A Tuned Preconditioner for Inexact Inverse Iteration Applied to Hermitian Eigenvalue Problems

Size: px
Start display at page:

Download "A Tuned Preconditioner for Inexact Inverse Iteration Applied to Hermitian Eigenvalue Problems"

Transcription

1 A Tuned Preconditioner for Applied to Eigenvalue Problems Department of Mathematical Sciences University of Bath, United Kingdom IWASEP VI May 22-25, 2006 Pennsylvania State University, University Park Joint work with: Alastair Spence

2

3

4 Problem and Inverse Find an eigenvalue and eigenvector of a positive definite A: Ax = λx, Inverse : A large, sparse. (A σi)y = x Inverse iteration with preconditioned iterative

5

6 for i = 1 to i max do choose τ (i), σ (i) solve (A σ (i) I)y (i) x (i) τ (i), Rescale x (i+1) = y(i) y (i), Update λ (i+1) = x (i+1)t Ax (i+1), possibly: update the shift σ (i) Test: eigenvalue residual r (i+1) = (A λ (i+1) I)x (i+1). end for

7 Error indicator Error indicator (Orthogonal decomposition for symmetric A, Parlett) Eigenvalue residual x (i) = cos θ (i) x 1 + sin θ (i) x (i), x(i) x 1. sin θ (i) λ 2 λ (i) r (i) sin θ (i) λ n λ 1

8 rates of inexact inverse iteration Decreasing tolerance τ (i) = C r (i) = O(sin θ (i) ) 1 For decreasing tolerance τ (i) C r (i) = O(sin θ (i) ) the inexact method recovers the rate of convergence achieved by exact. 2 Fixed shift σ: linear convergence. 3 Rayleigh quotient shift σ (i) = ρ(x (i) ) = x(i)t Ax (i) x (i)t x : cubic (i) convergence for A = A. Fixed tolerance τ (i) = τ 1 Rayleigh quotient shift: quadratic convergence

9 MINRES (A σi)y = x when A is symmetric Solving a linear system (A σi)y = x standard MINRES for y 0 = 0: x (A σi)y k 2 where κ is the condition number of A σi. Number of inner iterations: then k 1 + κ ( ) k 1 κ 1 x. κ + 1 { log 2 + log x } τ x (A σi)y k τ.

10 Unpreconditioned with MINRES rates for with MINRES for simple eigenvalue If A is positive definite and has a simple eigenvalue then x (i) (A σi)y (i) k 2 2 λ 1 λ n λ 1 σ ( )k 2 κ1 1 Qx (i) 2. κ where Q is the orthogonal projection onto span{x 2,..., x n } and κ 1 is the reduced condition number κ 1 = max i=2,...,n λ i σ min i=2,...,n λ i σ. Number of inner for each i for x (i) (A σ (i) I)y (i) τ (i) ( ) k (i) 2 + κ 1 log 2 λ 1 λ n + log Qx(i) 2 λ 1 σ τ (i)

11 Unpreconditioned with MINRES rates for with MINRES for simple eigenvalue If A is positive definite and has a simple eigenvalue then x (i) (A σi)y (i) k 2 2 λ 1 λ n λ 1 σ ( )k 2 κ1 1 sin θ (i). κ where Q is the orthogonal projection onto span{x 2,..., x n } and κ 1 is the reduced condition number κ 1 = max i=2,...,n λ i σ min i=2,...,n λ i σ. Number of inner for each i for x (i) (A σ (i) I)y (i) τ (i) ( k (i) 2 + κ 1 log 2 λ 1 λ n + log sin ) θ(i) λ 1 σ τ (i)

12

13 Incomplete Cholesky A = LL T + E symmetric of (A σi)y (i) = x (i) : Remarks L 1 (A σi)l T ỹ (i) = L 1 x (i), 1 changes number of inner iterations k (i) 2 + κ 1 (log 2 λ 1 λ n + log 2 k (i) increases with i for τ (i) = C r (i). y (i) = L T ỹ (i) L 1 ) λ 1 σ τ (i)

14 Incomplete Cholesky A = LL T + E symmetric of (A σi)y (i) = x (i) : Remarks L 1 (A σi)l T ỹ (i) = L 1 x (i), 1 changes number of inner iterations k (i) 2 + κ 1 (log 2 λ 1 λ n + log 2 k (i) increases with i for τ (i) = C r (i). y (i) = L T ỹ (i) L 1 ) λ 1 σ τ (i)

15 Derivation Aims 1 modify L L L 1 (A σi)l T ỹ (i) = L 1 x (i), 2 minor extra computation cost for L y (i) = L T ỹ (i) 3 nice right hand side L 1 x (i) (same behaviour as unpreconditioned, e.g. for fixed shifts k (i) does not increase with i)

