERT, DELETE, SEARCH) Our focus: effcency of

More information

where a is any ideal of R. Lemma 5.4. Let R be a ring. Then X = Spec R is a topological space Moreover the open sets

where a is any ideal of R. Lemma 5.4. Let R be a ring. Then X = Spec R is a topological space Moreover the open sets 5. Schemes To defne schemes, just as wth algebrac varetes, the dea s to frst defne what an affne scheme s, and then realse an arbtrary scheme, as somethng whch s locally an affne scheme. The defnton of

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

An efficient algorithm for multivariate Maclaurin Newton transformation

An efficient algorithm for multivariate Maclaurin Newton transformation Annales UMCS Informatca AI VIII, 2 2008) 5 14 DOI: 10.2478/v10065-008-0020-6 An effcent algorthm for multvarate Maclaurn Newton transformaton Joanna Kapusta Insttute of Mathematcs and Computer Scence,

More information

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent

More information

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence.

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence. Vector Norms Chapter 7 Iteratve Technques n Matrx Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematcs Unversty of Calforna, Berkeley Math 128B Numercal Analyss Defnton A vector norm

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

Fixed points of IA-endomorphisms of a free metabelian Lie algebra

Fixed points of IA-endomorphisms of a free metabelian Lie algebra Proc. Indan Acad. Sc. (Math. Sc.) Vol. 121, No. 4, November 2011, pp. 405 416. c Indan Academy of Scences Fxed ponts of IA-endomorphsms of a free metabelan Le algebra NAIME EKICI 1 and DEMET PARLAK SÖNMEZ

More information

Smarandache-Zero Divisors in Group Rings

Smarandache-Zero Divisors in Group Rings Smarandache-Zero Dvsors n Group Rngs W.B. Vasantha and Moon K. Chetry Department of Mathematcs I.I.T Madras, Chenna The study of zero-dvsors n group rngs had become nterestng problem snce 1940 wth the

More information

Section 3.6 Complex Zeros

Section 3.6 Complex Zeros 04 Chapter Secton 6 Comple Zeros When fndng the zeros of polynomals, at some pont you're faced wth the problem Whle there are clearly no real numbers that are solutons to ths equaton, leavng thngs there

More information

REDUCTION MODULO p. We will prove the reduction modulo p theorem in the general form as given by exercise 4.12, p. 143, of [1].

REDUCTION MODULO p. We will prove the reduction modulo p theorem in the general form as given by exercise 4.12, p. 143, of [1]. REDUCTION MODULO p. IAN KIMING We wll prove the reducton modulo p theorem n the general form as gven by exercse 4.12, p. 143, of [1]. We consder an ellptc curve E defned over Q and gven by a Weerstraß

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

where a is any ideal of R. Lemma Let R be a ring. Then X = Spec R is a topological space. Moreover the open sets

where a is any ideal of R. Lemma Let R be a ring. Then X = Spec R is a topological space. Moreover the open sets 11. Schemes To defne schemes, just as wth algebrac varetes, the dea s to frst defne what an affne scheme s, and then realse an arbtrary scheme, as somethng whch s locally an affne scheme. The defnton of

More information

Ballot Paths Avoiding Depth Zero Patterns

Ballot Paths Avoiding Depth Zero Patterns Ballot Paths Avodng Depth Zero Patterns Henrch Nederhausen and Shaun Sullvan Florda Atlantc Unversty, Boca Raton, Florda nederha@fauedu, ssull21@fauedu 1 Introducton In a paper by Sapounaks, Tasoulas,

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Short running title: A generating function approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI

Short running title: A generating function approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI Short runnng ttle: A generatng functon approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI JASON FULMAN Abstract. A recent paper of Church, Ellenberg,

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

The Ramanujan-Nagell Theorem: Understanding the Proof By Spencer De Chenne

The Ramanujan-Nagell Theorem: Understanding the Proof By Spencer De Chenne The Ramanujan-Nagell Theorem: Understandng the Proof By Spencer De Chenne 1 Introducton The Ramanujan-Nagell Theorem, frst proposed as a conjecture by Srnvasa Ramanujan n 1943 and later proven by Trygve

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Polynomials. 1 More properties of polynomials