16 Derivation Aims 1 modify L L L 1 (A σi)l T ỹ (i) = L 1 x (i), 2 minor extra computation cost for L y (i) = L T ỹ (i) 3 nice right hand side L 1 x (i) (same behaviour as unpreconditioned, e.g. for fixed shifts k (i) does not increase with i)

17 Choice of L Condition MINRES indicates that L 1 x (i) should be close to eigenvector of L 1 (A σi)l T Holds if Justification of LL T x (i) = Ax (i) If x (i) = x 1 then LL T x 1 = λ 1 x 1 LL T x (i) = Ax (i) L 1 (A σi)l T L 1 x 1 = λ 1 σ λ 1 L 1 x 1 L 1 (A σi)l T L 1 x (i) = λ 1 σ L 1 x (i) + C r (i) λ 1

18 Choice of L Condition MINRES indicates that L 1 x (i) should be close to eigenvector of L 1 (A σi)l T Holds if Justification of LL T x (i) = Ax (i) If x (i) = x 1 then LL T x 1 = λ 1 x 1 LL T x (i) = Ax (i) L 1 (A σi)l T L 1 x 1 = λ 1 σ λ 1 L 1 x 1 L 1 (A σi)l T L 1 x (i) = λ 1 σ L 1 x (i) + C r (i) λ 1

19 How do we achieve LL T x (i) = Ax (i)? Theorem Let x (i) current eigenvector approximation, e (i) = Ax (i) LL T x (i) (known) and L chosen such that L = L + α (i) e (i) (L 1 e (i) ) T with α (i) root of quadratic function we get LL T x (i) = Ax (i). Implementation 1 Note: LL T = LL T 1 + e (i)t x (i) e(i) e (i)t 2 L is a rank-one update of L.

20 How do we achieve LL T x (i) = Ax (i)? Theorem Let x (i) current eigenvector approximation, e (i) = Ax (i) LL T x (i) (known) and L chosen such that L = L + α (i) e (i) (L 1 e (i) ) T with α (i) root of quadratic function we get LL T x (i) = Ax (i). Implementation 1 Note: LL T = LL T 1 + e (i)t x (i) e(i) e (i)t 2 L is a rank-one update of L.

21 Implementation General positive definite For MINRES implementation only the evaluation of P 1 is necessary Sherman-Morrison formula where z (i) = P 1 Ax (i). P = P + γ (i) e (i) e (i)t P 1 = P 1 (z(i) x (i) )(z (i) x (i) ) T (z (i) x (i) ) T Ax (i)

22 rates The 1 outer convergence rate is retained 2 cheap inner are provided ( sin θ k (i) (i) ) C 1 + C 2 log λ 1 σ τ (i) 3 only a single extra back substitution with P = LL T per outer iteration needed

23 Example SPD matrix from the Matrix Market library (nos5: 3 story building with attached tower) seek eigenvalue near fixed shift σ = 100 A LL T, incomplete Cholesky factorisation (drop tol. = 0.1) compare standard and

24 Fixed shift with standard incomplete Cholesky total number of inner iterations using standard : 2026 total number of inner iterations using : 779

25 Comparison of LL T with LL T Spectral properties of preconditioned matrix Let Theorem If σ / Λ(A) then µ, ξ 0 and L 1 (A σi)l T w = µw L 1 (A σi)l T ŵ = ξŵ min µ Λ(L 1 (A σi)l T ) where γ = 1/(e T x) and v = L 1 e. µ ξ ξ γv v,

26 Comparison of LL T with LL T Spectral properties of preconditioned matrix Let L 1 (A σi)l T w = µw L 1 (A σi)l T ŵ = ξŵ Interlacing property Rewrite second equation Dt = ξ(i + γzz T )t where L 1 (A σi)l T = QDQ T, z = Q T v, (I + αvv T )Qt = ŵ. Interlacing property If γ > 0 eigenvalues are moved towards the origin. If γ < 0 eigenvalues are moved away from the origin.

27 Comparison of LL T with LL T Spectral properties of preconditioned matrix Let L 1 (A σi)l T w = µw L 1 (A σi)l T ŵ = ξŵ Interlacing property Rewrite second equation Dt = ξ(i + γzz T )t where L 1 (A σi)l T = QDQ T, z = Q T v, (I + αvv T )Qt = ŵ. Interlacing property If γ > 0 eigenvalues are moved towards the origin. If γ < 0 eigenvalues are moved away from the origin.

28 Comparison of LL T with LL T Interlacing property µ and ξ interlace each other depending on the sign of γ Clustering properties are preserved reduced condition number κ 1 L κ1 L κ1 L (1 + γvt v)

29 Comparison of LL T with LL T Interlacing property µ and ξ interlace each other depending on the sign of γ Clustering properties are preserved reduced condition number κ 1 L κ1 L κ1 L (1 + γvt v)

30 Changing the right hand side Approach by Simoncini/Eldén [3] Instead of solving L 1 (A σ (i) I)L T ỹ (i) = L 1 x (i), change the right hand side L 1 (A σ (i) I)L T ỹ (i) = L T x (i), y (i) = L T ỹ (i) y (i) = L T ỹ (i)

31 Comparison Tuned and Simoncini & Eldén Example nos5.mtx from Matrix Market. Solves to fixed tolerance τ = Rayleigh quotient shift. Quadratic convergence for both methods. Simoncini & Eldén Tuned Drop Tolerances Outer total

32

33 example Ax = λm x with bcsstk08 (Structural engineering) Figure: Fixed Shift Figure: Rayleigh Quotient Shift

34 example for the eigenproblem Ax = λm x with bcsstk08 (Structural engineering) Figure: Fixed Shift Figure: Rayleigh Quotient Shift

35 M. A. Freitag and A. Spence, rates for inexact inverse iteration with application to preconditioned iterative, Submitted to BIT., A for inexact inverse iteration applied to eigenvalue problems, Submitted to IMA J. Numer. Anal. V. Simoncini and L. Eldén, Inexact Rayleigh quotient-type methods for eigenvalue computations, BIT, 42 (2002), pp

A Tuned Preconditioner for Inexact Inverse Iteration for Generalised Eigenvalue Problems

A Tuned Preconditioner for Inexact Inverse Iteration for Generalised Eigenvalue Problems A Tuned Preconditioner for for Generalised Eigenvalue Problems Department of Mathematical Sciences University of Bath, United Kingdom IWASEP VI May 22-25, 2006 Pennsylvania State University, University

More information

Lecture 3: Inexact inverse iteration with preconditioning

Lecture 3: Inexact inverse iteration with preconditioning Lecture 3: Department of Mathematical Sciences CLAPDE, Durham, July 2008 Joint work with M. Freitag (Bath), and M. Robbé & M. Sadkane (Brest) 1 Introduction 2 Preconditioned GMRES for Inverse Power Method

More information

Preconditioned inverse iteration and shift-invert Arnoldi method

Preconditioned inverse iteration and shift-invert Arnoldi method Preconditioned inverse iteration and shift-invert Arnoldi method Melina Freitag Department of Mathematical Sciences University of Bath CSC Seminar Max-Planck-Institute for Dynamics of Complex Technical

More information

Inexact inverse iteration with preconditioning

Inexact inverse iteration with preconditioning Department of Mathematical Sciences Computational Methods with Applications Harrachov, Czech Republic 24th August 2007 (joint work with M. Robbé and M. Sadkane (Brest)) 1 Introduction 2 Preconditioned

More information

Inexact Inverse Iteration for Symmetric Matrices

Inexact Inverse Iteration for Symmetric Matrices Inexact Inverse Iteration for Symmetric Matrices Jörg Berns-Müller Ivan G. Graham Alastair Spence Abstract In this paper we analyse inexact inverse iteration for the real symmetric eigenvalue problem Av

More information

Inexact Inverse Iteration for Symmetric Matrices

Inexact Inverse Iteration for Symmetric Matrices Inexact Inverse Iteration for Symmetric Matrices Jörg Berns-Müller Ivan G. Graham Alastair Spence Abstract In this paper we analyse inexact inverse iteration for the real symmetric eigenvalue problem Av

More information

Inexact inverse iteration for symmetric matrices

Inexact inverse iteration for symmetric matrices Linear Algebra and its Applications 46 (2006) 389 43 www.elsevier.com/locate/laa Inexact inverse iteration for symmetric matrices Jörg Berns-Müller a, Ivan G. Graham b, Alastair Spence b, a Fachbereich

More information

RAYLEIGH QUOTIENT ITERATION AND SIMPLIFIED JACOBI-DAVIDSON WITH PRECONDITIONED ITERATIVE SOLVES FOR GENERALISED EIGENVALUE PROBLEMS

RAYLEIGH QUOTIENT ITERATION AND SIMPLIFIED JACOBI-DAVIDSON WITH PRECONDITIONED ITERATIVE SOLVES FOR GENERALISED EIGENVALUE PROBLEMS RAYLEIGH QUOTIENT ITERATION AND SIMPLIFIED JACOBI-DAVIDSON WITH PRECONDITIONED ITERATIVE SOLVES FOR GENERALISED EIGENVALUE PROBLEMS MELINA A. FREITAG, ALASTAIR SPENCE, AND EERO VAINIKKO Abstract. The computation

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 28, No. 4, pp. 1069 1082 c 2006 Society for Industrial and Applied Mathematics INEXACT INVERSE ITERATION WITH VARIABLE SHIFT FOR NONSYMMETRIC GENERALIZED EIGENVALUE PROBLEMS

More information

Inner-outer Iterative Methods for Eigenvalue Problems - Convergence and Preconditioning

Inner-outer Iterative Methods for Eigenvalue Problems - Convergence and Preconditioning Inner-outer Iterative Methods for Eigenvalue Problems - Convergence and Preconditioning submitted by Melina Annerose Freitag for the degree of Doctor of Philosophy of the University of Bath Department

More information

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna.