Polynomials. 1 More properties of polynomials Polynomals 1 More propertes of polynomals Recall that, for R a commutatve rng wth unty (as wth all rngs n ths course unless otherwse noted), we defne R[x] to be the set of expressons n =0 a x, where a

More information

Message modification, neutral bits and boomerangs

Message modification, neutral bits and boomerangs Message modfcaton, neutral bts and boomerangs From whch round should we start countng n SHA? Antone Joux DGA and Unversty of Versalles St-Quentn-en-Yvelnes France Jont work wth Thomas Peyrn 1 Dfferental

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

where x =(x 1 ;x 2 ;::: ;x n )[12]. The dynamcs of the Ducc map have been examned for specal cases of n n [7,17,27]. In addton, many nterestng results

where x =(x 1 ;x 2 ;::: ;x n )[12]. The dynamcs of the Ducc map have been examned for specal cases of n n [7,17,27]. In addton, many nterestng results A CHARACTERIZATION FOR THE LENGTH OF CYCLES OF THE N - NUMBER DUCCI GAME NEIL J. CALKIN DEPARTMENT OF MATHEMATICAL SCIENCES CLEMSON UNIVERSITY CLEMSON, SC 29634-1907 JOHN G. STEVENS AND DIANA M. THOMAS

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

Continuous Time Markov Chain

Continuous Time Markov Chain Contnuous Tme Markov Chan Hu Jn Department of Electroncs and Communcaton Engneerng Hanyang Unversty ERICA Campus Contents Contnuous tme Markov Chan (CTMC) Propertes of sojourn tme Relatons Transton probablty

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Lecture 5 September 17, 2015

Lecture 5 September 17, 2015 CS 229r: Algorthms for Bg Data Fall 205 Prof. Jelan Nelson Lecture 5 September 7, 205 Scrbe: Yakr Reshef Recap and overvew Last tme we dscussed the problem of norm estmaton for p-norms wth p > 2. We had

More information

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1 MATH 5707 HOMEWORK 4 SOLUTIONS CİHAN BAHRAN 1. Let v 1,..., v n R m, all lengths v are not larger than 1. Let p 1,..., p n [0, 1] be arbtrary and set w = p 1 v 1 + + p n v n. Then there exst ε 1,..., ε

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/18.401J Lecture 7 Prof. Potr Indyk Data Structures Role of data structures: Encapsulate data Support certan operatons (e.g., INSERT, DELETE, SEARCH) What data structures

More information

On the size of quotient of two subsets of positive integers.

On the size of quotient of two subsets of positive integers. arxv:1706.04101v1 [math.nt] 13 Jun 2017 On the sze of quotent of two subsets of postve ntegers. Yur Shtenkov Abstract We obtan non-trval lower bound for the set A/A, where A s a subset of the nterval [1,

More information

Geometry of Müntz Spaces

Geometry of Müntz Spaces WDS'12 Proceedngs of Contrbuted Papers, Part I, 31 35, 212. ISBN 978-8-7378-224-5 MATFYZPRESS Geometry of Müntz Spaces P. Petráček Charles Unversty, Faculty of Mathematcs and Physcs, Prague, Czech Republc.

More information

Restricted divisor sums

Restricted divisor sums ACTA ARITHMETICA 02 2002) Restrcted dvsor sums by Kevn A Broughan Hamlton) Introducton There s a body of work n the lterature on varous restrcted sums of the number of dvsors of an nteger functon ncludng

More information

Dirichlet s Theorem In Arithmetic Progressions

Dirichlet s Theorem In Arithmetic Progressions Drchlet s Theorem In Arthmetc Progressons Parsa Kavkan Hang Wang The Unversty of Adelade February 26, 205 Abstract The am of ths paper s to ntroduce and prove Drchlet s theorem n arthmetc progressons,

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Bernoulli Numbers and Polynomials

Bernoulli Numbers and Polynomials Bernoull Numbers and Polynomals T. Muthukumar tmk@tk.ac.n 17 Jun 2014 The sum of frst n natural numbers 1, 2, 3,..., n s n n(n + 1 S 1 (n := m = = n2 2 2 + n 2. Ths formula can be derved by notng that

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

Valuations compatible with a projection

Valuations compatible with a projection ADERNOS DE MATEMÁTIA 05, 237 244 October (2004) ARTIGO NÚMERO SMA# 205 Valuatons compatble wth a projecton Fuensanta Aroca * Departamento de Matemátca, Insttuto de êncas Matemátcas e de omputação, Unversdade

More information

Provable Security Signatures

Provable Security Signatures Provable Securty Sgnatures UCL - Louvan-la-Neuve Wednesday, July 10th, 2002 LIENS-CNRS Ecole normale supéreure Summary Introducton Sgnature FD PSS Forkng Lemma Generc Model Concluson Provable Securty -

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

THERE ARE NO POINTS OF ORDER 11 ON ELLIPTIC CURVES OVER Q.