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna. Recent advances in approximation using Krylov subspaces V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The framework It is given an operator

More information

AN INEXACT INVERSE ITERATION FOR COMPUTING THE SMALLEST EIGENVALUE OF AN IRREDUCIBLE M-MATRIX. 1. Introduction. We consider the eigenvalue problem

AN INEXACT INVERSE ITERATION FOR COMPUTING THE SMALLEST EIGENVALUE OF AN IRREDUCIBLE M-MATRIX. 1. Introduction. We consider the eigenvalue problem AN INEXACT INVERSE ITERATION FOR COMPUTING THE SMALLEST EIGENVALUE OF AN IRREDUCIBLE M-MATRIX MICHIEL E. HOCHSTENBACH, WEN-WEI LIN, AND CHING-SUNG LIU Abstract. In this paper, we present an inexact inverse

More information

Linear algebra issues in Interior Point methods for bound-constrained least-squares problems

Linear algebra issues in Interior Point methods for bound-constrained least-squares problems Linear algebra issues in Interior Point methods for bound-constrained least-squares problems Stefania Bellavia Dipartimento di Energetica S. Stecco Università degli Studi di Firenze Joint work with Jacek

More information

ABSTRACT NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATIONS

ABSTRACT NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATIONS ABSTRACT Title of dissertation: NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATIONS Fei Xue, Doctor of Philosophy, 2009 Dissertation directed by: Professor Howard C. Elman Department

More information

Conjugate Gradient Method

Conjugate Gradient Method Conjugate Gradient Method direct and indirect methods positive definite linear systems Krylov sequence spectral analysis of Krylov sequence preconditioning Prof. S. Boyd, EE364b, Stanford University Three

More information

Alternative correction equations in the Jacobi-Davidson method

Alternative correction equations in the Jacobi-Davidson method Chapter 2 Alternative correction equations in the Jacobi-Davidson method Menno Genseberger and Gerard Sleijpen Abstract The correction equation in the Jacobi-Davidson method is effective in a subspace

More information

ITERATIVE PROJECTION METHODS FOR SPARSE LINEAR SYSTEMS AND EIGENPROBLEMS CHAPTER 11 : JACOBI DAVIDSON METHOD

ITERATIVE PROJECTION METHODS FOR SPARSE LINEAR SYSTEMS AND EIGENPROBLEMS CHAPTER 11 : JACOBI DAVIDSON METHOD ITERATIVE PROJECTION METHODS FOR SPARSE LINEAR SYSTEMS AND EIGENPROBLEMS CHAPTER 11 : JACOBI DAVIDSON METHOD Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Numerical Simulation

More information

Is there life after the Lanczos method? What is LOBPCG?

Is there life after the Lanczos method? What is LOBPCG? 1 Is there life after the Lanczos method? What is LOBPCG? Andrew V. Knyazev Department of Mathematics and Center for Computational Mathematics University of Colorado at Denver SIAM ALA Meeting, July 17,

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

1. Introduction. In this paper we consider the large and sparse eigenvalue problem. Ax = λx (1.1) T (λ)x = 0 (1.2)

1. Introduction. In this paper we consider the large and sparse eigenvalue problem. Ax = λx (1.1) T (λ)x = 0 (1.2) A NEW JUSTIFICATION OF THE JACOBI DAVIDSON METHOD FOR LARGE EIGENPROBLEMS HEINRICH VOSS Abstract. The Jacobi Davidson method is known to converge at least quadratically if the correction equation is solved

More information

A Model-Trust-Region Framework for Symmetric Generalized Eigenvalue Problems

A Model-Trust-Region Framework for Symmetric Generalized Eigenvalue Problems A Model-Trust-Region Framework for Symmetric Generalized Eigenvalue Problems C. G. Baker P.-A. Absil K. A. Gallivan Technical Report FSU-SCS-2005-096 Submitted June 7, 2005 Abstract A general inner-outer

More information

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers MAX PLANCK INSTITUTE International Conference on Communications, Computing and Control Applications March 3-5, 2011, Hammamet, Tunisia. Model order reduction of large-scale dynamical systems with Jacobi-Davidson

More information

Davidson Method CHAPTER 3 : JACOBI DAVIDSON METHOD

Davidson Method CHAPTER 3 : JACOBI DAVIDSON METHOD Davidson Method CHAPTER 3 : JACOBI DAVIDSON METHOD Heinrich Voss voss@tu-harburg.de Hamburg University of Technology The Davidson method is a popular technique to compute a few of the smallest (or largest)

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

Controlling inner iterations in the Jacobi Davidson method

Controlling inner iterations in the Jacobi Davidson method Controlling inner iterations in the Jacobi Davidson method Michiel E. Hochstenbach and Yvan Notay Service de Métrologie Nucléaire, Université Libre de Bruxelles (C.P. 165/84), 50, Av. F.D. Roosevelt, B-1050

More information

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Preliminaries Eigenvalue problems 2012 1 / 14

More information

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The

More information

MICHIEL E. HOCHSTENBACH

MICHIEL E. HOCHSTENBACH VARIATIONS ON HARMONIC RAYLEIGH RITZ FOR STANDARD AND GENERALIZED EIGENPROBLEMS MICHIEL E. HOCHSTENBACH Abstract. We present several variations on the harmonic Rayleigh Ritz method. First, we introduce

More information

A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices

A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices DICEA DEPARTMENT OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING PhD SCHOOL CIVIL AND ENVIRONMENTAL ENGINEERING SCIENCES XXX CYCLE A robust multilevel approximate inverse preconditioner for symmetric

More information

CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD

CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD MICHIEL E. HOCHSTENBACH AND YVAN NOTAY Abstract. The Jacobi Davidson method is an eigenvalue solver which uses an inner-outer scheme. In the outer

More information

A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems

A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems Mario Arioli m.arioli@rl.ac.uk CCLRC-Rutherford Appleton Laboratory with Daniel Ruiz (E.N.S.E.E.I.H.T)

More information

Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems

Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan April 28, 2011 T.M. Huang (Taiwan Normal Univ.)

More information

7.2 Steepest Descent and Preconditioning

7.2 Steepest Descent and Preconditioning 7.2 Steepest Descent and Preconditioning Descent methods are a broad class of iterative methods for finding solutions of the linear system Ax = b for symmetric positive definite matrix A R n n. Consider

More information

CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD

CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD MICHIEL E. HOCHSTENBACH AND YVAN NOTAY Abstract. The Jacobi Davidson method is an eigenvalue solver which uses the iterative (and in general inaccurate)

More information

THEORETICAL AND NUMERICAL COMPARISON OF PROJECTION METHODS DERIVED FROM DEFLATION, DOMAIN DECOMPOSITION AND MULTIGRID METHODS

THEORETICAL AND NUMERICAL COMPARISON OF PROJECTION METHODS DERIVED FROM DEFLATION, DOMAIN DECOMPOSITION AND MULTIGRID METHODS THEORETICAL AND NUMERICAL COMPARISON OF PROJECTION METHODS DERIVED FROM DEFLATION, DOMAIN DECOMPOSITION AND MULTIGRID METHODS J.M. TANG, R. NABBEN, C. VUIK, AND Y.A. ERLANGGA Abstract. For various applications,

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 1, pp. 1-11, 8. Copyright 8,. ISSN 168-961. MAJORIZATION BOUNDS FOR RITZ VALUES OF HERMITIAN MATRICES CHRISTOPHER C. PAIGE AND IVO PANAYOTOV Abstract.

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

Solving Regularized Total Least Squares Problems

Solving Regularized Total Least Squares Problems Solving Regularized Total Least Squares Problems Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Numerical Simulation Joint work with Jörg Lampe TUHH Heinrich Voss Total

More information

Notes on PCG for Sparse Linear Systems

Notes on PCG for Sparse Linear Systems Notes on PCG for Sparse Linear Systems Luca Bergamaschi Department of Civil Environmental and Architectural Engineering University of Padova e-mail luca.bergamaschi@unipd.it webpage www.dmsa.unipd.it/

More information

Computational Methods. Eigenvalues and Singular Values

Computational Methods. Eigenvalues and Singular Values Computational Methods Eigenvalues and Singular Values Manfred Huber 2010 1 Eigenvalues and Singular Values Eigenvalues and singular values describe important aspects of transformations and of data relations

More information

A Note on Inverse Iteration

A Note on Inverse Iteration A Note on Inverse Iteration Klaus Neymeyr Universität Rostock, Fachbereich Mathematik, Universitätsplatz 1, 18051 Rostock, Germany; SUMMARY Inverse iteration, if applied to a symmetric positive definite

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol.??, No.?, pp.?????? c 2009 Society for Industrial and Applied Mathematics GRADIENT FLOW APPROACH TO GEOMETRIC CONVERGENCE ANALYSIS OF PRECONDITIONED EIGENSOLVERS ANDREW V.