THERE ARE NO POINTS OF ORDER 11 ON ELLIPTIC CURVES OVER Q. THERE ARE NO POINTS OF ORDER 11 ON ELLIPTIC CURVES OVER Q. IAN KIMING We shall prove the followng result from [2]: Theorem 1. (Bllng-Mahler, 1940, cf. [2]) An ellptc curve defned over Q does not have a

More information

Chowla s Problem on the Non-Vanishing of Certain Infinite Series and Related Questions

Chowla s Problem on the Non-Vanishing of Certain Infinite Series and Related Questions Proc. Int. Conf. Number Theory and Dscrete Geometry No. 4, 2007, pp. 7 79. Chowla s Problem on the Non-Vanshng of Certan Infnte Seres and Related Questons N. Saradha School of Mathematcs, Tata Insttute

More information

Hashing. Alexandra Stefan

Hashing. Alexandra Stefan Hashng Alexandra Stefan 1 Hash tables Tables Drect access table (or key-ndex table): key => ndex Hash table: key => hash value => ndex Man components Hash functon Collson resoluton Dfferent keys mapped

More information

Random Walks on Digraphs

Random Walks on Digraphs Random Walks on Dgraphs J. J. P. Veerman October 23, 27 Introducton Let V = {, n} be a vertex set and S a non-negatve row-stochastc matrx (.e. rows sum to ). V and S defne a dgraph G = G(V, S) and a drected

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

ALGEBRA MID-TERM. 1 Suppose I is a principal ideal of the integral domain R. Prove that the R-module I R I has no non-zero torsion elements.

ALGEBRA MID-TERM. 1 Suppose I is a principal ideal of the integral domain R. Prove that the R-module I R I has no non-zero torsion elements. ALGEBRA MID-TERM CLAY SHONKWILER 1 Suppose I s a prncpal deal of the ntegral doman R. Prove that the R-module I R I has no non-zero torson elements. Proof. Note, frst, that f I R I has no non-zero torson

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

CSE 252C: Computer Vision III

CSE 252C: Computer Vision III CSE 252C: Computer Vson III Lecturer: Serge Belonge Scrbe: Catherne Wah LECTURE 15 Kernel Machnes 15.1. Kernels We wll study two methods based on a specal knd of functon k(x, y) called a kernel: Kernel

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Lecture 17: Lee-Sidford Barrier

Lecture 17: Lee-Sidford Barrier CSE 599: Interplay between Convex Optmzaton and Geometry Wnter 2018 Lecturer: Yn Tat Lee Lecture 17: Lee-Sdford Barrer Dsclamer: Please tell me any mstake you notced. In ths lecture, we talk about the

More information

Exhaustive Search for the Binary Sequences of Length 2047 and 4095 with Ideal Autocorrelation

Exhaustive Search for the Binary Sequences of Length 2047 and 4095 with Ideal Autocorrelation Exhaustve Search for the Bnary Sequences of Length 047 and 4095 wth Ideal Autocorrelaton 003. 5. 4. Seok-Yong Jn and Hong-Yeop Song. Yonse Unversty Contents Introducton Background theory Ideal autocorrelaton

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013 ISSN: 2277-375 Constructon of Trend Free Run Orders for Orthogonal rrays Usng Codes bstract: Sometmes when the expermental runs are carred out n a tme order sequence, the response can depend on the run

More information

Week 2. This week, we covered operations on sets and cardinality.