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

Low Rank Approximation Lecture 7. Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL

Low Rank Approximation Lecture 7. Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL Low Rank Approximation Lecture 7 Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL daniel.kressner@epfl.ch 1 Alternating least-squares / linear scheme General setting:

More information

A Jacobi Davidson type method for the product eigenvalue problem

A Jacobi Davidson type method for the product eigenvalue problem A Jacobi Davidson type method for the product eigenvalue problem Michiel E Hochstenbach Abstract We propose a Jacobi Davidson type method to compute selected eigenpairs of the product eigenvalue problem

More information

6.4 Krylov Subspaces and Conjugate Gradients

6.4 Krylov Subspaces and Conjugate Gradients 6.4 Krylov Subspaces and Conjugate Gradients Our original equation is Ax = b. The preconditioned equation is P Ax = P b. When we write P, we never intend that an inverse will be explicitly computed. P

More information

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 7: Iterative methods for solving linear systems Xiaoqun Zhang Shanghai Jiao Tong University Last updated: December 24, 2014 1.1 Review on linear algebra Norms of vectors and matrices vector

More information

HOMOGENEOUS JACOBI DAVIDSON. 1. Introduction. We study a homogeneous Jacobi Davidson variant for the polynomial eigenproblem

HOMOGENEOUS JACOBI DAVIDSON. 1. Introduction. We study a homogeneous Jacobi Davidson variant for the polynomial eigenproblem HOMOGENEOUS JACOBI DAVIDSON MICHIEL E. HOCHSTENBACH AND YVAN NOTAY Abstract. We study a homogeneous variant of the Jacobi Davidson method for the generalized and polynomial eigenvalue problem. Special

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.4: Krylov Subspace Methods 2 / 51 Krylov Subspace Methods In this chapter we give

More information

The Eigenvalue Problem: Perturbation Theory

The Eigenvalue Problem: Perturbation Theory Jim Lambers MAT 610 Summer Session 2009-10 Lecture 13 Notes These notes correspond to Sections 7.2 and 8.1 in the text. The Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem Just

More information

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems AMSC 663-664 Final Report Minghao Wu AMSC Program mwu@math.umd.edu Dr. Howard Elman Department of Computer

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 10-12 Large-Scale Eigenvalue Problems in Trust-Region Calculations Marielba Rojas, Bjørn H. Fotland, and Trond Steihaug ISSN 1389-6520 Reports of the Department of

More information

Linear Systems. Class 27. c 2008 Ron Buckmire. TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5.4

Linear Systems. Class 27. c 2008 Ron Buckmire. TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5.4 Linear Systems Math Spring 8 c 8 Ron Buckmire Fowler 9 MWF 9: am - :5 am http://faculty.oxy.edu/ron/math//8/ Class 7 TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5. Summary

More information

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294)

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294) Conjugate gradient method Descent method Hestenes, Stiefel 1952 For A N N SPD In exact arithmetic, solves in N steps In real arithmetic No guaranteed stopping Often converges in many fewer than N steps

More information

Matrix Algebra: Summary

Matrix Algebra: Summary May, 27 Appendix E Matrix Algebra: Summary ontents E. Vectors and Matrtices.......................... 2 E.. Notation.................................. 2 E..2 Special Types of Vectors.........................

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 31, No. 2, pp. 460 477 c 2009 Society for Industrial and Applied Mathematics CONTROLLING INNER ITERATIONS IN THE JACOBI DAVIDSON METHOD MICHIEL E. HOCHSTENBACH AND YVAN

More information

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY KLAUS NEYMEYR ABSTRACT. Multigrid techniques can successfully be applied to mesh eigenvalue problems for elliptic differential operators. They allow

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 435 (20) 60 622 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Fast inexact subspace iteration

More information

Numerical behavior of inexact linear solvers

Numerical behavior of inexact linear solvers Numerical behavior of inexact linear solvers Miro Rozložník joint results with Zhong-zhi Bai and Pavel Jiránek Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic The fourth

More information

QR-decomposition. The QR-decomposition of an n k matrix A, k n, is an n n unitary matrix Q and an n k upper triangular matrix R for which A = QR

QR-decomposition. The QR-decomposition of an n k matrix A, k n, is an n n unitary matrix Q and an n k upper triangular matrix R for which A = QR QR-decomposition The QR-decomposition of an n k matrix A, k n, is an n n unitary matrix Q and an n k upper triangular matrix R for which In Matlab A = QR [Q,R]=qr(A); Note. The QR-decomposition is unique

More information

U AUc = θc. n u = γ i x i,

U AUc = θc. n u = γ i x i, HARMONIC AND REFINED RAYLEIGH RITZ FOR THE POLYNOMIAL EIGENVALUE PROBLEM MICHIEL E. HOCHSTENBACH AND GERARD L. G. SLEIJPEN Abstract. After reviewing the harmonic Rayleigh Ritz approach for the standard

More information

Lecture Note 13: Eigenvalue Problem for Symmetric Matrices

Lecture Note 13: Eigenvalue Problem for Symmetric Matrices MATH 5330: Computational Methods of Linear Algebra Lecture Note 13: Eigenvalue Problem for Symmetric Matrices 1 The Jacobi Algorithm Xianyi Zeng Department of Mathematical Sciences, UTEP Let A be real

More information

Universiteit-Utrecht. Department. of Mathematics. The convergence of Jacobi-Davidson for. Hermitian eigenproblems. Jasper van den Eshof.

Universiteit-Utrecht. Department. of Mathematics. The convergence of Jacobi-Davidson for. Hermitian eigenproblems. Jasper van den Eshof. Universiteit-Utrecht * Department of Mathematics The convergence of Jacobi-Davidson for Hermitian eigenproblems by Jasper van den Eshof Preprint nr. 1165 November, 2000 THE CONVERGENCE OF JACOBI-DAVIDSON

More information

On the accuracy of saddle point solvers

On the accuracy of saddle point solvers On the accuracy of saddle point solvers Miro Rozložník joint results with Valeria Simoncini and Pavel Jiránek Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic Seminar at

More information

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F is R or C. Definition 1. A linear operator

More information

Lecture 9: Krylov Subspace Methods. 2 Derivation of the Conjugate Gradient Algorithm

Lecture 9: Krylov Subspace Methods. 2 Derivation of the Conjugate Gradient Algorithm CS 622 Data-Sparse Matrix Computations September 19, 217 Lecture 9: Krylov Subspace Methods Lecturer: Anil Damle Scribes: David Eriksson, Marc Aurele Gilles, Ariah Klages-Mundt, Sophia Novitzky 1 Introduction

More information

A Jacobi Davidson type method for the generalized singular value problem

A Jacobi Davidson type method for the generalized singular value problem A Jacobi Davidson type method for the generalized singular value problem M. E. Hochstenbach a, a Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600

More information

Using the Karush-Kuhn-Tucker Conditions to Analyze the Convergence Rate of Preconditioned Eigenvalue Solvers

Using the Karush-Kuhn-Tucker Conditions to Analyze the Convergence Rate of Preconditioned Eigenvalue Solvers Using the Karush-Kuhn-Tucker Conditions to Analyze the Convergence Rate of Preconditioned Eigenvalue Solvers Merico Argentati University of Colorado Denver Joint work with Andrew V. Knyazev, Klaus Neymeyr

More information

Domain decomposition on different levels of the Jacobi-Davidson method

Domain decomposition on different levels of the Jacobi-Davidson method hapter 5 Domain decomposition on different levels of the Jacobi-Davidson method Abstract Most computational work of Jacobi-Davidson [46], an iterative method suitable for computing solutions of large dimensional

More information

Computation. For QDA we need to calculate: Lets first consider the case that

Computation. For QDA we need to calculate: Lets first consider the case that Computation For QDA we need to calculate: δ (x) = 1 2 log( Σ ) 1 2 (x µ ) Σ 1 (x µ ) + log(π ) Lets first consider the case that Σ = I,. This is the case where each distribution is spherical, around the

More information

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems Topics The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems What about non-spd systems? Methods requiring small history Methods requiring large history Summary of solvers 1 / 52 Conjugate

More information

Iterative methods for symmetric eigenvalue problems

Iterative methods for symmetric eigenvalue problems s Iterative s for symmetric eigenvalue problems, PhD McMaster University School of Computational Engineering and Science February 11, 2008 s 1 The power and its variants Inverse power Rayleigh quotient

More information

A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations

A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations Peter Benner Max-Planck-Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory

More information

A Jacobi Davidson Method for Nonlinear Eigenproblems

A Jacobi Davidson Method for Nonlinear Eigenproblems A Jacobi Davidson Method for Nonlinear Eigenproblems Heinrich Voss Section of Mathematics, Hamburg University of Technology, D 21071 Hamburg voss @ tu-harburg.de http://www.tu-harburg.de/mat/hp/voss Abstract.

More information

Symmetric matrices and dot products

Symmetric matrices and dot products Symmetric matrices and dot products Proposition An n n matrix A is symmetric iff, for all x, y in R n, (Ax) y = x (Ay). Proof. If A is symmetric, then (Ax) y = x T A T y = x T Ay = x (Ay). If equality

More information

Invariant Subspace Computation - A Geometric Approach

Invariant Subspace Computation - A Geometric Approach Invariant Subspace Computation - A Geometric Approach Pierre-Antoine Absil PhD Defense Université de Liège Thursday, 13 February 2003 1 Acknowledgements Advisor: Prof. R. Sepulchre (Université de Liège)

More information

Point Distribution Models

Point Distribution Models Point Distribution Models Jan Kybic winter semester 2007 Point distribution models (Cootes et al., 1992) Shape description techniques A family of shapes = mean + eigenvectors (eigenshapes) Shapes described

More information

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems H. Voss 1 Introduction In this paper we consider the nonlinear eigenvalue problem T (λ)x = 0 (1) where T (λ) R n n is a family of symmetric

More information

Numerical Methods I: Eigenvalues and eigenvectors

Numerical Methods I: Eigenvalues and eigenvectors 1/25 Numerical Methods I: Eigenvalues and eigenvectors Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 2, 2017 Overview 2/25 Conditioning Eigenvalues and eigenvectors How hard are they