Week 2. This week, we covered operations on sets and cardinality. Week 2 Ths week, we covered operatons on sets and cardnalty. Defnton 0.1 (Correspondence). A correspondence between two sets A and B s a set S contaned n A B = {(a, b) a A, b B}. A correspondence from

More information

Subset Topological Spaces and Kakutani s Theorem

Subset Topological Spaces and Kakutani s Theorem MOD Natural Neutrosophc Subset Topologcal Spaces and Kakutan s Theorem W. B. Vasantha Kandasamy lanthenral K Florentn Smarandache 1 Copyrght 1 by EuropaNova ASBL and the Authors Ths book can be ordered

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

Support Vector Machines CS434

Support Vector Machines CS434 Support Vector Machnes CS434 Lnear Separators Many lnear separators exst that perfectly classfy all tranng examples Whch of the lnear separators s the best? + + + + + + + + + Intuton of Margn Consder ponts

More information

On the irreducibility of a truncated binomial expansion

On the irreducibility of a truncated binomial expansion On the rreducblty of a truncated bnomal expanson by Mchael Flaseta, Angel Kumchev and Dmtr V. Pasechnk 1 Introducton For postve ntegers k and n wth k n 1, defne P n,k (x = =0 ( n x. In the case that k

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

FACTORING POLYNOMIALS OVER FINITE FIELDS USING BALANCE TEST CHANDAN SAHA

FACTORING POLYNOMIALS OVER FINITE FIELDS USING BALANCE TEST CHANDAN SAHA FACTORING POLYNOMIALS OVER FINITE FIELDS USING BALANCE TEST CHANDAN SAHA Department of Computer Scence and Engneerng Indan Insttute of Technology Kanpur E-mal address: csaha@cse.tk.ac.n Abstract. We study

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

Finding Primitive Roots Pseudo-Deterministically

Finding Primitive Roots Pseudo-Deterministically Electronc Colloquum on Computatonal Complexty, Report No 207 (205) Fndng Prmtve Roots Pseudo-Determnstcally Ofer Grossman December 22, 205 Abstract Pseudo-determnstc algorthms are randomzed search algorthms

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

Attacks on RSA The Rabin Cryptosystem Semantic Security of RSA Cryptology, Tuesday, February 27th, 2007 Nils Andersen. Complexity Theoretic Reduction

Attacks on RSA The Rabin Cryptosystem Semantic Security of RSA Cryptology, Tuesday, February 27th, 2007 Nils Andersen. Complexity Theoretic Reduction Attacks on RSA The Rabn Cryptosystem Semantc Securty of RSA Cryptology, Tuesday, February 27th, 2007 Nls Andersen Square Roots modulo n Complexty Theoretc Reducton Factorng Algorthms Pollard s p 1 Pollard

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Polynomial PSet Solutions

Polynomial PSet Solutions Polynomal PSet Solutons Note: Problems A, A2, B2, B8, C2, D2, E3, and E6 were done n class. (A) Values and Roots. Rearrange to get (x + )P (x) x = 0 for x = 0,,..., n. Snce ths equaton has roots x = 0,,...,

More information

Lecture 3: Dual problems and Kernels

Lecture 3: Dual problems and Kernels Lecture 3: Dual problems and Kernels C4B Machne Learnng Hlary 211 A. Zsserman Prmal and dual forms Lnear separablty revsted Feature mappng Kernels for SVMs Kernel trck requrements radal bass functons SVM

More information

HOPF ALGEBRAS WITH TRACE AND CLEBSCH-GORDAN COEFFICIENTS. 1. Recollections and the problem

HOPF ALGEBRAS WITH TRACE AND CLEBSCH-GORDAN COEFFICIENTS. 1. Recollections and the problem HOPF ALGEBRAS WITH TRACE AND CLEBSCH-GORDAN COEFFICIENTS CORRADO DE CONCINI Abstract. In ths lecture I shall report on some jont work wth Proces, Reshetkhn and Rosso [1]. 1. Recollectons and the problem

More information

A CLASS OF RECURSIVE SETS. Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA

A CLASS OF RECURSIVE SETS. Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA A CLASS OF RECURSIVE SETS Florentn Smarandache Unversty of New Mexco 200 College Road Gallup, NM 87301, USA E-mal: smarand@unmedu In ths artcle one bulds a class of recursve sets, one establshes propertes

More information

SMARANDACHE-GALOIS FIELDS

SMARANDACHE-GALOIS FIELDS SMARANDACHE-GALOIS FIELDS W. B. Vasantha Kandasamy Deartment of Mathematcs Indan Insttute of Technology, Madras Chenna - 600 036, Inda. E-mal: vasantak@md3.vsnl.net.n Abstract: In ths aer we study the

More information