More information

HARMONIC RAYLEIGH RITZ EXTRACTION FOR THE MULTIPARAMETER EIGENVALUE PROBLEM

HARMONIC RAYLEIGH RITZ EXTRACTION FOR THE MULTIPARAMETER EIGENVALUE PROBLEM HARMONIC RAYLEIGH RITZ EXTRACTION FOR THE MULTIPARAMETER EIGENVALUE PROBLEM MICHIEL E. HOCHSTENBACH AND BOR PLESTENJAK Abstract. We study harmonic and refined extraction methods for the multiparameter

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

Incomplete Cholesky preconditioners that exploit the low-rank property

Incomplete Cholesky preconditioners that exploit the low-rank property anapov@ulb.ac.be ; http://homepages.ulb.ac.be/ anapov/ 1 / 35 Incomplete Cholesky preconditioners that exploit the low-rank property (theory and practice) Artem Napov Service de Métrologie Nucléaire, Université

More information

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems Part I: Review of basic theory of eigenvalue problems 1. Let A C n n. (a) A scalar λ is an eigenvalue of an n n A

More information

Structured Preconditioners for Saddle Point Problems

Structured Preconditioners for Saddle Point Problems Structured Preconditioners for Saddle Point Problems V. Simoncini Dipartimento di Matematica Università di Bologna valeria@dm.unibo.it p. 1 Collaborators on this project Mario Arioli, RAL, UK Michele Benzi,

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

STEEPEST DESCENT AND CONJUGATE GRADIENT METHODS WITH VARIABLE PRECONDITIONING

STEEPEST DESCENT AND CONJUGATE GRADIENT METHODS WITH VARIABLE PRECONDITIONING SIAM J. MATRIX ANAL. APPL. Vol.?, No.?, pp.?? c 2007 Society for Industrial and Applied Mathematics STEEPEST DESCENT AND CONJUGATE GRADIENT METHODS WITH VARIABLE PRECONDITIONING ANDREW V. KNYAZEV AND ILYA

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT -09 Computational and Sensitivity Aspects of Eigenvalue-Based Methods for the Large-Scale Trust-Region Subproblem Marielba Rojas, Bjørn H. Fotland, and Trond Steihaug

More information

Indefinite Preconditioners for PDE-constrained optimization problems. V. Simoncini

Indefinite Preconditioners for PDE-constrained optimization problems. V. Simoncini Indefinite Preconditioners for PDE-constrained optimization problems V. Simoncini Dipartimento di Matematica, Università di Bologna, Italy valeria.simoncini@unibo.it Partly joint work with Debora Sesana,

More information

Conjugate Gradient (CG) Method

Conjugate Gradient (CG) Method Conjugate Gradient (CG) Method by K. Ozawa 1 Introduction In the series of this lecture, I will introduce the conjugate gradient method, which solves efficiently large scale sparse linear simultaneous

More information

Preconditioning Techniques Analysis for CG Method

Preconditioning Techniques Analysis for CG Method Preconditioning Techniques Analysis for CG Method Huaguang Song Department of Computer Science University of California, Davis hso@ucdavis.edu Abstract Matrix computation issue for solve linear system

More information

of dimension n 1 n 2, one defines the matrix determinants

of dimension n 1 n 2, one defines the matrix determinants HARMONIC RAYLEIGH RITZ FOR THE MULTIPARAMETER EIGENVALUE PROBLEM MICHIEL E. HOCHSTENBACH AND BOR PLESTENJAK Abstract. We study harmonic and refined extraction methods for the multiparameter eigenvalue

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

Numerical Methods for Large Scale Eigenvalue Problems

Numerical Methods for Large Scale Eigenvalue Problems MAX PLANCK INSTITUTE Summer School in Trogir, Croatia Oktober 12, 2011 Numerical Methods for Large Scale Eigenvalue Problems Patrick Kürschner Max Planck Institute for Dynamics of Complex Technical Systems

More information

Numerical Methods - Numerical Linear Algebra

Numerical Methods - Numerical Linear Algebra Numerical Methods - Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear

More information

On Lagrange multipliers of trust-region subproblems

On Lagrange multipliers of trust-region subproblems On Lagrange multipliers of trust-region subproblems Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Institute of Computer Science AS CR, Prague Programy a algoritmy numerické matematiky 14 1.- 6. června 2008

More information

Nonlinear Eigenvalue Problems: An Introduction

Nonlinear Eigenvalue Problems: An Introduction Nonlinear Eigenvalue Problems: An Introduction Cedric Effenberger Seminar for Applied Mathematics ETH Zurich Pro*Doc Workshop Disentis, August 18 21, 2010 Cedric Effenberger (SAM, ETHZ) NLEVPs: An Introduction

More information

ABSTRACT OF DISSERTATION. Ping Zhang

ABSTRACT OF DISSERTATION. Ping Zhang ABSTRACT OF DISSERTATION Ping Zhang The Graduate School University of Kentucky 2009 Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices ABSTRACT OF DISSERTATION A dissertation

More information